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Abstract: This paper considers an unobservable double-ended queueing system motivated by the application of a taxi
station where passengers and taxis arrive at two sides of the queue, and there are two types of passengers,
differentiated by their mean matching times with taxis. We use a three-dimensional Markov chain to model
the system and derive several system performance measures (mean queue lengths, waiting times and social
welfare). Furthermore, when agents are strategic, we model the system as a multi-population game among
three populations of agents and find their joining rates in equilibrium.

1 INTRODUCTION

A taxi-passenger system is a typical real-life example
of a double-ended queueing system in which agents
arrive at both sides of the queue for matching. In air-
ports and railway stations, it is common to see both
passengers and taxis form queues to be matched: a
queue of passengers who wait for taxis, and a queue
of taxis that wait for passengers. This type of sys-
tem was first studied by Kendall (1951), followed by
Dobbie (1961) and Di Crescenzo et al. (2012). Those
early studies did not incorporate strategic agent be-
haviors into the model.

A queueing analysis considering strategic cus-
tomer behavior was first undertaken by Naor (1969).
This research identified a queue length threshold that
determines customers’ decision between joining or
balking, under the most basic setting of an observ-
able M/M/1 queue. Edelson and Hildebrand (1975)
complemented by considering the unobservable case.
Multiple extensions followed, comprehensively sum-
marized in Hassin and Haviv (2003); Hassin (2016).
Hassin and Haviv (2002); Economou (2021) provided
a concrete theoretical framework for this type of prob-
lem by defining the problem under the scope of game
theory. However, only one-population games were
considered in those studies.

a https://orcid.org/0000-0002-5002-4946

Combining the two aforementioned concepts re-
sults in a new topic—the strategic behavior of agents
in double-ended queueing systems, with several no-
table studies: Shi and Lian (2016) considered a sys-
tem where matching times are zero; hence, the system
is described by a single number which is the differ-
ence between the number of passengers and the num-
ber of taxis in the system. Wang et al. (2017) consid-
ered a system with a gated policy. Jiang et al. (2020)
incorporated customer loss aversion into the model.
Wang and Liu (2019) discussed the impacts of differ-
ent levels of information. In all of these studies, only
passengers are assumed to be rational.

In reality, due to bulky luggage or to communica-
tion between passengers and taxi drivers, the match-
ing process usually takes more time than can be dis-
missed as negligible. Furthermore, there are access
points where multiple passenger–taxi pairs can match
at the same time. Another consideration is that there
may be multiple types of passengers whose match-
ing times are not identical. For example, domestic
passengers can match with local taxi drivers more
quickly, while it may take a longer time for foreign
visitors to communicate with taxis drivers. Moreover,
agents from the supply side may also be strategic.

Motivated by these complex circumstances, this
paper analyzes a taxi-passenger and multi-server
queueing system, and studies agents’ strategies for
joining the queue based on individual utility. The
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main contributions of this paper are:

• We consider a system with two passenger types,
distinguished by their differing service rates.

• We consider general non-zero matching times
which follow exponential distributions, and mul-
tiple access points.

• From the modeling perspective, we use a three-
dimensional Markovian description of the system.
When agents are strategic, the system is modeled
as a three-population game.

The remainder of this paper is structured as follows:
Section 2 describes the queueing system and presents
notations. Next, we derive some performance mea-
sures in Section 3. In Section 4, we derive Nash equi-
libria of the system when agents are strategic. In Sec-
tion 5, we analyze the system through several numer-
ical examples. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

We consider an unobservable double-ended queueing
system with a taxi stand containing S identical access
points. There are three populations of agents arriving
at the system: type-1 passengers, type-2 passengers,
and taxis. The area (including S taxi access points)
can accommodate at most K taxis at the same time
(K ≥ S). In an ideal situation where agents are given
enough incentive to join the queue without balking,
passengers and taxis arrive at the taxi stands accord-
ing to Poisson processes with potential arrival rates
Λp and Λt , respectively. An access point receives
a type-1 passenger with probability ε, and a type-
2 passenger with probability 1− ε. The matching
times of type-1 and type-2 passengers follow expo-
nential distributions with parameters µ1 and µ2, re-
spectively. Without loss of generality, we can assume
that µ1 < µ2, meaning that type-1 passengers have a
larger mean matching time. When the parking area
reaches its maximum capacity, the arrival of any new
taxi is blocked, so that taxi leaves immediately. On
the other hand, we assume that there is no limit on
the buffer of passengers. If a passenger arrives when
all access points are busy, or when there are no taxis
available for matching, he will wait in the queue under
the first-come, first-served (FCFS) service principle.

Let Rp and Rt denote the service values, and Cp
and Ct denote the waiting cost per time unit of passen-
gers and taxis, respectively. Let qp1 ,qp2 and qt denote
the joining probabilities of type-1 passengers, type-2
passengers, and taxis, respectively. Let λp = (qp1ε+

qp2(1−ε))Λp, λt = qtΛt and α=
qp1 ε

qp1 ε+qp2 (1−ε) . Then,

λp and λt are the actual arrival rates of agents; these
will be are used to derive performance measures in
the following section.

3 PERFORMANCE MEASURES

Let L(t), I(t) and J(t) respectively denote the num-
ber of type-1 passengers being matched at the access
points, the number of taxis in the system, and the to-
tal number of passengers in the system, at time t. The
process {(L(t), I(t),J(t)) | t ≥ 0} is a continuous-time
Markov Chain with the state space S given by

S= {(l, i, j) ∈ {0,1, ...,S}×{0,1, ...,K}×{0,1,2, . . .}}.

Also, as implied by their definitions, it should be
noted that l ≤ i and l ≤ j.

The system can be modeled as a quasi-birth-death
process with the infinitesimal generator Q being ex-
pressed as follows.

Q =



B(0) C (0) O O O ... ... ... ...

A(1) B(1) C (1) O O ...
...

...
...

O A(2) B(2) C (2) O ...
...

...
...

...
...

. . . . . . . . .
...

...
...

...

O O ... A(K) B(K) C (K) O ...
...

O O ... O A(K) B(K) C (K) O ...
...

...
...

...
...

. . . . . . . . .
...


, (1)

where O denotes a zero matrix of appropriate dimen-
sion. If we denote by M(m,n) the set of all m× n-
dimensional matrices, and M (i, j) (i, j ∈ Z+) the el-
ement at the ith row, jth column of a matrix M , then
the block matrices in Q can be defined by the sys-
tem parameters λp,λt ,µ1,µ2 and α, as shown in the
Appendix.

Letting Q ∗ = A(K)+B(K)+C (K), we can then de-
rive the stability condition of the system by simulta-
neously solving the following equations for η.

ηQ ∗ = 0,

and
ηe = 1,

where η is the row vector representing the stationary
distribution of the infinitesimal generator Q ∗, 0 is a
row vector with all elements equal to 0 and e is a col-
umn vector with all elements equal to 1. The stability
condition, then, is

ηC (K)e < ηA(K)e. (2)

If stability condition (2) is not satisfied, the sys-
tem becomes an M/H2/S/K queue of taxis in which
the passengers become “servers”. The mean waiting
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times of two type-1 and type-2 passengers are given
by

Wp1 =Wp2 =+∞. (3)

When the stability condition holds, we can de-
rive the steady state probabilities π = (π0,π1,π2, ...),
where π j = (π0,0, j,π1,0, j, ...,πS,K, j) is the vector en-
coding all probabilities when there are j passengers
in the system at the steady state. For j ≥ K, there
exists a constant matrix R such as

π j = πKR j−K ,

where R satisfies

C (K)+R B(K)+R 2A(K) = O. (4)

The solution of the matrix equation (4) is obtained
by the Matrix Geometric Method proposed by Neuts
(1981). Furthermore, for 1≤ j ≤ K, we also have

π j = π j−1R ( j),

where R (K) = R , and
R (1),R (2), ...,R (K−1);π0,π1, ...,πK are recursively
calculated as

R ( j) =−C ( j)(B( j)+R ( j+1)A( j+1))−1.

π0 is determined by solving

π0(B(0)+R (1)A(1))−1 = 0, (5)

and

π0

(
I +

S−1

∑
j=1

j

∏
i=1

R(i)+

(
S

∏
i=1

R (i)

)
(I −R )−1

)
e = 1,

(6)
where I denotes an identity matrix of appropriate di-
mension.

Next, we derive performance measures of the sys-
tem, including average queue lengths, and average
waiting times of passengers and taxis. The average
number of passengers in the waiting line is given by

Lp =
∞

∑
j=0

K

∑
i=0

S

∑
l=0

( j−min{i, j,S})πl,i, j

=
K−1

∑
j=0

jπ je j−
K−1

∑
j=0

π jg j

+πK(I −R )−1[KI +(I −R )−1R ]eK

−πK(I −R )−1gK , (7)

where

• e j is a unit vector of the same dimension as π j.

• g j = (g0,0, j,g1,0, j, ...,gS,K, j), where gl,i, j =
min{i, j,S}.

Note that the summation in (7) excludes (l, i, j) not
existing in the state space. The same rule applies to
all later summations and products.

The average number of taxis in the system is given
by

Lt =
∞

∑
j=0

K

∑
i=0

S

∑
l=0

iπl,i, j

=
K−1

∑
j=0

π jf j +πK(I −R )−1fK . (8)

Here, f j = ( f0,0, j, f1,0, j, ..., fS,K, j), where fl,i, j = i.
Corresponding to (7) and (8), the average sojourn

time taxis can be calculated via Little’s Law as fol-
lows

Wt =
Lt

λt(1−Pb)
, (9)

where Pb is the blocking probability of taxis, calcu-
lated by

Pb =
K−1

∑
j=0

π ju j +πK(I −R )−1uK . (10)

Here, uj is a vector with the same dimension as π j, in
which the last min( j+1,S+1) elements equal 1 and
the other elements equal 0.

The average number of passengers in the system
is given by

Lp =
∞

∑
j=0

jπ je j

=
K−1

∑
j=0

jπ je j +πK(I −R )−1[KI +(I −R )−1R ]eK .

(11)

The average sojourn time of all passengers is
given by

Wp =
Lp

λp
. (12)

Since a passenger knows his own type before en-
tering the taxi stand, the expected sojourn times of a
type-1 and a type-2 passenger are estimated as

Wp1 =
Lp

λp
+

1
µ1

, (13)

and

Wp2 =
Lp

λp
+

1
µ2

. (14)

Finally, social welfare, which equals the total util-
ity of all agents in the system per time unit, is given
by

SW = λpRp +λt(1−Pb)Rt −CpLp−CtLt . (15)
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For further analysis, we acknowledge the follow-
ing properties, which are supported by intuition and
numerous simulation results.
Axiom 1. The expected sojourn time of an arbitrary
agent depends on the strategies of agents in their own
population and the other populations. In other words,
Wp1 ,Wp2 and Wt are functions of qp1 ,qp2 and qt . The
monotonic properties of these functions with respect
to each variable are given as follows.
Under the stability condition given in (2),
(1) Wp1 is continuously increasing in qp1 and qp2 , and
decreasing in qt .
(2) Wp2 is continuously increasing in qp1 and qp2 , and
decreasing in qt .
(3) Wt is continuously decreasing in qp1 and qp2 , and
increasing in qt .

4 NASH EQUILIBRIA

In this section, we derive all possible Nash equilibria
at which agents make a best response to the strategies
of other agents. The social profile, which is repre-
sented by a triplet (qp1 ,qp2 ,qt), is denoted X. Let
X̄ = (q̄p1 , q̄p2 , q̄t) be the social profile in equilibrium.

Denote by Up1

(
qp1 |X̄

)
the payoff of an arbitrary

type-1 passenger who adopts a strategy qp1 against the
social profile X̄, which is given by

Up1

(
qp1 |X̄

)
= qp1

(
Rp−CpWp1

(
X̄
))

. (16)
.

By definition, q̄p1 is a best response against the
social profile in equilibrium, which means

q̄p1 ∈ argmax
qp1

Up1

(
qp1 |X̄

)

=


{0} if Rp−CpWp1

(
X̄
)
< 0,

[0,1] if Rp−CpWp1

(
X̄
)
= 0,

{1} if Rp−CpWp1

(
X̄
)
> 0.

(17)

If we similarly define Up2

(
qp2 |X̄

)
and Ut

(
qt |X̄

)
for the other two populations, we also have

q̄p2 ∈ argmax
qp2

Up2

(
qp2 |X̄

)

=


{0} if Rp−CpWp2

(
X̄
)
< 0,

[0,1] if Rp−CpWp2

(
X̄
)
= 0,

{1} if Rp−CpWp2

(
X̄
)
> 0,

(18)

and
q̄t ∈ argmax

qt

Ut
(
qt |X̄

)
=


{0} if Rt −CtWt

(
X̄
)
< 0,

[0,1] if Rt −CtWt
(
X̄
)
= 0,

{1} if Rt −CtWt
(
X̄
)
> 0.

(19)

(17), (18) and (19) lead to 27 possible combinations.
However, we can reduce the number of cases to con-
sider by noting that Wp1

(
X̄
)
>Wp2

(
X̄
)
, and consider-

ing the following special cases. First, if q̄t = 0, mean-
ing that taxis do not join the system, then it is easily
seen that q̄p1 = q̄p2 = 0 since the best response of pas-
sengers is not to join the system either. On the other
hand, if q̄p2 = 0, meaning that type-2 passengers have
no incentive to join the system, then it is implied that
q̄p1 = 0 (since type-1 passengers always expect longer
sojourn times than type-2 passengers), which leads to
q̄t = 0. In other words, (q̄p1 , q̄p2 , q̄t) = (0,0,0) is an
equilibrium and is the only equilibrium where q̄p2 = 0
or q̄t = 0. When q̄p2 > 0, q̄t > 0 and the stability con-
dition (2) is satisfied, all possible equilibria can be
derived as shown in Table 1.

Table 1: Equilibria and corresponding conditions.

Equilibria Conditions

(1,1,1)
Rp−CpWp1 (1,1,1)> 0,
Rp−CpWp2(1,1,1)> 0,
Rt −CtWt(1,1,1)> 0.

(q̄p1 ,1,1)
Rp−CpWp1(q̄p1 ,1,1) = 0,
Rp−CpWp2(q̄p1 ,1,1)> 0,
Rt −CtWt(q̄p1 ,1,1)> 0.

(0,1,1)
Rp−CpWp1(0,1,1)< 0,
Rp−CpWp2(0,1,1)> 0,
Rt −CtWt(0,1,1)> 0.

(0, q̄p2 ,1)
Rp−CpWp1(0, q̄p2 ,1)< 0,
Rp−CpWp2(0, q̄p2 ,1) = 0,
Rt −CtWt(0, q̄p2 ,1)> 0.

(1,1, q̄t)
Rp−CpWp1(1,1, q̄t)> 0,
Rp−CpWp2(1,1, q̄t)> 0,
Rt −CtWt(1,1, q̄t) = 0.

(q̄p1 ,1, q̄t)
Rp−CpWp1(q̄p1 ,1, q̄t) = 0,
Rp−CpWp2(q̄p1 ,1, q̄t)> 0,
Rt −CtWt(q̄p1 ,1, q̄t) = 0.

(0,1, q̄t)
Rp−CpWp1(0,1, q̄t)< 0,
Rp−CpWp2(0,1, q̄t)> 0,
Rt −CtWt(0,1, q̄t) = 0.

(0, q̄p2 , q̄t)
Rp−CpWp1(0, q̄p2 , q̄t)< 0,
Rp−CpWp2(0, q̄p2 , q̄t) = 0,
Rt −CtWt(0, q̄p2 , q̄t) = 0.

Equilibria #1 and #3 can be verified by simply
checking their corresponding conditions. The other
equilibria are derived by solving their corresponding
conditional equations and double-checking other con-
ditions. The solutions to those equations are not ex-
plicit but are computationally solvable. We will il-
lustrate results in several numerical examples in the
following section.
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5 NUMERICAL ANALYSIS

In this section, we present the analysis in specific nu-
merical examples. First, we assume that agents are
not rational, and numerically examine the variation of
some performance measures with respect to system
parameters and actual joining rates. In the following
examples, we set µ1 = 2, µ2 = 5, α = 0.3, Rp = 15,
Rt = 20, Cp = 5 and Ct = 4. Results are illustrated in
Figs. 1 to 8.

Figs. 1 to 4 verify the monotonic properties of pas-
sengers’ and taxis’ waiting times with respect to the
agents’ actual joining rates. The results are intuitive
and follow exactly as in Axiom 1.

Figure 1: Wp w.r.t λp (λt = 5, K = 20).

Figure 2: Wp w.r.t λt (λp = 4, K = 20).

Figs. 5 and 6 show that the social welfare func-
tion is unimodal with respect to the joining rates of
passengers and taxis. There exists a value of passen-
gers’ (or taxis’) joining rate at which social welfare
reaches its maximum. These patterns suggest that the
platform manager can control the arrival rate of one
side of agents in case the other side is not strategic,
to maximize social welfare. More details about appli-
cable control policies can be found in Haviv and Oz
(2018). For example, when taxi drivers are not strate-
gic and join the queue with rate λt = 5, policy makers
can interfere in the passengers’ service value to ad-
just their arrival rate at around λ∗p = 4.7, which yields

Figure 3: Wt w.r.t λp (λt = 5, K = 20).

Figure 4: Wt w.r.t λt (λp = 4, K = 20).

the highest social welfare. When λp < λ∗p, passengers
need more incentive to join the queue, so a fixed sub-
sidy (such as a discount or coupon) can be granted.
On the contrary, when λp > λ∗p, a toll fee can be ap-
plied to reduce the joining rate of passengers. The
same policies apply in the case where taxi drivers are
strategic and passengers are not.

Figure 5: SW w.r.t λp (λt = 5, S = 3, K = 20).

Figs. 7 and 8 illustrate how social welfare varies
according to the two system parameters S and K. In
this experiment, social welfare increases quickly at
first, then remains almost unchanged as S becomes
larger. It can be observed that 5 access points are
enough and optimal in this example (considering that
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Figure 6: SW w.r.t λt (λp = 4, S = 3, K = 20).

a larger parking lot may consume more budget for
construction and management). On the contrary, so-
cial welfare decreases with increased parking capac-
ity. This phenomenon may stem from the fact that the
parking capacity already exceeds a particular “thresh-
old,” above which the queue length of taxis gets
longer and leads to inefficient waiting times, thus re-
ducing social welfare.

Figure 7: SW w.r.t S (λp = 4, λt = 5, K = 20).

Figure 8: SW w.r.t K (λp = 4, λt = 5, S = 3).

In what follows, we derive joining probabilities of
agents and calculate social welfare in the case where
agents are strategic. For this, we set Λp = 4, Λt = 5,
µ1 = 1, µ2 = 5, S = 3, K = 8, ε = 0.3, Cp = 5 and
Ct = 4.

First, it can be seen that the equilibrium (0,0,0)
exists in any setting of parameters. In reality, the
system may end up at the equilibrium (0,0,0) in ex-
treme situations, for example, when the system is ter-
minated. In the following example, we derive other
equilibria from the situations in Table 1.
Example 1. Assume Rp = 15 and Rt = 20. In this
case, two equilibria exist: (1,1,1) (and (0,0,0)). This
means either that potential agents all join, or that none
join at all.
Example 2. Assume Rp = 15 and Rt = 4. In this ex-
ample, we keep the service value of passengers un-
changed while reducing the service value of taxis.
This make the equilibrium (1,1,1) no longer exist
since taxis expect a negative payoff when they join
the system at full rate. Instead, there exists an equilib-
rium at (0,0.9099,0.5499), at which type-1 passen-
gers choose not to join the system at all, while both
type-2 passengers and taxis join the system at a rate
smaller than the corresponding potential rate.
Example 3. Assume Rp = 2.5 and Rp = 4. In this
example, we found the equilibrium (0,1,1), meaning
that type-1 passengers choose not to join the system
at all, while both type-2 passengers and taxis join the
system at full potential rates.

6 CONCLUSIONS

This paper examined the variations in social welfare
and waiting times of agents in a taxi-passenger system
with respect to changes in joining rates and system
parameters. The derivation of such performance mea-
sures provided a basis for further optimization of the
system and the identification of equilibrium joining
rates when agents are strategic. We derived different
patterns of Nash equilibria and showed that multiple
equilibria may simultaneously exist in specific numer-
ical examples.

Future work may consider a solution for the so-
cial welfare optimization problem on three decision
variables corresponding to the joining probabilities of
three populations of agents. The results of such inves-
tigations provides for the proposal of socially optimal
policies.
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APPENDIX

A(K),B(K),C (K) ∈M
(
(S + 1)(S + 2)

2

+ (K − S)(S + 1),
(S + 1)(S + 2)

2

+ (K − S)(S + 1)
)

such that

C (K) = diag(λ,λ, ...,λ);

A(K)

(
(S + 1)(S + 2)

2
+ i(S + 1) + j,

S(S + 1)
2

+ i(S + 1)

+ j
)

= α( j − 1)µ1 + (1− α)(S− ( j − 1))µ2,

A(K)

(
(S + 1)(S + 2)

2
+ i(S + 1) + j,

S(S + 1)
2

+ i(S + 1) + ( j + 1)
)

= α(S− ( j − 1))µ2,

A(K)

(
(S + 1)(S + 2)

2
+ i(S + 1)

+ ( j + 1),
S(S + 1)

2
+ i(S + 1) + j

)
= (1− α) jµ1,

B(K)

(
S(S + 1)

2
+ i(S + 1) + j,

(S + 1)(S + 2)
2

+ i(S + 1) + ( j + 1)
)

= λt ,

for i = 0,1, ...,K−S and j = 1,2, ...,S+1;

A(K)

(
(i+1)(i+2)

2
+ j,

i(i+1)
2

+ j
)
= (i− ( j−1))µ2,

A(K)

(
(i+1)(i+2)

2
+( j+1),

i(i+1)
2

+ j
)
= jµ1,

B(K)

(
i(i+1)

2
+ j,

(i+1)(i+2)
2

+ j
)
= (1−α)λt ,

B(K)

(
i(i+1)

2
+ j,

(i+1)(i+2)
2

+( j+1)
)
= αλt ,

for i = 0,1, ...,S−1 and j = 1,2, ..., i+1.
For n < K,

C (n) ∈M
(
(n + 1)(n + 2)

2

+ (K − n)(n + 1),
(n + 1)(n + 2)

2

+ (K − n)(n + 2)
)
,

for n≥ 1, and
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A(n) ∈M
(
(n + 1)(n + 2)

2
+ (K − n)(n + 1),

n(n + 1)
2

+ (K − (n− 1))n
)
,

B(n) ∈M
(
(n + 1)(n + 2)

2

+ (K − n)(n + 1),
(n + 1)(n + 2)

2

+ (K − n)(n + 1)
)
,

such that
C (n)(i, i) = λ

for i = 1,2, ..., (n+1)(n+2)
2 ;

C (n)
(
(n + 1)(n + 2)

2
+ i(n + 1)

+ j,
(n + 1)(n + 2)

2
+ i(n + 2) + j

)
= (1− α)λ,

C (n)
(
(n + 1)(n + 2)

2
+ i(n + 1)

+ j,
(n + 1)(n + 2)

2
+ i(n + 2) + ( j + 1)

)
= αλ,

A(n)
(
(n + 1)(n + 2)

2
+ i(n + 1) + j,

n(n + 1)
2

+ i(n + 1) + j
)

= (n− ( j − 1))µ2,

A(n)
(
(n + 1)(n + 2)

2
+ i(n + 1)

+ ( j + 1),
n(n + 1)

2
+ i(n + 1) + j

)
= jµ1,

B(n)
(

n(n + 1)
2

+ i(n + 1) + j,
(n + 1)(n + 2)

2

+ i(n + 1) + ( j + 1)
)

= λt ,

for i = 0,1, ...,K−n and j = 1,2, ...,n+1;

A(n)
(
(i + 1)(i + 2)

2
+ j,

i(i + 1)
2

+ j
)
= (i− ( j− 1))µ2,

A(n)
(
(i + 1)(i + 2)

2
+ ( j + 1),

i(i + 1)
2

+ j
)

= jµ1,

B(n)
(

i(i + 1)
2

+ j,
(i + 1)(i + 2)

2
+ j
)

= (1− α)λt ,

B(n)
(

i(i + 1)
2

+ j,
(i + 1)(i + 2)

2
+ ( j + 1)

)
= αλt ,

for i = 0,1, ...,n−1 and j = 1,2, ..., i+1; and n≥ 1.
Finally,

B(0)(i, i) =−∑
j

A(0)(i, j)−∑
j 6=i

B(0)(i, j),

and
B(n)(i, i) =−∑

j

(
A(n)(i, j)+C(n)(i, j)

)
−∑

j 6=i
B(n)(i, j)

for n = 1, ...,K.
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