
Containment Strategy Formalism in a Probabilistic Threat Modelling
Framework

Per Fahlander1 a, Mathias Ekstedt1 b, Preetam Mukherjee1,2 c and Ashish Kumar Dwivedi1 d

1Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
2School of Computer Science and Engineering, Digital University Kerala, Kerala, India

Keywords: Threat Analysis, MAL, Containment Strategies, Simulated Annealing.

Abstract: Foreseeing, mitigating and preventing cyber-attacks is more important than ever before. Advances in the
field of probabilistic threat modelling can help organisations understand their own resilience profile against
cyber-attacks. Previous research has proposed MAL, a meta language for capturing the attack logic of a
considered domain and running attack simulations in a model that depicts the defended IT-infrastructure.
While this modality is already somewhat established for proposing general threat mitigation actions, less is
known about how to model containment strategies in the event that penetration already has occurred. The
problem is a fundamental gap between predominant threat models in cyber-security research and containment
in the incident response lifecycle. This paper presents a solution to the problem by summarizing a methodology
for reasoning about containment strategies in MAL-based threat models.

1 INTRODUCTION

Cyber-attacks of sufficient magnitude can have ad-
verse consequences not only for organisations - but
for individuals - whether it is denied functionality,
lock-out or information leakage. The burden of fore-
seeing, mitigating and preventing cyber-attacks may
also be more important than ever before, but in spite
of high stakes, resilience can be very challenging
against an aggressive adversary. It may also be par-
ticularly difficult to reason about how to protect spe-
cific assets and infrastructure without advanced and
domain-specific expertise.

Various methods to computationally detect vul-
nerabilities and reason about conceivable threats have
previously been proposed by multiple different re-
searchers (Stan et al., 2019; Soikkeli et al., 2019;
Poolsappasit et al., 2012; Li et al., 2020; Fila and
Wideł, 2020). All these methodologies may miti-
gate potential security issues with the use of threat
models akin to the IT-infrastructure in question, albeit
by assuming that the attack has not yet already tran-
spired. Techniques that concern counter-measures

a https://orcid.org/0000-0002-1639-2673
b https://orcid.org/0000-0003-3922-9606
c https://orcid.org/0000-0003-2549-6578
d https://orcid.org/0000-0002-4641-9240

subsequent to the attack appear unprecedented in the
literature on threat modelling, which constitutes a gap
in initial assumption such that existing methodologies
may not be directly applicable in this context.

Earlier research has for example highlighted util-
ity in probabilistic threat modelling techniques and at-
tack simulations. The Meta Attack Language (MAL)
is one framework that has repeatedly been mentioned
in the context of cyber-security ((Johnson et al.,
2018), (Katsikeas et al., 2020), (Katsikeas et al.,
2019)). The idea is to first model the assets and in-
frastructure of the organisation, simulate an adversary
intruding in the system, and then demonstrate viable
routes to penetration attributed with respective prob-
ability estimations. By elucidating the vulnerabilities
of a system it can be learned how to mitigate these
risks and prevent penetration from occurring in the
first place.

While threat modelling techniques are recognized
as a tool for prevention of penetration in cyber-
security networks, less is known about how threat
models could be useful in the event that penetration
already has occurred. That is, how would threat mod-
els be used to reason about containment of threats,
specifically? This paper summarizes a methodology
that consolidates the MAL-based threat modelling
paradigm with a novel interpretation on containment
from the incident response framework. The ideas

108
Fahlander, P., Ekstedt, M., Mukherjee, P. and Dwivedi, A.
Containment Strategy Formalism in a Probabilistic Threat Modelling Framework.
DOI: 10.5220/0010823800003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 108-120
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

proposed here hence work at the intersection of two
otherwise independent domains, enabling discrimina-
tive reasoning about containment strategies consistent
with the particular requirements of the threat model.

Due to a lack of previous research on the distinct
matter, this paper presents early ideas for the use of
the threat model in cyber-security containment deci-
sions. In this paper, we have summarized the key find-
ings from the independent thesis work by (Fahlander,
2021) who have made the following contributions: (1)
outlined the landscape that is containment in the liter-
ature, (2) presented a modality where concepts from
“incident response” methodology are formalized and
expressed in relationship to MAL-based threat mod-
els, (3) framed containment strategy selection as an
optimization problem and (4) evaluated a particular
implementation for solving this optimization algorith-
mically.

The rest of the paper is organized as follows. Sec-
tion 2 gives the background necessary to achieve a
firm understanding of the rest of the work in detail.
Section 3 outlines the landscape in terms of other
notable methodologies of interest and approaches
to containment that are commonplace in the litera-
ture. Section 4 formally defines a set of concepts
used in the methodology presented. Section 5 de-
tails the representation of these concepts by shar-
ing implementation-specific features and technical as-
sumptions. Section 6 describes the methodology used
to find optimal containment strategies by utilizing the
aforementioned concepts. Section 7 describes two
distinct procedures used to evaluate the work criti-
cally and reveals the outcome yielded by doing so.
Section 8 concludes the paper with the main take-
aways. In section 9 we finally end with a discussion
about the role of future work on the matter.

2 BACKGROUND

2.1 Meta Attack Language

The Meta Attack Language (MAL) (Johnson et al.,
2018) provides the building blocks in terms of for-
malized syntax and semantics for encoding the at-
tack logic of a considered domain. For example, a
domain could refer to cloud systems, embedded sys-
tems or general IT infrastructure. MAL can be con-
sidered meta in the sense that something written in
the language, in itself, is a language. Such a language
can be used to manually or semi-automatically cre-
ate a model of organizational infrastructure where at-
tack simulations can be run. As each domain has its
own set of theoretical constructs, these can be codified

with the use of MAL-based syntax. Examples of pre-
viously developed domain-specific MAL languages
include coreLang, powerLang and vehicleLang ((Kat-
sikeas et al., 2020), (Hacks et al., 2020), (Katsikeas
et al., 2019)).

A central idea to MAL is the meta modelling hi-
erarchy that discerns three different layers: a meta
language, a domain-specific language and a system-
specific model. The meta language provides for-
mal syntax for expressing many different types of at-
tack logic. The domain-specific language delimits the
scope to a considered domain by codifying the attack
logic that characterizes its generic features, a man-in-
the-middle attack within IT-infrastructure, for exam-
ple. A system-specific model can then be devised,
through the use of this language, to capture idiosyn-
cratic characteristics of the system defended, which
could be a network or other IT-infrastructure belong-
ing to an organization, for example.

The system-specific model breaks down into two
types of main elements: assets and associations (Kat-
sikeas et al., 2020). Assets model the elements found
in the considered domain, for example, “System”,
“Application” and “Vulnerability” are asset types
used to depict IT-infrastructure . Relationships be-
tween assets can also be described with associations,
such as “network access” between two hosts. An as-
set may be considered an attack surface that consists
of several attack steps (here denoted α) that repre-
sent the threats that the asset is vulnerable to. Attack
steps can be performed which is equivalent to saying
that its time to compromise value is 0, as explained
in a moment. These steps may furthermore be in-
terconnected with parent and children steps to form
attack paths that are explored when a simulation is
run within the system-specific model, as visualized in
Figure 2. There are also attack steps of type “AND”,
that require that all parental steps are performed be-
forehand, and attack steps of type “OR” that requires
at least one. Lastly, a defense is a form of attack step
that may be implemented on an asset, thereby mod-
elling a threat mitigation action that the defending or-
ganization may attempt. Refer to Figure 1 for an illus-
tration of assets and associations in a system-specific
model and Figure 2 for an understanding how attack
steps may be interrelated in general.

Finally, the time to compromise (ttc) is a con-
cept of paramount importance to the aforementioned
attack simulations. It is a metric repeatedly men-
tioned in the context of estimating risk and resilience
from cyber-attacks ((McQueen et al., 2006), (Ekstedt
et al., 2015), (Johnson et al., 2018), (Katsikeas et al.,
2020)). Although difficult to estimate, the number in-
dicates the amount of effort required by an attacker.

Containment Strategy Formalism in a Probabilistic Threat Modelling Framework

109

Figure 1: A coreLang-based system-specific model visual-
ized in securiCAD Professional Edition, an application de-
veloped by foreseeti.

Figure 2: An illustration showing how attack paths may
interconnect attack steps between multiple assets in a
coreLang-based model.

(McQueen et al., 2006) formally defined the metric as
“the time needed for an attacker to gain some level of
privilege p on some system component i. This time
depends on the nature of the vulnerabilities and the
adversary’s skill level. In the context of MAL, this
value is estimated locally for each attack step in the
system-specific model, and subsequently also glob-
ally to account for the difficulty in performing the re-
quired parental attack steps. This means that each at-
tack step has an adjusted “global” time to compromise
value that depends on both the probability of the ad-
versary performing the current attack step as well as
all preceding attack steps that lead up to that point in
the attack path. Note also that in this paper we will be
working with the full time to compromise distribution
from 0 to infinity.

2.2 CoreLang

In this work we have used a domain-specific language
called coreLang, but acknowledge that the methodol-
ogy presented in this paper is agnostic to the MAL-
based language used. coreLang should hence merely
be viewed as an example for demonstrative purposes
and is in fact a work in progress in itself. This par-
ticular language happens to model IT-infrastructure, a
context in which it could be especially relevant to im-

plement containment. The language also has several
assets categories so that assets fall under either “Sys-
tem”, “Vulnerability”, “User”, “Identity”, “Data re-
sources” and “Networking”. The available assets can
be associated to depict IT-networks or other types of
relevant structures and include for example “Applica-
tion”, “Data” and “High Complexity Vulnerability”.
(Katsikeas et al., 2020)

3 RELATED WORK

3.1 Incident Response

NIST Institute has put forward an incident response
framework that incorporates four distinct phases.
Containment is a central activity of the third phase
“Containment, eradication & recovery” in which ef-
forts are made to mitigate the impact of incidents.
By incident, we refer to a computer security incident,
which is formally defined by NIST as: “A violation
or imminent threat of violation of computer security
policies, acceptable use policies, or standard security
practices”. Incidents are the provocations that incen-
tivize containment as a remediating response. It is of
primary importance to contain incidents in a system
before the damage taken escalates or its resources are
overwhelmed. Complicating the matter, however, is
the fact that a majority of incidents require contain-
ment and different incidents require disparate contain-
ment measures. Such measures are here referred to
as containment strategies, but the term containment
action is also used in some contexts. The decisions
incorporated into such a strategy or action could for
example be: “shutting down a system”, “ disconnect
it from a network” or “disable certain functions”. (Ci-
chonski et al., 2012)

3.2 Descriptive Instances of
Containment in Literature

As various literature on “incident response” method-
ology illustrates containment, practical instances of
containment are sometimes given as examples. Re-
fer to Table 1 for a limited sample of descriptive in-
stances. The containment actions listed in the litera-
ture are explicitly said to address either general con-
tainment or one of either: phishing attacks, denial of
service attacks, malware outbreaks or instances with
hostile employees, specifically. This should bring
some insight into what containment might look like
without preconceived notions. Note, that references
older than four years were intentionally omitted in fa-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

110

vor of the relevance of these cross-referenced descrip-
tions.

4 A FORMALISM FOR
CONTAINMENT

4.1 Incident

To express the notion of computer security incidents
within a MAL-based framework their characteristics
need to be modelled. In this paper we model an in-
cident as a combination of two separate constructs:
the tentative instance and indicative markers. An in-
cident can also be either indicated or latent, reflect-
ing whether the incident is occurring in the model. If
so, the system is in a vulnerable state as a result of
malicious use of the assets mapped by the tentative
instance.

4.1.1 Tentative Instance

The tentative instance is a particular configuration of
assets that may be utilised by an adversary in a hostile
manner to start an incident. Such an instance is ten-
tative in the sense that it is only a hypothetical threat
and can remain dormant without causing problems.
It is formally defined as a surjective mapping func-
tion where the domain is the set of roles tied to the
incident, and the co-domain, all assets in the system-
specific model: T : {role 7→ asset}. A role in this
context is a natural language term used by incident
responders to address a certain asset involved in an
incident. For example, some asset representing an ac-
count endangered by a phishing attack or an appli-
cation that cannot be used as a result of a denial of
service attack. It thus has to be mapped to an asset
in a system-specific model in order to be of practical
utility. Finally, whether a incident is indicated is de-
termined by a set of attributed indicative markers.

4.1.2 Indicative Marker

An indicative marker is defined as a function I where
I : {α −→ ttc} −→ b where ttc is a value in the domain
[0,∞] and b is a binary number. Here, the input is
a mapping of attack steps α to their respective time
to compromise values ttc. The probability that these
attack steps are performed such that b = 1 is an esti-
mate of the risk of the incident occurring. The func-
tion returns 1 if the incident is indicated for this in-
put, otherwise 0, thereby modelling the detection of
some reality-corresponding phenomena that realisti-
cally could justify containment.

In the model, a sufficiently low time to compro-
mise value for some attack step is a cue that incen-
tivizes containment. The incident can thus be con-
sidered an offset in some time to compromise values
that swings the pendulum such that containment now
is incentivized. For example, an indicative marker
could state that if the time to compromise values of at-
tack steps “guessCredentials” and “use” (both belong-
ing to asset “Credentials”) are lower than a threshold,
then a brute-force attack has succeeded, which would
constitute an incident to contain.

However, for only entertaining the hypothetical
idea of a incident being indicated, the indicative
markers may instead be used to put the system in a
vulnerable state. This would be done by changing
the time to compromise value of some attack step(s)
{α} such that b = 1. Note, that the existence of an
edge from the attacker to some attack step in the de-
fended model implies a vulnerable state. To express
this vulnerability, the attacker may be illustrated to be
attached to the system-specific model.

4.2 Attack Step Protection

An attack step α is said to be protected by a contain-
ment action β, if αttc < α′ttc, where αttc and α′ttc refers
to the time to compromise value of α before and af-
ter β is applied, respectively. Protection occurs any-
time the time to compromise value is increased by any
amount over the pre-containment baseline. If the time
to compromise value changes to ∞, then α is said to
be completely protected by β.

4.3 Containment Action

A containment action is here defined as an alteration
of the system-specific model that satisfies the follow-
ing properties:

1. It is expressed as an associated set of Contain-
ment Structural Attribute Flags (CSAF) that indi-
cate hypothetical mutations to the system-specific
model, e.g. what if you suspend a host, or pro-
hibit network traffic in a particular direction? To
test out the consequences of such hypothetical
changes, CSAF-flags may for example show that
an association should be replaced or that an asset
should be removed. The consequences of these
structural changes are altered time to compromise
values and we will say that a containment action is
deployed when these altered values are used. Re-
fer to Table 2 for a few examples of CSAF-flags
that were used in this study.

2. It must be capable of theoretically limiting the
spread of an incident through this mechanism;

Containment Strategy Formalism in a Probabilistic Threat Modelling Framework

111

Table 1: Some suggestions for containment according to literature on “incident response”. The pure descriptive citations are
grouped by the general idea for containment that they convey (inferred containment action).

Containment action Descriptive citations from the literature References
Disable a network connec-
tion (BlockSpecificConnec-
tion)

1. “Unplugging the network cable”, 2. ‘[Unplug] the net-
work cable, [disable] wireless access, or [disable] the connection
through the operating system.”, 3. “Disabling the network switch
port to which a particular system is connected’, 4. “[Physically
remove] the network cable and disabling wireless networking on
the device”

(Thompson,
2018), (Jo-
hansen, 2020),
(Roberts and
Brown, 2017),
(Sheward,
2018)

Put a machine in sleep mode
(SuspendHost)

1. “Putting the machine in sleep mode (Powering it off causes
volatile memory loss and the loss of forensic evidence.)”

(Thompson,
2018)

Isolate a machine from the
network (IsolateHost)

1. “Take the identified end points off the network; do not power
off”, 2. “[T]he affected servers or computers can be taken offline
by disconnecting them from the organization’s network”

(Thompson,
2018),
(Roberts
and Brown,
2017)

Isolate a network segment
(IsolateNetworkSegment)

1. “[Contain] network traffic at the perimeter and [work the]
way to the specific subnets containing the impacted systems”, 2.
“Other isolation techniques include remediation virtual local area
networks (VLANs), which are special network segments that use
access control lists to prevent hosts ... from talking to the internet”

(Johansen,
2020), (She-
ward, 2018)

Filter network traffic
(DropInboundTraffic,
DropOutboundTraffic)

1. “Block traffic with perimeter devices.” , 2. “... a more com-
mon technique for denial of service containment is traffic filtering
or scrubbing.”, 3. “Blocking access to malicious network re-
sources such as IPs (at the firewall) and domains or specific URLs
(via a network proxy)”

(Thompson,
2018), (She-
ward, 2018),
(Roberts and
Brown, 2017)

Lock user account
(LockUserAccount)

1. “Temporarily locking a user account under the control of an
intruder”

(Roberts and
Brown, 2017)

Disable app / service
(StopService)

1. “Disabling system services or software an adversary is exploit-
ing”, 2. “Temporarily disable applications and services affected
by the attack.”

(Roberts and
Brown, 2017),
(Thompson,
2018)

Reroute or rebalance load 1. “In many cases involving the cloud, containment will involve
the shutdown of the affected instances or apps, with traffic being
rerouted to alternate sites.”, 2. “Add servers and load balancers,
as needed.”, 3. “In the case of an attack against an IP address,
an easy containment method is to move the service to a new IP
address and, where applicable, update DNS records to point to
the new address.”

(Roberts and
Brown, 2017),
(Thompson,
2018), (She-
ward, 2018)

that is, protect one or more attack steps in a
system-specific model through CSAF-flags that
reflect structural changes.

3. The action must in reality be able to do this pro-
tection even after an incident has occurred. This
implies that the protection of attack steps has to
be justified from a modelling point of view. For
example, imagine a scenario where containment
involves the act of locking a user account. It
may be ineffective to so if the adversary has had
enough privileges to create a new account for
some amount of time. If the containment action
protects time to compromise values that reflect ac-
cess through any user account, then it must be able

to eject the adversary out of the system completely
(i.e. from any exploited or created user account)
and not merely prevent this access in the future. A
seemingly minor protection may hence be a very
ambitious goal in reality.

4. It has a specified deployment point DP that con-
sists of one or more assets. It is represented as a
surjective mapping of assets by roles DP : role 7→
asset. A role is natural language term that de-
scribes an asset involved in the action, and has
to be mapped to a specific asset in the system-
specific model. This mapping of assets by roles
indicates where the containment action takes ef-
fect.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

112

Table 2: Examples of Containment Structural Attribute
Flags (CSAF) that were used in this work.

CSAF-flag Semantic interpretation
ASSET DETACH Indicates whether to detach

an asset from the system-
specific model. Equivalent
to detaching all associations
(incl. attacker associations)
from an asset.

ASSOC DETACH Indicates whether to detach
an association from the
system-specific model.

ASSOC SWAP Replaces an old association
in the system-specific model
with a new one if given a
value (not empty string).

A containment action may be denoted by a name
followed by a specified deployment point in parenthe-
ses. For example, SuspendHost(host=A) for an action
that suspends a host named A. A containment action
can also be expressed more formally with the termi-
nology used in Equation 1. Here, a set of attack steps
{α} each map to a new corresponding time to com-
promise value α′ttc such that α′ttc > αttc holds. The
two variables refer to the time to compromise before
and after the action is applied, respectively. f (DP)
refers to a function specific to the containment action
in question that maps the deployment point to a set of
attack steps affected by the action.

β : {α 7→ α
′
ttc > αttc | α ∈ f (DP),

αttc : [0,∞),DP : role 7→ asset} (1)

4.4 Valuation

A valuation is defined as a tuple of two sets of ex-
ternally estimated values that reflect what is at stakes
in the IT-infrastructure. This construct is denoted
by ({αconseq.},{βconseq.}) and includes two different
types of numeric values in the domain of [0,100]:

• αconseq.: an estimate of the potentially preventable
consequence entailed if the attack step α is per-
formed (e.g., the relative downtime cost per hour
of a service being denied, or the number of gi-
gabytes of data stolen). Refer to Table 3 for an
example of an assignment for this estimate.

• βconseq.: an estimate of the consequence entailed
that is inherent when deploying the containment
action (e.g., downtime cost per hour of system
suspension, or a quantified measure of the social
repercussions of locking a user account). Refer to

Table 3: An example of the αconseq. part of a valuation.

Attack step (α) Valuation (αconseq.)
C.deny 100
D.deny 100
E.deny 100
... 0

Table 4: An example of the βconseq. part of a valuation. As-
sets A-E refer to assets in the system-specific model shown
in Figure 3.

Containment action (β) Valuation
(βconseq.)

BlockSpecificConnection(conn..=A) 20
BlockSpecificConnection(conn..=B) 20
DropInboundTraffic(receiver=C) 20
DropInboundTraffic(receiver=D) 20
DropInboundTraffic(receiver=E) 20
DropOutboundTraffic(sender=C) 20
DropOutboundTraffic(sender=D) 20
DropOutboundTraffic(sender=E) 20
StopService(service=C) 20
StopService(service=D) 20
StopService(service=E) 20

Table 4 for an example of an assignment for this
estimate.

4.5 Containment Strategy

A containment strategy is defined as an unordered set
of containment actions. A strategy S can hence be ex-
pressed as: S = {β1,β2, ...,βn}, where all β are con-
tainment actions in S and n is the total number of ac-
tions in the strategy considered (here limited to 3).
Picking the optimal set of containment actions - with
the most preferential loading on αconseq. and βconseq.
values - is a central objective in this study. Contain-
ment strategies are in this view differentiated by the
attack step protection they provide and how problem-
atic the containment actions they include are. The ef-
fectiveness of every containment strategy is thus dic-
tated both by its effects in the model as well as con-
textual parameters.

5 REPRESENTATION

5.1 System-specific Model

In order to encode the system-specific model we used
the graph computing framework Apache TinkerPop™
(TinkerPop, 2021). The types of graphs considered in

Containment Strategy Formalism in a Probabilistic Threat Modelling Framework

113

Figure 3: The system-specific model from Figure 1 inter-
preted as an Apache TinkerPop™ graph.

this framework are structures comprised of vertices,
that embody discrete objects, and edges between ver-
tices, that reflect relationships between objects. Both
constructs may furthermore contain their own set of
key-value pairs that hold non-relational information
referred to as properties in this framework. In this
modality, the system-specific model is represented
using vertices and edges in an Apache TinkerPop™
graph as demonstrated by Figure 3. Vertices denote
“assets”, and edges between them represent “associa-
tions”. A property on each vertex captures the type of
an asset (e.g., Application or Identity). For each as-
sociation, two directed edges in the opposite direction
are used and labelled by the role.

5.2 Incident

5.2.1 Tentative Instance

A tentative instance has a set of assets and associ-
ations that could be involved in an incident. Since
these constructs manifest in terms of vertices and
edges in the Apache TinkerPop™ graph manifesta-
tion, these instances can be identified using graph
traversal queries. Every query would be specific to the
incident in question and each pattern it yields would
constitute a point of entry for the adversary. The rele-
vant attack steps are thus affiliated with the asset rep-
resentations retrieved from this query. Typically, such
queries look for some definite features in the pattern
arrangement, such as what types of assets are associ-
ated with which. It may therefore be the case that only

Figure 4: An example of a tentative instance for a phishing-
attack where the marked phishUser.attacker - firstSteps
edge symbolizes the point of entry. This edge denotes a
time to compromise value of 0 for the attack step phishUser
on asset User.

certain types of assets are considered for a given inci-
dent. For example, an incident that involves phishing
may always have an pattern arrangement that includes
an asset for the user, as illustrated in Figure 4.

5.2.2 Indicative Markers

Indicative markers are represented in terms of one or
more edges between the attacker and some set of as-
sets in the system-specific model. One of the end ver-
tices (i.e. head or tail) of these edges are always as-
sets from a tentative instance. When such an edge is
added between the attacker and such an asset this re-
flects that the attacker is able to perform some attack
step on the asset already from the beginning (i.e. ttc =
0) and the incident is indicated. By adding and remov-
ing an edge that corresponds to an indicative marker,
the system is respectively switched between a vulner-
able and a safe state. This is helpful for controlling
what hypothetical incidents should be entertained in
the analysis.

5.3 Containment Action

As CSAF-flags pertain to specific assets and associa-
tions in the system-specific model they may highlight
points of infrastructural mutability useful for the sake
of containment. Such alterations to the model will be
implied by the deployment of the containment action.
To represent containment actions and CSAF-flags we
used graph traversal queries in the Apache Tinker-
Pop™ framework. These queries allow us to set prop-
erties on both assets and associations, thus enabling
us to flag for whether any given mutation should be
realized. For example, consider that the containment
action BlockSpecificConnection mutates the model to
remove an asset that represents a connection, in which
case, the query would need to flag for a corresponding

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

114

property value update. The following implementation
was used to express this behaviour:

g.V(connection)
.has("metaConcept", "ConnectionRule")
.property(CSAF.ASSET_DETACH, deployed)
.hasNext();

Here, metaConcept refers to the asset type and de-
ployed to a boolean value reflecting whether the con-
tainment action should be deployed.

6 FINDING AN OPTIMAL
STRATEGY

6.1 Optimization Problem

The framing of containment strategy selection as an
optimization problem begs the question of what fac-
tors might distinguish a good strategy from a poor
one. It appears that no strategy is appropriate in all
circumstances or environments; an activity that ben-
efits one system could be detrimental to the state
of another, for example. Structural variance in IT-
infrastructure suggests that we include the system-
specific model as an input parameter to the optimiza-
tion, and this has indeed been a presumption of the
study from the beginning. However, even if the model
is given, what dictates the preference for keeping sys-
tem A online over system B? This subjectivity hints
at an additional utility in analyzing what is at stakes
in the infrastructure, explaining the use of the valua-
tion as an auxiliary input parameter to the optimiza-
tion. Finally, proper containment has to be well-timed
which implies that a measure of the progress of the
adversary should be included. This measurement also
accounts for variability in the types of incidents con-
tained since an incident may be thought of as initial
progress made by the adversary that could escalate if
not contained.

A few assumptions are required in order to express
these inputs in a MAL-based paradigm. Firstly, ad-
versarial propagation is estimated as the set of time to
compromise values for the attack steps in the model.
Secondly, the incident that we are responding to might
be thought of as an initial offset in some time to com-
promise values for some specific attack steps. Thirdly,
a combination of the time to compromise metric and
the external valuation should govern the manner in
which we contain the threat. A question left unad-
dressed is where these time to compromise values
come from. While the methodology presented here
is agnostic to any specifics that relate to the gener-
ation and assignment of time to compromise values

to attack steps, this study used test code for MAL-
based attack simulations compiled from the coreLang
repository (mal lang, 2021). We will address such an
assignment of time to compromise values to respec-
tive attack steps by the term benchmark here.

An additional consideration is that the externally
estimated consequence of attack steps has to be put
into the perspective: is it really likely that the attack
step will be performed soon? For this reason, attack
step valuations (i.e. αconseq.) have to be adjusted by
the time to compromise assigned to the attack step.
This adjustment can be considered a discount to the
attack step valuation and is proportional to the time to
compromise value. However, since the former type of
value lies in the domain [0,100] and the latter in the
domain [0,∞], this proportionality must clearly not be
linear. Besides, protection is a lot more meaningful if
the initial time to compromise value is somewhat low
even if the estimation changed by the same amount.
That is to say that disproportional urgency also dis-
credits a linear model. For the adjustment intended,
the function should yield the output 1 for the input 0,
and the output 0 for the input ∞, reflecting the fact that
the time to compromise metric lacks an upper bound.
Conversely, only when the time to compromise value
approaches 0 would the attack step be of relevance to
any containment decision. A standard function φ(ttc)
that matches this description was identified, refer to
Equation 2. It maps a time to compromise value αttc
to a coefficient that can be used to track the signifi-
cance of αconseq. according to adversary propagation.
This concept is illustrated in Figure 5.

Finally, this leaves us with the actual optimization
function θ shown in Equation 3. The output of this
function represents the optimal containment strategy
in the context of the aforementioned input parame-
ters. Here, S represents an arbitrarily evaluated con-
tainment strategy candidate. A is the set of all attacks
steps {α} affected by the strategy. αttc and α′ttc are the
time to compromise values of α before and after all
actions β in the strategy S are deployed, respectively.
αconseq. is the externally estimated consequence if α

should be performed by an adversary, reflecting what
is at stakes in the attack. βconseq. is a similar estima-
tion with regards to the consequence inherent to β,
capturing the negative consequences associated with
containment itself. The numerator denotes the esti-
mated benefit of protecting all attack steps in A by
weighing in αconseq., while the denominator factors
in the inherent downside to this containment as per
βconseq..

φ(ttc) = 1− ttc
k · ttc+1

,k = 1 (2)

Containment Strategy Formalism in a Probabilistic Threat Modelling Framework

115

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
φ(αttc)

φ(α′ttc)

ttc [days]

φ
(t

tc
),

k=
1

φ(ttc)

Figure 5: The standard function φ(ttc) plotted from ttc = 0
to ttc = 50 (ttc < ∞ is the real upper bound, however) for
k = 1. αttc and α′ttc are arbitrary time to compromise values
translated by this function to illustrate the resulting coeffi-
cient value before (φ(αttc)) and after (φ(α′ttc)) containment
strategy deployment, respectively.

θ = argmax
S

∑α∈A[αconseq. · (φ(αttc)−φ(α′ttc))]

∑β∈S βconseq.
(3)

6.2 Solving the Optimization

6.2.1 Simulated Annealing

After framing the issue of containment strategy se-
lection as an optimization problem, the question re-
mains how to solve this optimization algorithmically.
Here we used a technique called simulated anneal-
ing to approximate the optimal solution (i.e. con-
tainment strategy). The idea for simulated annealing
(Leemon@cs. cmu. edu, 2021) is inspired by the pro-
cess of annealing in thermodynamics where metals
cool and anneal. The algorithm is initially very will-
ing to accept any solution randomly, but as the sim-
ulated temperature decreases, it gradually decreases
this acceptance to act more like a hill climbing al-
gorithm. This would be analogous to the metal be-
coming less malleable and more rigid when cooling.
Hence, the algorithm always accepts better solutions,
but is also somewhat open to worse solutions, albeit
only to the extent that the temperature allows for it.
Simulated annealing is effective for finding the global
optima despite prevalence of a large set of local op-
tima. The algorithm is typically applied for problems
with large but discrete configuration spaces wherein
the optimal solution is to be found.

We must also address how the containment strate-
gies are generated and altered such that the simulated

annealing algorithm can explore similar and neigh-
bouring configurations in the configuration space (i.e.
a neighbor). First of all, the initial strategy is with-
out any containment actions. Then, for every subse-
quent iteration, the strategy is altered by either adding
(always done for the initial strategy), removing or re-
placing a containment action in the current strategy.
A list of containment actions to pick for a strategy
are automatically generated from the system-specific
model by looking at all possible combinations of as-
sets and containment action deployment points. Two
distinct sets of containment actions are considered:
one for the actions used in current strategy and one for
unused containment actions that may be considered in
another iteration. The two lists always exchange ex-
actly one action with each other (i.e. replacement)
or one list gives an action to the other (i.e. adding
or removal) in an iteration of the simulated anneal-
ing algorithm. To guarantee that the algorithm does
not get stuck in a neighbourhood of incommensurate
solutions where no further move can be performed,
an additional policy is introduced. The algorithm se-
lects a previously safe solution (here: empty strategy
or best strategy seen yet with equal probability) with
a probability of 1

n+1 where n is the maximum number
of actions in a strategy considered (here: 3). The al-
gorithm may thus on average reach a strategy where
all actions have been replaced before returning to the
last safe solution.

We finally need to elucidate the implementation
used to computationally attain the results described
next. Algorithm 1 shows the implementation of the
objective function used for this particular application
of simulated annealing. It evaluates a containment
strategy S according to the metric described by the
optimization function in Equation 3. The same vari-
ables are therefore reused here, alongside σα and σβ

that refer to numerator and denominator in Equation
3, respectively.

A version of the simulated annealing algorithm
is shown in Algorithm 2. In this pseudocode, t
refers to the simulated temperature value used to in-
fluence the probability of accepting a subpar solution.
coolingRate is the rate at which the temperature is
decreased in each iteration and is expressed as a co-
efficient. Saccepted is the currently accepted strategy
that we have arrived at, Sneighbor is a related strategy
with a modification and Sbest is the best strategy yet
seen. θaccepted , θneighbor and θbest refer to the respec-
tive values of the objective function for each of these
strategies.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

116

Algorithm 1: Objective function Θ used as a metric for
the optimization problem in Equation 3.

Input: containment strategy S for evaluation
Result: calculated strategy score
A← benchmark(S)

σα← 0
foreach α ∈ A do

σα← σα +αconseq. · [φ(αttc)−φ(α′ttc)]
end
σβ← 0
foreach β ∈ S do

σβ← σβ +βconsequence

end
return σα

σβ

Algorithm 2: Simulated annealing for containment
strategy selection.

Result: best containment strategy found
t← 10000000
coolingRate← 0.98
Saccepted ← /0

Sbest ← Saccepted
Θbest ← 0
while t > 1 do

Sneighbor← neighbor()
Θaccepted ←Θ(Saccepted)
Θneighbor←Θ(Sneighbor)
if Θneighbor > Θaccepted then

Θbest ←Θneighbor
Saccepted ← Sneighbor
Sbest ← Saccepted

else if
exp((Θneighbor−Θaccepted)/t)≥ rand()
then

Saccepted ← Sneighbor
else

;
t = t · coolingRate

end
return Sbest ;

7 EVALUATION

For the purpose of evaluating the methodology pre-
sented, two separate procedures were used in this
study. The first procedure involves a process of veri-
fication to confirm that the containment actions work
as intended. The second procedure is validation of
the containment strategy selection algorithm, which
uses the constructs verified by the former procedure.

Figure 6: A system-specific model interpreted as an Apache
TinkerPop™ graph used for the verification procedure.

Note, that only by doing the first procedure is the lat-
ter justified, since selecting among a set of ill defined
containment actions would undermine the credibility
of such testing.

7.1 Verification

The verification procedure strengthens the intuition
that any containment action implementation really
models the action it claims to model in a satisfying
manner. In this qualitative approach, the set of pro-
tected attack steps is critically perused. This section
presents a case where this procedure is applied to the
containment action StopService(service=A) where ‘A’
refers to an asset in the system-specific model de-
picted in Figure 6. This containment action models
any action that stops a running service or application.
For example, usage of SIGKILL on Linux or termi-
nation via a user interface. The service in question is
asset ‘A’ in this model. Other instances of verification
can be found in (Fahlander, 2021, §5.2.1).

7.1.1 Procedure

The approach is more specifically divided into four
chronological steps:

1. Create an imaginary scenario to test the contain-
ment action.

2. Infer what subset of attack steps should be pro-
tected by the containment action given its pur-
pose.

3. Test the containment action implementation in the
same scenario to retrieve the subset of attack steps
protected.

4. Compare the two subsets and verify that they are
equal.

Containment Strategy Formalism in a Probabilistic Threat Modelling Framework

117

7.1.2 Results

It was found that no attack steps were performed after
the protection achieved with deployment of contain-
ment action StopService(service=A), as seen in Table
5. It was found that all attack steps were either com-
pletely protected or never performed in the first place.

Table 5: A summary of the post-containment (*) outcome
after deploying StopService(service=A) in the system-
specific model specified in Figure 6.

Asset Performed attack
steps (*)

Protected attack
steps

A 0 13
B 0 16
C 0 17
D 0 17

7.1.3 Discussion

This containment action constitutes one out of a total
of seven containment actions verified in (Fahlander,
2021, §5.2.1). While a limited set of initial tests
are available, these should not be misconstrued as
exhaustive tests of the containment actions. These
results merely demonstrate proof-of-concept for a
limited set of scenarios, and while infinitely many
scenario configurations are possible, more compli-
cated scenarios could be used for more thorough
verification. Here, the containment action StopSer-
vice(service=A) was verified in the context of the
system-specific model shown in Figure 6. The ex-
pected outcome is that the containment action should
protect all attack steps on the service ‘A’, as well as
the sub-process ‘B’ and associated data ‘C’ and ‘D’.
The adversary should effectively be unable to perform
any attack step on any asset ‘A’, ‘B’, ‘C’ or ‘D’ in the
model post-containment, which is in alignment with
the results attained.

7.2 Validation

The validation procedure evaluates whether the output
from the algorithm is sound and accurate. To do so,
we can reason about the probability of seeing certain
containment strategies be endorsed by the algorithm.
We postulate that validity can be asserted if the al-
gorithm endorses the correct solution with statistical
significance despite compelling odds to the contrary.
The argument thus requires that there must exist one
single, correct and objectively superior solution in the
given problem context. For the sake of prudence, rel-
atively uncomplicated models are chosen where the

correct solution can be inferred confidently. This sec-
tion presents a case where this procedure is applied to
the system-specific model illustrated in Figure 3 and
a valuation described by Tables 3 and 4.

7.2.1 Procedure

The procedure can be divided into four consecutive
steps:

1. Imagine a scenario with a system-specific model
and a valuation where all containment actions
have the same βconseq..

2. Reason about what is the correct (i.e. optimal)
containment strategy for this scenario.

3. Run the algorithm for this scenario 5 times in a
row to see what containment strategies are en-
dorsed in each iteration.

4. Reject H0 if the correct containment strategy is
endorsed in 5 consecutive iterations and the prob-
ability of this event is < 0.05.

Through means of statistical hypothesis testing,
the procedure is an attempt to reject the null hypothe-
sis H0 by calculating the corresponding p-value. H0 is
defined as “the amount of times the correct solution is
endorsed by the algorithm can be explained strictly by
coincidence”. The threshold for rejecting the null hy-
pothesis H0 is set to 0.05. The algorithm is run a total
of five times in order to calculate the p-value, which
is the probability of selecting the correct containment
strategy of at most m = 3 actions among n = 11 total
possible containment actions raised to five, as seen in
Equation 4.

p-value = (
1(n
m

))5 (4)

7.2.2 Results

It was found that the same containment strategy was
endorsed throughout the five runs, as seen in Table
6. Note, that the order of containment actions in a
strategy is irrelevant due to its definition. The p-
value was calculated to: (1

(n
m)
))5 = (1

(11
3)
)5 = (1

165)
5 =

8.1767417 · 10−12, and the null hypothesis hence re-
jected as p-value < 0.05.

7.2.3 Discussion

In this model, it is critical that assets ‘C’, ‘D’ and
‘E’ are protected from a denial of service attack
(as reflected by the valuation: αconseq. = 100,∀α ∈
{C.deny,D.deny,E.deny}. Other attack steps are not

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

118

Table 6: Raw output from the containment strategy selec-
tion algorithm (right column) in each of the five iterations
achieved with the system-specific model shown in Figure
3 and valuation described in Tables 3 and 4. All iterations
yielded an endorsement of the same containment strategy
(irrespective of containment action order per definition).

It. Endorsed containment strategy
1. (BlockSpecificConnection(connection=B),

BlockSpecificConnection(connection=A))
2. (BlockSpecificConnection(connection=B),

BlockSpecificConnection(connection=A))
3. (BlockSpecificConnection(connection=B),

BlockSpecificConnection(connection=A))
4. (BlockSpecificConnection(connection=B),

BlockSpecificConnection(connection=A))
5. (BlockSpecificConnection(connection=A),

BlockSpecificConnection(connection=B))

addressed in the valuation so they can safely be ig-
nored. The total prevented consequence thus amounts
to: ∑

{C.deny,D.deny,E.deny}
α αconseq. = 300.

By deploying an action of type DropInboundTraf-
fic, DropOutboundTraffic or StopService, it should be
expected that three actions are required to address the
denial of services ‘C’, ‘D’ and ‘E’ since each ac-
tion only addresses one service at a time. By us-
ing BlockSpecificConnection, two actions are suffi-
cient as the simultaneous removal of connections ‘A’
and ‘B’ stops the attack by making ‘C’, ‘D’ and ‘E’
unreachable. This solution (with an consequence of
βconseq. ·2 = 40) is clearly superior to any solution ad-
dressing three applications by three different actions
(βconseq. · 3 = 60) given that they have the same β-
consequence and a total α-consequence reduction of
300 regardless. Note, that the order of containment
actions in the strategy does not matter since the prob-
lem at hand can be solved without such differentiation
(the time to compromise for reaching ‘A’ and ‘B’ are
the same). The only correct solution for this scenario
is hence the following, which incorporates the con-
tainment actions in no particular order:

Soptimal = {BlockSpecificConnection(connection=A),
BlockSpecificConnection(connection=B)}

Given that all containment actions are weighted
equally (βconseq. = 20), the probability of guessing
this solution once is: 1

(11
3)

= 1
165 . Doing so five

times in a row would be very unlikely: (1
165)

5 ≈
8.1767417 · 10−12. The null hypothesis is rejected
since 8.1767417 ·10−12 < 0.05.

8 CONCLUSION

The paper presents early ideas for the use of the
threat model in cyber-security containment decisions
by summarizing key findings from the independent
thesis work by (Fahlander, 2021). A set of literature-
derived incidents and containment actions are mod-
elled with MAL-based semantics in order to facilitate
discriminative reasoning about effective containment
decisions in computer models. An algorithm for con-
tainment strategy selection is described and its imple-
mentation outlined to elucidate the methodology pro-
posed. The assumptions made during modelling as
well as the proposed metric are also evaluated criti-
cally with a verification and validation procedure, re-
spectively. The formalism is presented and imple-
mented using practical examples that are then used
to evaluate the feasibility of the suggested approach.
Finally, the work is aimed at creating a systematic and
infrastructure-tailored platform for decoding the com-
plexity surrounding containment. It may perhaps one
day improve overall cyber resilience. Note, that a pro-
totype implementation is available at https://github.
com/mal-lang/containment-course-of-action.

9 FUTURE WORK

There are a several interesting directions that fu-
ture work may explore. Firstly, the current work
could be extended with a larger set of incidents, con-
tainment actions and supported CSAF-flags. Sec-
ondly, research on effective containment practices
could answer the question of what level of abstraction
the underlying MAL-based language should work at.
Thirdly, you could address performance concerns and
limit the search space by for example disqualifying
containment strategies that operate too far from the
incident, or those that include any two containment
actions redundant when combined. Finally, the meth-
ods proposed here could be used to reason about tem-
porary load balancing between hosts or other types of
resource-related interim practices.

ACKNOWLEDGEMENTS

This research was partially supported by grants allo-
cated by the European Union’s H2020 research and
innovation programme under the Grant Agreement
no. 833481 (Project SOCCRATES).

Containment Strategy Formalism in a Probabilistic Threat Modelling Framework

119

REFERENCES

Cichonski, P., Millar, T., Grance, T., and Scarfone, K.
(2012). NIST Special Publication 800-61 : Computer
Security Incident Handling Guide. https://doi.org/10.
6028/NIST.SP.800-61r2.

Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D.,
Nydrén, J., and Shahzad, K. (2015). Securi cad by
foreseeti: A cad tool for enterprise cyber security
management. In 2015 IEEE 19th International Enter-
prise Distributed Object Computing Workshop, pages
152–155.

Fahlander, P. (2021). Containment strategy formalism in
a probabilistic threat modelling framework. Master’s
thesis.

Fila, B. and Wideł, W. (2020). Exploiting attack-defense
trees to find an optimal set of countermeasures. In
33rd IEEE Computer Security Foundations Sympo-
sium, CSF 2020, Boston, MA, USA, June 22-26, 2020,
pages 395–410. IEEE.

Hacks, S., Katsikeas, S., Ling, E., Lagerström, R., and Ek-
stedt, M. (2020). powerlang: a probabilistic attack
simulation language for the power domain. Energy
Informatics, 3(1).

Johansen, G. (2020). Digital forensics and incident re-
sponse : incident response techniques and procedures
to respond to modern cyber threats, pages 46–49. Sec-
ond edition.. edition.

Johnson, P., Lagerström, R., and Ekstedt, M. (2018). A
meta language for threat modeling and attack simu-
lations. In Doerr, S., Fischer, M., Schrittwieser, S.,
and Herrmann, D., editors, Proceedings of the 13th In-
ternational Conference on Availability, Reliability and
Security, ARES 2018, Hamburg, Germany, August 27-
30, 2018, pages 38:1–38:8. ACM.

Katsikeas, S., Hacks, S., Johnson, P., Ekstedt, M., Lager-
ström, R., Jacobsson, J., Wällstedt, M., and Eliasson,
P. (2020). An Attack Simulation Language for the
IT Domain. In Eades III, H. and Gadyatskaya, O.,
editors, Graphical Models for Security, pages 67–86,
Cham. Springer International Publishing.

Katsikeas, S., Johnson, P., Hacks, S., and Lagerström, R.
(2019). Probabilistic modeling and simulation of ve-
hicular cyber attacks: An application of the meta at-
tack language. In Proceedings of the 5th international
conference on information systems security and pri-
vacy (ICISSP), page 175.

Leemon@cs. cmu. edu, L. B. (2021). What is Simulated
Annealing? http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/learn-43/lib/photoz/.g/web/glossary/anneal.
html. [Online; accessed 28. Aug. 2021].

Li, F., Li, Y., Leng, S., Guo, Y., Geng, K., Wang, Z., and
Fang, L. (2020). Dynamic countermeasures selec-
tion for multi-path attacks. Computers & Security,
97:101927.

mal lang (2021). coreLang. https://github.com/mal-lang/
coreLang. [Online; accessed 22. Aug. 2021].

McQueen, M. A., Boyer, W. F., Flynn, M. A., and Beitel,
G. A. (2006). Time-to-compromise model for cyber
risk reduction estimation. In Gollmann, D., Massacci,

F., and Yautsiukhin, A., editors, Quality of Protection,
pages 49–64, Boston, MA. Springer US.

Poolsappasit, N., Dewri, R., and Ray, I. (2012). Dy-
namic security risk management using Bayesian at-
tack graphs. IEEE Transactions on Dependable and
Secure Computing, 9(1):61–74.

Roberts, S. J. and Brown, R. (2017). Intelligence-Driven
Incident Response: Outwitting the Adversary, pages
30–31. O’Reilly Media, Incorporated, Sebastopol.

Sheward, M. (2018). Hands-on incident response and digi-
tal forensics, pages 134–137. 1st edition. edition.

Soikkeli, J., Muñoz-González, L., and Lupu, E. (2019). Ef-
ficient attack countermeasure selection accounting for
recovery and action costs. In Proceedings of the 14th
International Conference on Availability, Reliability
and Security, ARES 2019, Canterbury, UK, August 26-
29, 2019, pages 3:1–3:10. ACM.

Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi,
M., Ohta, Y., Yagyu, T., Elovici, Y., and Shabtai, A.
(2019). Heuristic approach towards countermeasure
selection using attack graphs. CoRR, abs/1906.10943.

Thompson, E. C. (2018). Cybersecurity Incident Response:
How to Contain, Eradicate, and Recover from Inci-
dents, pages 99–116. Apress, Berkeley, CA.

TinkerPop, A. (2021). Apache TinkerPop. https://tinkerpop.
apache.org. [Online; accessed 9. Apr. 2021].

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

120

