A Method for Detecting Common Weaknesses in Self-Sovereign Identity
Systems Using Domain-Specific Models and Knowledge Graph

Keywords:

Abstract:

Charnon Pattiyanon, Toshiaki Aoki and Daisuke Ishii
Japan Advanced Institute of Science and Technology, Ishikawa, Japan

Self-Sovereign Identity, Weakness Detection, Domain-Specific Modeling Language, Knowledge Graph.

A Self-Sovereign Identity (SSI) system is a decentralized identity management system based on claims
that leverages blockchain technology to empower individuals to manage their personal information and au-
tonomously authenticate services. The SSI system is unique in that it makes use of disparate terminologies,
making analysis arduous and challenging for security specialists. Weakness analysis is a well-known security
assurance technique for determining the presence of weaknesses in a target system. Weakness analysis is cru-
cial to the deployment of the SSI system in that it can earn user trust and be verified secure if the majority of
detected weaknesses are addressed properly. We seek to leverage domain experience in this work to lessen
the effort required to analyze weaknesses by security specialists unfamiliar with the SSI system. This paper
presents two domain-specific modeling languages (DSMLs) based on the unified modeling language (UML)
communication diagram for embedding domain knowledge about the SSI system and common weaknesses.
Then, with the assistance of domain knowledge graphs, this paper presents a method for detecting weaknesses
in the links between the two models created by the proposed DSMLs. Precision and accuracy metrics are used
to determine the proposed method’s performance.

1 INTRODUCTION

A self-sovereign identity (SSI) is a claim-based, de-
centralized identity management system. It empow-
ers users to manage and control their personally iden-
tifiable information (PII) without the intervention of a
central authority (e.g., a service provider). It is a new
standard for protecting personally identifiable infor-
mation (PII) in modern software systems, however it
is not generally adopted at the moment due to its com-
plexity and concerns about its security and privacy.

To obtain user trust, the SSI system’s security has
to be taken into consideration because it’s closely
linked to the manipulation of PII. However, the SSI
system’s unique terminologies and mechanism make
it more difficult for security specialists to become ac-
quainted. Due to a lack of acquaintance and domain
experience, it may result in cases being overlooked
when performing security analysis.

Weakness analysis and detection are two fre-
quently used security assurance approaches for en-
hancing the security of software systems. The ul-
timate goal is to identify and eliminate any secu-
rity weaknesses in a target system. MITRE Corpo-
ration assists security analysts by compiling a pub-

Pattiyanon, C., Aoki, T. and Ishii, D.

lic database, i.e., the common weakness enumer-
ation (CWE), of common software and hardware
weaknesses. Several previous works attempted to
provide a variety of methodologies for detecting com-
mon CWE weaknesses, including an ontological ap-
proach (Ansarinia et al., 2012; Salahi and Ansarinia,
2013) and a program analysis approach (Sun et al.,
2014). Unfortunately, none of them consider domain
knowledge and require domain expertise to imple-
ment. Existing methodologies are difficult for inex-
perience analysts to apply to the SSI system.

Due to the cutting-edge nature of the SSI system
and its implementation’s emphasis on adhering to its
fundamental concepts, its implementation may intro-
duce several weaknesses unintentionally. Thus, weak-
ness analysis becomes critical to the SSI system’s se-
curity in the sense that it can only be proven secure
if the majority of detected weaknesses are adequately
addressed. For instance, a weakness in the cleanup of
sensitive data following processing. The fundamental
concepts made no reference to or concern themselves
with data cleansing, resulting in the retention of sensi-
tive information in the memory. Without conducting a
weakness analysis, this weakness may become a point
of attack for any threat actor.

219

A Method for Detecting Common Weaknesses in Self-Sovereign Identity Systems Using Domain-Specific Models and Knowledge Graph.

DOI: 10.5220/0010824900003119

In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 219-226

ISBN: 978-989-758-550-0; ISSN: 2184-4348

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

The purpose of this study is to exploit the SSI sys-
tem’s domain expertise and to bridge gaps in com-
monly used CWE terms. We profile the unified mod-
eling language (UML) communication diagram in or-
der to propose two domain-specific modeling lan-
guages (DSMLs): one for the SSI system and another
for the CWE weaknesses. Then, we conduct a do-
main analysis to develop linkages between the SSI
system’s unique terminologies and the CWE’s com-
mon weaknesses, which we formalize as a knowledge
graph. Finally, we present a methodology for detect-
ing the CWE’s common weakness on the basis of the
knowledge graph. We undertake an experiment to de-
termine the performance of the proposed method us-
ing experts’ ground truth. The main contributions of
this paper are listed as:

* We abstract the SSI system’s native properties us-
ing a DSML that is both versatile and comprehen-
sive for modeling the SSI system’s architecture.

* We abstract the description of the CWE’s com-
mon weaknesses into a DSML that can be applied
to a variety of areas and methodologies.

* We describe an approach for bridging gaps
between standard software development and
domain-specific system development. This
method enables security specialists who are unfa-
miliar with the SSI system to do a coverage weak-
ness analysis.

The remainder of this paper is structured as follows:
Section 2 discusses the approaches employed. Sec-
tion 3 proposes a meta-model for DSMLs. Sec-
tion 4 details our proposed method for detecting
weaknesses. Sections 5 and 6 summarize our experi-
mental findings and discuss them. Section 7 compares
our work to related works, and Section 8 summarizes
our findings and suggests future directions.

2 BACKGROUND

2.1 Self-Sovereign Identity Systems

A self-sovereign identity was invented as an identity-
as-a-service solution that overcomes management dif-
ficulties through the decentralization of blockchain
technology. It guarantees users’ complete sovereignty
over their PII and their ability to selectively disclose
it as little as necessary (Allen, 2016). The SSI sys-
tem is built on the W3C standard for verifiable cre-
dential data models (Sporny et al., 2019), which spec-
ifies three roles: holder, issuer, and verifier. A holder
is an individual who is an identity subject and who
owns PIIs. An issuer is a person, organization, or
system that is responsible for validating claims. A

220

Schema
Id: “lvmczJHCwx"

DID
“did:ssi:xvOQGMFUU..."

Schema: “IvmczJHCwX" “I am graduated B.Sc.”

Name: “John",

Age: 19, DID

Education: 8.5 s L2VGODALT.."

—_— ‘-‘» —
(A Mobile Application)

A
Verifiable Claim
“I am graduated B.Sc.", l T Claim

‘A Holder An Attribute Storage Blockchain
(A Graduate)
Service Token Verifiable Claim
Employee Account “I am graduated B.Sc.",
Schema: “lvmczJHCwx"

Id: “vmczJHCwWX"

“did:ssi:MsBpICWErU..."

A Verifier
(A Company)

Figure 1: A high-level overview of the SSI system with an
actual situation.

verifier is a person, organization, or system that ver-
ifies claims to ensure they are valid for service au-
thentication. Miihle et al. (2018) surveyed and re-
ported four essential components: identification, at-
tribute storage, verifiable claim, and authentication.
Each entity in the SSI system is uniquely identifiable
using a decentralized identifier (DID). An entity can
exchange a DID in order to retrieve the public key
of another entity from a blockchain. A holder could
store PIIs in the attribute storage of a local device and
create a claim attesting to a PII with little knowledge.
For instance, a holder may record his or her age and
create a claim attesting to the fact that the holder is
over the age of 18 without disclosing the actual age.
The claim should be sent to the issuer for verification
of its accuracy. If the claim is valid, the issuer can ver-
ify it manually or against existing data and then gen-
erate a verifiable claim using a blockchain-published
schema. To authenticate services, a holder may offer
both claims and verified claims to a verifier. The veri-
fier may validate the verifiable claim by accessing the
related schema on blockchain.

To summarize and explain an actual example,
Fig. 1 provides a high-level overview of the SSI sys-
tem for a graduate who claims a degree in order to
seek for a job. The university that grants the degree
will publish a degree schema on blockchain, which
the company may validate.

2.2 Common Weakness Enumeration

A weakness is a type of fault that can be exploited as
a vulnerability within a software product even when it
is operating normally (MITRE, 2006). MITRE Cor-
poration urges that the IT community submit com-
mon software and hardware weaknesses to the CWE
database. They will publish proposed weaknesses in
the CWE database after a thorough evaluation.

A Method for Detecting Common Weaknesses in Self-Sovereign Identity Systems Using Domain-Specific Models and Knowledge Graph

Multiple text fields are used to record an entry in
the CWE database, including a description, common
consequences, and demonstrative examples. To de-
termine the occurrence of a weakness, analysts must
scan through those text fields and justify the potential
in the target system. Only a few entries are provided
in the demonstrative example text field as an example
of smelly source code. It can be seen that the most
important information for detecting a weakness is the
description text field, e.g.:

“The software does not perform or incor-
rectly performs an authorization check when
an actor attempts to access a resource or per-
form an action.”

Discussing the contents of the description text field, it
describes how a system actor acts on information in
a positive or negative manner. We focus on the de-
scription text field of the common software weakness
solely because the SSI system’s unique functionalities
are based on its software application.

2.3 UML Communication Diagram

The UML communication diagram is a subset of the
interaction diagram specified by the object manage-
ment group (OMG). Hundreds of details were given in
the specification for each option of the interaction dia-
grams (Object Management Group, 2017). They did,
however, share the same abstract syntax, even though
the communication diagram may not incorporate all
of them.

Three significant syntaxes demand special atten-
tion: a lifeline, a message, and a general ordering. A
lifeline is a timeline that depicts the progression of a
procedure. A message is merely the record of events
occurring between two lifelines. It will be denoted by
a message occurrence specification, which specifies
the event’s name, arguments, and value. A general
ordering denotes the sequence in which the messages
appear in the diagram.

In this work, we profile the domain knowledge
of the SSI system and the CWE weaknesses that de-
fine two novel DSMLs using the abstract syntax of
the UML interaction diagram, particularly the section
used by the communication diagram.

2.4 Knowledge Graph

A knowledge graph is a directed labelled graph that
depicts the relationships between knowledge entities.
Ji et al. (2021) recently defined a knowledge graph
G = (E,R,F) in which E denotes a set of entities,
R denotes a set of relations, and F C EX R X E

denotes a set of facts showing the existence of a rela-
tionship between two entities. For example:
e (“John”, born_in, “Sydney”) is a fact denoting
john was born in Sydney.
* (“Application”, read, “data”) is a fact denoting an
application reads data.
The knowledge graph is a straightforward model
that facilitates both user accessibility and systematic
search. While it lacks the richness of other graph
representations (e.g., ontology), it is lightweight and
suffices to denote simple relationships. We employ
a knowledge graph to depict the links between SSI
system-specific and common software concepts in
this work, based on the domain analysis results.

3 META-MODELS

3.1 SSI System DSML Meta-model

Due to the fact that the SSI system is defined by dis-
tinct terminologies, and these terminology may vary
among publications, designing the SSI system using
the UML interaction diagram may require a generic
reference to domain-specific information.

According to (Allen, 2016; Sporny et al., 2019;
Miihle et al., 2018), the SSI system consists of three
interchangeable roles, distinct data objects, and tech-
nical components, as stated in Section 1. Moreover,
Ferdous et al. (2019) studied the fundamental con-
cept of the SSI system in the literature and identified
four critical data objects in formal terms, i.e., a partial
identity, an SSI, an assertion, and a profile. Likewise,
other works (Tobin and Reed, 2017; Haddouti and
Ech-Cherif El Kettani, 2019; Liu et al., 2020; Panait
et al., 2020; Wang and De Filippi, 2020; Naik and
Jenkins, 2020) studied and presented designs for the
SSI system in a variety of ways. Taking this literature
into account, we found a common structure of the SSI
system’s functionalities, i.e., technical component(s)
performs a function on SSI-related object(s). Thus,
we summarize variations of element in the common
structure in Table 1.

We use the common structure as a core notion to
create a DSML for the SSI system, as illustrated in
Fig. 2 on the left as a meta-model with a class di-
agram. The meta-model demonstrates how the SSI
system’s DSML is profiled using the abstract syntax
of the UML interaction diagram. The technical com-
ponents of the SSI system provide a lifeline. Then,
functions and SSI-related objects are used to construct
the message and value specification, respectively. In
this work, we will model the SSI system using the

221

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

Lifeline

Message +message +argument | ValueSpecification

~enumerations

Process

~enumeration

Component ‘ 1.

[hotor .

Create |
Update IssuerEndpoint
Delete ServiceEndpoint
Read Blockchain
Disclose

Exchange
Store

Consent + limitedBy

- techType : Technology ‘ +component

+porforms [1.

-name : String [*2°t"

+ performs [1..*

Function Action

- name : String
- pre_func: Process

- name : String
- condition : Condition

+tuncton] 0.
+object | SSI-Related Object |<t"=="

Information

‘

Condition

Good

Incorrect
Incomplete

- limit : Process [] | %" 1| - name : String |
KeyPair DID ssi Profile | . poie +comans | AsSertion
o | | | oot oy
~ public : String 5 7| - value : String [| [71~ claim : String
- private : String e
+signs | 0.0
whey [1 o
Attribute -.* | Partial Identity
1
- value : String

DoesNotlmplement

A DSML for the SSI System

A DSML for the CWE Weaknesses

Figure 2: Meta-models of the two DSMLs for the SSI system (left) and the CWE weaknesses (right).

Table 1: Common structure of the SSI system’s functions
and its variations.

IThe SSI System|

@ ~

The CWE
database

Element Variation

Technical Holder, Issuer, Verifier, Identity Wallet, Service End-
Component point, Blockchain

Function Create, Update, Delete, Modify, Read, Disclose, Ex-

change, Store

SSI-related
Objects

PII, Identity Attribute, Attribute Value, DID, DID
Document, Partial Identity, SSI, Claim, Attestation,
Assertion, Proof, Service Token, Public Key, Private

Key, Claim Schema, Request Schema, Consent

DSML and then use the model as an input to the pro-
posed weakness detection method.

3.2 CWE Weakness DSML Meta-model

As stated in Section 2.2, the CWE contains hundreds
of entries for common software and hardware weak-
nesses. However, important data is contained in the
description text field for the purpose of detecting the
occurrence of the weakness.

We divide the important data necessary for detect-
ing the occurrence of weakness into three categories:
actors who produce the weakness; actions denote con-
nected actions that, in some conditions, result in a
weakness; information refers to a set of data elements
that are exploited by an action of weakness. Then, as
illustrated on the right-hand side of Fig. 2, we pro-
file the UML interaction diagram to highlight those
categories and propose a DSML for the CWE weak-
nesses. In this work, we will use the proposed DSML
to model each entry of the CWE weaknesses and then
use it as another input to the proposed method.

222

ADSML
for the CWE

Step B. Model entries

\ 4
A DSML
for the SSI Step A. Model functions
the SSI system

System ‘ the CWE database Weaknesses, g
The CWE'
The SSI Weakness
System Models Models

\/

Step C. Detect the occurrence of
each CWE weakness

L

System Domain
Knowledge
Graph
Detected CWI
Weakness Entries

Figure 3: An overview of the knowledge graph-based weak-
ness detection method.

4 KNOWLEDGE GRAPH-BASED
WEAKNESS DETECTION

This section describes our proposed method for de-
tecting security software weaknesses in the CWE
database by leveraging the inter-model links be-
tween the two DSMLs and the predefined SSI sys-
tem domain knowledge graph. We shall illustrate an
overview of the proposed method in Fig. 3.

The proposed method is built on the assumption
that a generic description of the CWE weaknesses
is adequate to compare to the SSI system’s unique

A Method for Detecting Common Weaknesses in Self-Sovereign Identity Systems Using Domain-Specific Models and Knowledge Graph

functionalities and detect the existence. At step A,
an analyst should model the target SSI system im-
plementation using the proposed DSML for the SSI
system. The resulting system model will be a UML
communication diagram enhanced with SSI-specific
stereotypes. Then, in step B, an analyst should use
the proposed DSML to model all the interesting en-
tries of common software weaknesses from the CWE
database. Models produced should follow the same
format as the SSI system design. Finally, at step C,
we propose the SSI system domain knowledge graph
based on the results of the domain analysis, which en-
ables an analyst to make use of preexisting informa-
tion when detecting which weaknesses occur in the
target SSI system implementation. In the following
sub-section, we will explain each step in details.

4.1 Detailed Methodology

Step A. Modeling of the SSI System Design. This
step will use the proposed DSML to model the SSI
system. The primary user of this methodology is an
analyst who is tasked with analyzing the security of
an SSI system implementation. First, regardless of the
design process used, an analyst should extract the im-
plementation’s functionality. It is sufficient to gener-
ate a list of functions, each of which describes which
components or actors perform an action on a set of
data objects. Then, using the DSML meta-model,
an analyst should model those functions as a series
of UML communication diagrams with their con-
stituents labeled with the SSI system-specific stereo-
type (on the left-hand side of Fig. 2). It is possible for
an analyst to create many diagrams to represent all of
the implementation’s unique functionalities. An ex-
ample of a modeled communication diagram is shown
in Fig. 4. Additionally, one can observe that certain
additional notations have been added to the commu-
nication diagram to clarify the particular stereotype.

Step B. Modeling of the CWE Weaknesses. This
step will use the proposed DSML to model the CWE
database’s weaknesses in the same way as the SSI sys-
tem does. At the start of this step, an analyst must
determine the extent of software weaknesses to ex-
amine. While it is ideal to model and use all soft-
ware weaknesses in the CWE database, this can be
scoped to conserve resources and effort. Then, an an-
alyst should utilize the DSML meta-model to repre-
sent each software weakness entry as a detailed com-
munication diagram, as this may contain sufficient
information to detect a weakness (according to the
right-hand side of Fig. 2). A single entry for a soft-
ware weakness should have a single matching model.
An example of a modeled communication diagram is

«Function» 2: VerifyClaim(«atributes Claim : String,
«Consent> Consent: Object) :: Disclose
«component» - «components
Issuer Holder
(IssuerEndpoint) —> (IdentityWallet)
<Function» 4: ReturnVC(cAssertion» VC : String)
Exchange
—> -
«Function» 3: CreateVC(«Atribute» Claim : String,) «Function» 1: CreateClaim(«atributes Age = 25 Int) :: Create

Read, Create, Store

Figure 4: An example of a communication diagram speci-
fied by the proposed DSML for the SSI system.

d]

. «Function» 1: @ccess(«information» Sensitivelnfo) :: Incorrect

«Actor»
User Software Product
—

<Functions 2a: store(cinformations Sensitivelnfo)

o 2b: transfer(cinformations Sensitivelnfo)

»2¢: share(dinformation» Sensitivelnfo) <—

cFunction» 3: remove(dnformation» Sensi B D

Figure 5: An example of the CWE 212 communication dia-
gram specified by the proposed DSML for the CWE weak-
nesses.

shown in Fig. 5. Specified weakness conditions are
highlighted in red texts.

Step C. Detecting of the Occurrence of Each CWE
Weakness. This step will examine two groups of
communication diagrams and identify the inter-model
links between them. Regrettably, the two groups
are frequently represented in disparate circumstances,
particularly in terms of nomenclature.

To overcome this issue, we propose a knowledge
graph including pre-defined links between the SSI
system’s specific and common software terms. We
analyzed a collection of research papers on the design
of SSI systems and discovered that, even within this
discipline, distinct names were employed to denote
the same meaning. For instance, the terms “user” and
“holder” are used interchangeably to refer to a holder.
In accordance with (Ji et al., 2021)’s definition, we
limit the scope of relations %&_in the proposed knowl-
edge graph to the equivalence-to relation (abbreviated
“eqv-to”). In Fig. 6, we define links between SSI
system-specific terms that share a common meaning
through the use of blue relational edges.

On the other hand, we also found that the SSI
system-specific terms are somewhat different to com-
mon software development terms. We take the spe-
cific terms to search in a thesaurus corpora' and in-
clude synonyms of the specific terms into the knowl-
edge graph. We define links between SSI system-
specific terms to common terms using orange rela-
tions edges in Fig. 6.

This step detects the occurrence of a weakness
in the target SSI system implementation using the

' An online thesaurus database: www.thesaurus.com

223

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

“Endpoint”

i

{
0
g0

eavto gy to equ_to

equ_to

i
%
bl

i

eqv_to

“validator”

%

eqv_to

eqv_to “relying party” eqv_to equ_to
eqv_to
pr—

“attribute”

eqv_to

&
g9
Q

ol
t

i

0

equ_to “disclosure”

equ_to

“credential”

Figure 6: The proposed knowledge containing pre-defined
linkages of terms.

“sensitive information”

!

knowledge graph and a series of methods outlined
in Algorithm 1. This algorithm indicates that all el-
ements of two communication diagrams are iterated
and compared using a procedure called CHECKE-
QUIVALENT(). The procedure should verify if a pair
of elements are present in the knowledge graph and
have relevant relations. If this is the case, the pair
will be collected for the purpose of indicating the oc-
currence of weakness. Otherwise, a manual judgment
will be required to update the knowledge graph.

Algorithm 1: Weakness detection between communication
diagrams for the SSI system and the CWE weakness using
the knowledge graph.

Input: A communication diagram of the SSI system ()
A communication diagram for a weakness (W)
A knowledge graph (Gssr)
Output: A boolean decision of the weakness occurrence.
1. Initiate Rel. = False,Rely = False,Rel; = False;
2: for each component c in S do
3 for each actor a in W do
4 if CHECKEQUIVELENT(c, a) then
5 Rel. = True;
6: for each function f in S do
7: for each action p in W do
8 if CHECKEQUIVALENT(f, p, Gssy) then
9 Check conditions and Rely = True;

10: for each SSI-related object or its inheritance o in S do

11: for each information i in W do
12: if CHECKEQUIVALENT(0,i,Gssr) then
13: R ll' =T

e rue;
return Rel, and Rely and Rel;;
14: procedure CHECKEQUIVALENT(t1,2,Gssr)
15: if (11, eqv_to,) in F of Gss; then

16: return True;
17: else
18: return Determine whether #; and #, are equiva-

lent and update Gssr;

224

Table 2: Statistical data of the experimental runs.

Product | #SSI | #CWE #Pair #Rel | #Detect | Time
IBM 5 10 18,363 9 3 1.49s
Sovrin 7 10 20,528 15 3 1.67s
uPort 2 10 10,551 13 3 1.32s

Fig. 4 and 5 illustrate the proposed method’s re-
sults in action. Assume we model a function repre-
senting an implementation in Fig. 4 and the CWE 212
entry in Fig. 5 using steps A and B. According to the
CWE 212 weakness, the product does not remove or
only partially remove sensitive information prior to
transfer, allowing other users to access it. Using the
knowledge graph, Algorithm 1 determines if an issuer
endpoint is equivalent to a product (see at the top-right
of Fig. 6). Additionally, the claim is equivalent to sen-
sitive information. The discovered relationships ap-
pear to suggest that there is a possibility of CWE 212
entry in the SSI system implementation.

S EVALUATION

5.1 Implementation

We develop a Python command-line interface tool to
aid in the implementation of the proposed method in
real-world scenarios. The program accepts two JSON
files as inputs: one containing the SSI system model
and another containing an entry for a CWE weakness.
The JSON keys are defined using the DSMLs and are
structured according to the UML communication dia-
gram’s core elements. The tool is then used to conduct
Algorithm 1 semi-automatically, as some aspects still
require manual judgment. The knowledge graph, on
the other hand, is designed to be evolutionary, and its
updating will bring the tool closer to automaticity.

5.2 Experiment Settings and Findings

We conducted an experiment to determine the SSI
system’s performance in real-world implementations.
We chose three implementations of the SSI system as
examples: IBM Verify Credentials, Sovrin, and uPort.
The IBM Verify Credentials and the Sovrin have
a similar target market (i.e., enterprise-level busi-
nesses), but their network governance mechanisms
are distinct. uPort, on the other hand, is more compact
that includes a variety of features. They are excellent
representations of real-world differences.

In JSON files, we encode the functions of the
three implementations and 10 CWE weakness en-
tries. The 10 entries were chosen at random from
a bucket of software weaknesses with adequate de-

A Method for Detecting Common Weaknesses in Self-Sovereign Identity Systems Using Domain-Specific Models and Knowledge Graph

Table 3: An evaluation result of the proposed method.

Product Confusion Matrix Accuracy | Precision
TP | FP | FN | TN

IBM 3 0 1 6 90.00% 100.00%

Sovrin 3 0 0 7 100.00% 100.00%

uPort 2 1 2 5 70.00% 66.67%

scriptions to enable detection of their occurrence. The
JSON files are then supplied into the implemented
tool, which detects the occurrence of weaknesses. Ta-
ble 2 summarizes statistical data from experimental
runs in which three implementations were compared
to 10 entries (#CWE). The implementation is encoded
as a series of communication diagrams (#SSI), each
of which contains a significant number of elements
to compare against the CWE weakness entries. The
fourth column (#Pair) denotes the number of iter-
ated term pairs in Algorithm 1, while the fifth and
sixth columns (#Rel and #Detect) denote the num-
ber of discovered relations and detected weakness en-
tries, respectively. The final column indicates the
time required for the implemented tool to complete
the detection. It should be noted that the time is only
recorded for the automatic phase, and the time spent
on manual judgment is not included.

We invited three specialists with at least three
years of expertise in the field of identity manage-
ment, security training, and a sufficient level of En-
glish reading ability to manually identify instances
of weakness. Expert responses serve as the ground
truth for the evaluation, in which we assess the pro-
posed method’s performance using the confusion ma-
trix. It has four possible values: true positive (TP)
indicates an accurate detection that corresponds to ex-
pert opinion; false positive (FP) indicates an incorrect
detection of the occurrence; false negative (FN) in-
dicates an incorrect detection of the non-occurrence;
and true negative (TN) indicates an accurate detec-
tion of a weakness that will not occur. The results of
each implementation are shown in Table 3, along with
computed precision and accuracy measures.

6 DISCUSSION

Performance of the Proposed Method. Due to the
fact that the two domains are defined in distinct con-
texts, the proposed method’s performance is charac-
terized by its ability to close gaps and identify the
occurrence of weaknesses. Two performance advan-
tages are clear from the experimental results. To be-
gin, the accuracy and precision measures indicate that
the information retrieval performance is satisfactory.
Indeed, accuracy is greater than 70% and precision is

greater than 65% in three real-world scenarios. Al-
though the accuracy and precision ratings are unsur-
prisingly high, analysts unfamiliar with the SSI sys-
tem may have a decent starting point for narrowing
the search scope for CWE database weaknesses. Sec-
ond, the proposed method makes advantage of an evo-
lutionary knowledge graph. It may be updated on a
regular basis, and its performance could be improved
over time. It is advantageous that the implemented
tool runs in less than two seconds, which is faster than
manual scanning.

Two limits in terms of faulty cases were observed.
In Table 3, we identified instances of false positives,
indicating a deceptive detection. The cases may re-
sult from the procedure’s imperfect knowledge graph.
However, due to its evolutionary nature, it has the po-
tential to transcend this constraint over time. The lim-
itation is the potential of false negative situations due
to a lack of semantic continuity. For instance, cer-
tain CWE weaknesses necessitate human judgment
that goes beyond the concept of links. This constraint
implies that the proposed method will continue to re-
quire human engagement.

Extensibility in the Domain. Although the pro-
posed method is designated to be domain-specific, it
still provides opportunity to different variations. It
shows in the experiment that the proposed method is
applicable to different representatives of the SSI sys-
tem’s implementation. If there is an implementation
that does not align with the fundamental notion of the
SSI system, the proposed method and DSMLSs may be
limited and require further modification.

Threat to Validity. This work identifies two threats
to validity. First, the basis for expert opinions must
be reliable. Even if the invited specialists work in the
field of identity management, they are not involved
with the SSI system. We believe that their experience
in that field is adequate for them to comprehend the
notion of the SSI system. Second, the sample size of
weakness entries is quite small. Given the human fac-
tor, the sample size should be modest enough to avoid
human error. While the sample size is modest, the
size of each entry is reasonable, as more than 10,000
pairs are iterated.

7 RELATED WORK

There are several works attempted to propose weak-
ness detection method in the past few year. An on-
tological approach is a prominent way to represent
the weakness and detect its presence as in used in

225

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

(Ansarinia et al., 2012; Salahi and Ansarinia, 2013),
but the existing ontologies formulate only the domain
of the CWE weakness only. It still requires domain
knowledge to understand the target system. Another
approach is the use of program analysis, e.g., Sun
et al. (2014) and Son et al. (2015), but not all entries
contain code examples or resources to perform pro-
gram analysis. Most existing techniques did not take
the domain knowledge of the target into account.

For the proposals for domain-specific models on
security purposes, there are some works that at-
tempted to use DSMLs to capture the security charac-
teristics, e.g., security concerns (Silva Gallino et al.,
2012), security objectives (Saleem et al., 2012), or at-
tack surfaces (Sun et al., 2020). To the best of our
knowledge, none of work has attempted to model the
domain-specific knowledge of the two domains.

8 CONCLUSIONS

This paper proposes two DSMLs for profiling
domain-specific knowledge of the SSI system’s and
the CWE weaknesses. We also propose a method
for detecting common software weaknesses in a tar-
geting implementation of the SSI system. The pro-
posed method compares two system models utilizing
the knowledge graph. We implement a command-line
interface tool to semi-automatically process the pro-
posed method and conduct an experiment for evaluat-
ing its performance. The proposed method achieves a
certain performance that is acceptable.

However, the proposed method obscures some
of the knowledge graph’s inadequacies and seman-
tic continuity. We believe that the domain knowledge
examined and applied in this study might facilitate fu-
ture research aimed at eliminating those issues.

REFERENCES

Allen, C. (2016). The path to self-sovereign iden-
tity. http://www.lifewithalacrity.com/2016/04/
the-path-to-self-soverereign-identity.html.

Ansarinia, M., Asghari, S. A., Souzani, A., and Ghaznavi,
A. (2012). Ontology-based modeling of ddos attacks
for attack plan detection. In IST 2012, pages 993-998.

Ferdous, M. S., Chowdhury, F., and Alassafi, M. O.
(2019). In search of self-sovereign identity leverag-
ing blockchain technology. IEEE Access, 7:103059—
103079.

Haddouti, S. E. and Ech-Cherif El Kettani, M. D.
(2019). Analysis of identity management systems us-
ing blockchain technology. In CommNet 2019, pages
1-7.

226

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S.
(2021). A survey on knowledge graphs: Representa-
tion, acquisition, and applications. /[EEE Transactions
on Neural Networks and Learning Systems, pages 1—
21.

Liu, Y., He, D., Obaidat, M. S., Kumar, N., Khan, M. K.,
and Raymond Choo, K. K. (2020). Blockchain-based
identity management systems: A review. Journal
of Network and Computer Applications, 166(Febru-
ary):102731.

MITRE (2006). Common Weakness Enumeration (CWE).
https://cwe.mitre.org/.

Miihle, A., Griiner, A., Gayvoronskaya, T., and Meinel, C.
(2018). A survey on essential components of a self-
sovereign identity. Computer Science Review, 30:80—
86.

Naik, N. and Jenkins, P. (2020). Governing principles of
self-sovereign identity applied to blockchain enabled
privacy preserving identity management systems. In
ISSE 2020, pages 1-6.

Object Management Group (2017). Unified Modeling Lan-
guage: Specification. Version 2.5.1. formal/17-12-05.

Panait, A.-E., Olimid, R. F., and Stefanescu, A. (2020).
Analysis of uport open, an identity management
blockchain-based solution. In TrustBus 2020, pages
3-13. Springer International Publishing.

Salahi, A. and Ansarinia, M. (2013). Predicting network
attacks using ontology-driven inference. http://arxiv.
org/abs/1304.0913.

Saleem, M. Q., Jaafar, J. B., and Hassan, M. F. (2012). A
domain-specific language for modelling security ob-
jectives in a business process models of SOA applica-
tions. Advances in Information Sciences and Service
Sciences, 4(1):353-362.

Silva Gallino, J. P., De Miguel, M., Briones, J. E, and
Alonso, A. (2012). Domain-specific multi-modeling
of security concerns in service-oriented architectures.
Lecture Notes in Computer Science, 7176:128-142.

Son, Y., Lee, Y., and Oh, S. (2015). A Software Weakness
Analysis Technique for Secure Software. Advanced
Science and Technology Letters, 93:5-8.

Sporny, M., Longley, D., and Chadwick, D. (2019). Verifi-
able credential data model v1.0. https://www.w3.org/
TR/vc-data-model/.

Sun, F,, Xu, L., and Su, Z. (2014). Detecting logic vulner-
abilities in e-commerce applications. In DNSS 2014,
pages 23-26.

Sun, T., Drouot, B., Golra, F., Champeau, J., and Guerin,
S. (2020). A Domain-specific Modeling Framework
for Attack Surface Modeling. In ICISSP 2020, pages

341-348.
Tobin, A. and Reed, D. (2017). The in-
evitable rise of self-sovereign identity: A

white paper from the sovrin foundation.
https://sovrin.org/wp-content/uploads/2017/06/
The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf.

Wang, F. and De Filippi, P. (2020). Self-sovereign identity
in a globalized world: Credentials-based identity sys-
tems as a driver for economic inclusion. Frontiers in
Blockchain, 2(January):1-22.

