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Abstract: This paper introduces an automated method for the identification of chironomid larvae mounted on 

microscope slides in the form of a computer-based identification tool using deep learning techniques. Using 

images of chironomid head capsules, a series of object detection models were created to classify three genera. 

These models were then used to show how pre-training preparation could improve the final performance. The 

model comparisons included two object detection frameworks (Faster-RCNN and SSD frameworks), three 

balanced image sets (with and without augmentation) and variations of two hyperparameter values (Learning 

Rate and Intersection Over Union). All models were reported using mean average precision or mAP. Multiple 

runs of each model configuration were carried out to assess statistical significance of the results. The highest 

mAP value achieved was 0.751 by Faster-RCNN. Statistical analysis revealed significant differences in mAP 

values between the two frameworks. When experimenting with hyperparameter values, the combination of 

learning rates and model architectures showed significant relationships. Although all models produced similar 

accuracy results (94.4% - 97.8%), the confidence scores varied widely. 

1 INTRODUCTION 

By measuring the variation in species and their 

abundance, biomonitoring assessments can help to  

establish the state of an ecosystem (Costa et al., 

2020). It can inform on the quality of water systems, 

substrates, or air, and suggest not only what 

organisms are present, but what 'should' be present 

(Cao et al., 2018). However, these monitoring 

systems rely on the correct identification of the 

organisms. The two current solutions to this are visual 
identification and molecular-based procedures such 

as DNA barcoding, but neither is perfect. Visual 

methods are prone to mistakes (Haase et al., 2006), 

while using DNA barcoding can become incredibly 

expensive and time consuming (Shendure et al., 

2017). Using a deep learning based portable platform, 

this paper proposes an automated identification 

system that is rapid, accurate, cost-effective and 

potentially user-friendly. 

 
1  https://orcid.org/0000-0003-4915-9840 
2  https://orcid.org/0000-0003-1190-6644 

1.1 Freshwater Ecosystems 

Freshwater ecosystems can be found on all continents 

of the world, but they are most common in North 

America, Europe and Asia (Siberia). Only 3% of the 
world’s water is fresh water, with majority held 

within the polar icecaps (Gerbeaux et al., 2016). A 

large portion of living organisms relying on fresh 

water as a source of sustenance, and the ecosystems 

surrounding these waters provide habitats to a broad 

range of species, making it important to maintaining 

these systems (Hughes, 2019). There are a range of 

fresh waters both natural and manmade such as, but 

not limited to, rivers, streams, lakes, marshes, chalk 

streams and reservoirs. Despite their importance to 

providing sustenance to a large selection of life, and 
to supporting the surrounding habitats, freshwater 

ecosystems are in danger of degradation due to 

anthropogenic interference with the main 

contributing factors being pollution, climate change 

and habitat transformation (Cao et al., 2018). This 
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degradation is having a knock-on effect to the 

organisms that depend on these ecosystems. For 

instance, the global decrease in macroinvertebrate 
populations and the decrease in macroinvertebrate 

species diversity is being linked directly to this 

anthropogenic interference (Costa et al., 2020), 

which, in turn is having a wider knock-on effect to the 

ecosystem in which these organisms inhabit (Cao et 

al., 2018). To prevent this, ecologists and 

conservationists can use biomonitoring techniques to 

assess these ecosystems in their current and ongoing 

condition. For the biomonitoring of all aquatic 

ecosystems, the community structure of benthic 

macroinvertebrates can be used and can include the 
abundance and presence (or lack of) certain species 

(Costa et al. 2020). 

Cao et al. (2018) proposed that a lack of expected 

benthic macroinvertebrate communities and the 

presence of certain ubiquitous species, particularly 

those considered pollutant tolerant (i.e., sludge-

worms, Tubifex tubifex), could be used as indicators 

to show how the degradation of river water is affected 

by municipal waste. This type of approach is 

routinely used by researchers and governing bodies 

across the globe to assess the quality of water systems 

and the surrounding ecosystems. Biggs et al. (2000), 
commissioned by the United Kingdom (UK) 

Environmental Agency, justified the use of benthic 

macroinvertebrates, along with macrophytes and their 

presence within different water systems across the 

UK, as bioindicators and proposed how the use of 

these can be used to assess the water condition of 

ponds, lakes and rivers, as well as the condition of the 

banks of these water systems. While there is a 

selection of species that can contribute to these 

assessments (i.e. stone fly nymphs, oligochaetes, 

caddisfly larvae), chironomid larvae are considered 
ideal candidates for such assessments (Rawal et al., 

2018). 

1.2 Chironomids 

Chironomids, also known as ‘non-biting midges’ or 

‘bloodworms’ (when in their larval stage), are one of 

the most abundant and species-rich benthic 

macroinvertebrates in freshwater ecosystems 

(Nicacio et al., 2015). Chironomids are suggested to 

make up 50% of the total benthic macroinvertebrate 

population within their respective habitats (Nadjla et 

al., 2013). They are found in almost all freshwater 
ecosystems including lakes, ponds, swamps, streams 

and rivers, and can also be found within isolated 

habitats such as tree stumps, and man-made water 

ways like flood-prevention drainages. There are an 

estimated 600 species found within the United 

Kingdom and an estimated 20,000 species worldwide 

(Ferrington, 2008). Some species of chironomids can 
live in a variety of aquatic systems tolerating a range 

of environmental conditions including pH, salinity, 

temperature, and sediments, while others require very 

specific conditions (Lencioni et al., 2012), and some 

can even be found in aquatic systems considered 

polluted and inhabitable for most other species 

(Luoto, 2011). This has led to the exploration of 

chironomids as bioindicators for the general 

condition of aquatic ecosystems (Vega et al., 2021), 

however, they can also be used for more specific and 

streamlined assessments. For instance, Orendt (1999) 
created a technical water monitoring method that 

provided an acidity assessment for water systems, 

where the pH tolerance of 25 species of chironomids 

were identified by their presence within several 

bodies of water with known pH. Using chironomid 

larvae for biomonitoring and paleoclimatic 

assessments requires the correct identification to 

specific taxonomic levels. However, one of the main 

issues with the identification of chironomid larvae is 

their minute size. Chironomid larvae are typically 

millimetres in length which makes it difficult to 

accurately identify them below the taxonomical 
classification of family (Chironomidae) without 

expert taxonomic knowledge or the means of 

molecular-based procedures (Shendure et al., 2017).  

1.3 Automated Identification  

The use of automatic identification systems is 

typically done using computer vison (Azhar et al., 

2012; Ärje et al., 2020), which works with images or 

video. These involve techniques such a ‘image 

classification’ where a desired subject within an 

image can be classified from a set selection of 
categories or ‘object detection’, where a desired 

subject can be both classified and localised (Rawat et 

al., 2017; Huang et al., 2017). The deep learning 

techniques, such as Convolutional Neural Network 

(CNN), based identifications are growing in 

popularity. Bondi et al. (2018) described the 

development of an object detection system that uses 

techniques from CNNs in order to automatically 

detect and identify poachers or high-risk animals in 

real-time when used with a video feed. 'PlantSnap' is 

another example of integrating deep learning into an 

automated identification tool, which can identify and 
distinguish over 620,000 different plant species and 

their variants from around the world, about 90% of all 

described plants (PlantSnap, 2021).   
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There are a number of object detection 

frameworks, but two of the more popular ones at 

present are Single Shot Detection (SSD) and Faster-
Region-based CNNs (Faster-RCNN) (Arcos-Garcia 

et al., 2018; Janahiraman et al., 2019; Bose et al., 

2020). With the object detection system built on top 

of CNN, a number of possible models can be used, 

including SSD_inception, Faster-RCNN_VGG, and 

SSD_ResNet (Zhao et al., 2019). SSD is a framework 

for detecting objects first described by Liu et al. 

(2016). SSD works in a single step, where the CNN 

feeds its learned features to the SSD framework and 

then places a grid over an image, with each grid space 

including an array of possible default locations, 
referred to as anchors or bounding boxes. In SSD, 

each grid uses the feature maps from the CNN and 

assigns the best anchor to predict objects and their 

locations within the image.   

Ren et al. (2015) introduced Faster-RCNN as a 

two-step approach for object detection, which builds 

on a CNN to learn features that are then passed to two 

separate functions. One is a regional proposal 

network that uses a sliding window approach, but 

each window has its own set of anchors. These 

anchors will use the feature map to detect any 

subjects, but only indicate that there is a subject 
within the location and does not define a class for the 

location. The second function is the one that defines 

the class. These types of deep learning systems 

require a training period during which images are fed 

into the system, causing the system to learn to 

recognise the target within a set of images over time. 

Several fine-tuning techniques can be applied to 

enhance this training process, including adjusting the 

hyperparameters and the quality of the data provided 

(Probst et al., 2019; Chudzik et al., 2020). 

2 METHODOLOGY 

An object detection model designed for three distinct 

genera of chironomids (Rheotanytarsus, Cricotopus 

and Eukiefferiella) was developed in this 

investigation. Two different frameworks were used, 

Faster-RCNN (FR) and SSD, in which three different 

sets of images (dubbed as A, B and C) were used (255 

images, 1500 images and 3000 images respectively). 
Following the work of Xia et al. (2018), four learning 

rate  (LR) hyperparameter values (0.1, 0.001, 0.005, 

and 0.0005) were chosen for model performance 

comparison. With the optimum LR, three intersection 

of union threshold (IOU) values were trailed (0.5, 0.6, 

0.7). The IOU threshold is the minimum area allowed 

between the overlap of an object detection’s 

prediction of where an object is to where it is within 

an image with a value between 0 – 1 (Bose et al., 

2020).  
Chironomid specimens were collected from the 

River Stour in Kent, UK using kick sampling. The 

head capsules were mounted on microscope slides 

and identified to the genus level. These images were 

taken with a Raspberry Pi 3b+ module and a 

Raspberry Pi camera v2.1, fitted to a Leica DM 500 

high powered microscope. A 4X objective lens was 

used for all images (40X total magnification). The 

microscope has an internal light source, so no 

additional light sources were needed. Microscope 

slides containing the mounted specimens of 
chironomid larvae were placed on the microscope 

stage, secured in place by the stage clips, and images 

of the slides were taken. For each microscope slide, 

three or four chironomid larvae were mounted with 

their head capsules and abdominal segments, and 

each specimen was placed under a circular cover slip. 

The label on the slide followed the standard labelling 

system for specimens mounted on microscope slides 

(location, site and date system).  

 

Figure 1: Chironomid larvae head capsules. 

Images of two distinct chironomid larvae, 

Cricotopus and Eukiefferiella, are shown in Figure 1. 

Cricotopus has wide head capsules with thin, curved 

mentums, relatively large mandibles and no obvious 

antenna. Eukiefferiella has thin head capsules with 

dark mandibles and very dark, curved mentums. 

Rheotanytarsus has a wide head capsule, mandibles 

on the side of their heads, a flat mentum and very 
prominent antennae. The mandibles of the three 

genera differ in size and shape, so differences in their 

shapes and sizes are typically used for morphological 

identification and taxonomic classification. The 

identified specimens were photographed and the 

bounding box labels were applied to the images, 

generating a set of co-ordinates for training the object 

detection models. An excel reference number was 

added so that images could be organized and 

referenced easily. Images were separated into their 

respective taxonomic group, also known as their 

class, at the genus level. There were 863 total images 
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taken and used for the three classes (487 Cricotopus, 

261 Rheotanytarsus, and 115 Eukiefferiella). 

 

Figure 2: Differences in quality of the images. 

Each image contains one chironomid head capsule 
of one of three genera, but the quality of the specimen 

preparation varies from complete subjects to those 

broken apart during mounting procedures or due to 

general degradation. Some images contained rear 

segments, and some would contain entrails where the 

head capsule and rear segments were detached from 

each other. Some images also showed wear and 

degradation to the slide itself as air and dirt made their 

way within the slide. There was also a difference in 

the shade of the background on each slide. Figure 2 

shows several of the images from the genus 

Cricotopus image collection that display differences 
in quality, such as the colour of the background, the 

completeness of the structure of the head capsule, and 

the quality of the slide. 

During the training, validation, and testing of the 

deep learning models, it was necessary to split the 

image sets. To accomplish this, the holdout method 

(Yadav et al., 2016) was utilised where a percentage 

of the total images was set aside. These images are 

taken randomly from the stock of images. In order to 

ensure that all models, regardless of image set, could 

be evaluated uniformly, 30 images from each class 
were set aside for the testing phase. The remaining 

images were multiplied to create three image sets (A, 

B, and C). In the set A, each class has 85 images. 

Thus, to down-sample the majority classes, 85 images 

were randomly selected from the original stock within 

the Cricotopus and Rheotanytarsus files. In the set B, 

each class’s images were up-sampled using 

augmentation techniques to create 500 images per 

class. For the image set C, images were up-sampled 

to 1000 images per class. Several augmentations were 

used during the experiments, including rotation to the 

left up to 180 degrees, rotation to the right up to 180 

degrees, zooming in, zooming out, a horizontal flip, 
and a vertical flip. Each image set was split 90:10 for 

training and validation respectively.  

The training was performed in TensorFlow 1.15, 

batch size for each algorithm was 10 and image size 

was 300x300. All iterations were run for 5000 

epochs. Both object detection frameworks used the 

CNN ‘Inception v2’ and the ‘MS COCO’ evaluation 

protocols (TensorFlow, 2021). Pretrained models 

were downloaded from TensorFlow and used as 

transfer learning checkpoints. The mean average 

precision or mAP metric was used to evaluate 
different object detection models.  

 
Figure 3: Example of a prediction during testing. 

Once the models were trained, they were used to 

classify specific objects (the chironomid larva head) 

from the batch of 90 test images. Figure 3 shows part 

of a test image being classified by a model as the 
genus Rheotanytarsus, with a confidence score of 

100%. A single prediction for each of the test images 

was recorded. If there were multiple predictions, only 

the prediction with the highest confidence score 

would be recorded. Detection thresholds for positive 

classification were adjusted to allow all images to be 

detected regardless of the confidence value. Using the 

confidence scores obtained for all test images, a mean 

confidence value was derived for each model.   

Additionally, a significance evaluation in the form 

of a nested ANOVA (Holmes et al., 2016) was 
conducted to examine how different model 

configurations were compared, and how image sets 

and hyperparameter variations affected the mAP 

scores across the trained models. This was then 

repeated for the IOU hyperparameter variations while 

using the optimum LR for each model configuration 

and image set combination. A nested ANOVA can 

effectively be broken down into its individual levels 

where each could be considered a one-way ANOVA 

(Bentler et al., 2010). By following the protocols of a 

one-way ANOVA (Doncaster et al., 2007), a 

minimum of three repetitions is needed to review the 
means of a group for significance, therefore justifying 
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that the number of repetitions of each respective 

model chosen was enough to meet the requirements. 

3 RESULTS 

3.1 Results for Varying LR 

Figure 4 shows how the mAP values developed over 

5000 epochs of training with the SSD and Faster-

RCNN model configurations. All SSD models began 

with mAP values near zero and gradually increased. 

The FR models, however, produced starting mAP 

values of over 0.4, increased rapidly, then levelled off 

and maintained an mAP value of approximately  0.7. 

 

Figure 4: The mAP values for varying LR. 

Among the SSD models, the configuration SSD-

B-0.005 (Model: SSD, image set B and LR 0.005) 

produced the highest mAP value of 0.698. Lowest 

mAP value obtained for SSD models was 0.507  

produced by the SSD-A-0.01 configuration. For the 

FR models, the highest mAP was 0.747 obtained by 

the configuration FR-A-0.001. The lowest mAP value 

obtained for the FR models was 0.624 produced by 

the configuration FR-A-0.0005. Averaging the three 

runs for each LR, the mean mAP values for SSD 
ranged between 0.579 and 0.678, but for FR ranged 

between 0.639 and 0.744. 

3.2 LR Accuracy and Confidence 
Scores 

A high accuracy rate was achieved by all models 

(95.6%-97.8%). However, confidence scores varied 

widely. The configuration FR-B-0.001 at run 2 

achieved an average confidence score of 99.9%, 

however, all the FR models had an average 

confidence score of over 99%. The SSD models, with 

the exception of SSD-A-0.0005 at run 2, all achieved 
average confidence scores within the range of 80-

90% (Table 1). The lowest average confidence score 

of 80.92% was achieved by the model configuration 

SSD-C-0.001 at run 3. 

Table 1: LR accuracy and confidence scores. 

Model 

Config. 
Run 

Accuracy 

(%) 

Av 

Conf 

(%) 

Min 

Conf 

(%) 

Max 

Conf 

(%) 

SSD-A-

0.0005 

1 96.7 83.43 7 100 

2 97.8 91.01 3 100 

3 97.8 87.64 14 100 

SSD-B-

0.001 

1 95.6 86.84 19 100 

2 97.8 82.95 13 100 

3 97.8 89.91 27 100 

SSD-C-

0.001 

1 97.8 86.10 13 100 

2 97.8 86.78 5 100 

3 95.6 80.92 15 100 

FR-A-

0.01 

1 95.6 99.04 71 100 

2 96.7 99.56 78 100 

3 97.8 99.30 42 100 

FR-B- 

0.001 

1 97.8 99.43 81 100 

2 97.8 99.90 93 100 

3 97.8 99.80 95 100 

FR-C-

0.005 

1 97.8 99.74 93 100 

2 97.8 99.18 69 100 

3 95.6 99.53 84 100 

3.3 Significance Evaluations for LR  

Based on the analysis of nested ANOVA, it appears 

that the mAP values of the two frameworks were 

significant and choice of LR affected the model 

configurations, but the selection of image sets did not 

affect the mAP values. This produced an R2 value of 

81.87%. The nested ANOVA was rerun without the 

inclusion of the image sets showing significant 

differences in mAP values between the two models 

and among the LRs within the models (Model: 
F=30.920, SS=0.114, p=0.001, LR: F=3.720, 

SS=0.022, p=0.003). This produced an R2 value of 

68.20%. A post-hoc examination (Holmes et al., 

2016) revealed that there was a significant difference 

in results between the FR architecture and the 

learning rate of 0.0005, and between the SSD 

architecture and the learning rate of 0.01 with p-

values <0.05.  

3.4 Results for Varying IOUs 

Top three model configurations of each framework 
(based on the combination of  optimum LR values and 
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the choice of the image set) were selected to train with 

varying IOU settings (0.5, 0.6, 0.7) and each model 

was run three times. Averaging the three runs for each 
IOU, the mean mAP values for SSD ranged between 

0.639 and 0.679, but for  the FR models the values 

ranged between 0.713 and 0.745. 

 

Figure 5: The mAP values for varying IOUs.  

Figure 5 shows how the mAP values developed 

during the training over 5000 epochs for the top 

performing SSD and FR configurations with varying 

IOUs. After 100 epochs, SSD models started with 
mAP values near 0 and increased over time, but 

remained below 0.7, whereas FR models always 

started with values over 0.4, increased rapidly, then 

plateaued, and maintained mAP values above 0.7. 

3.5 IOU Accuracy and Confidence 
Scores 

In general, the accuracy scores of all models ranged 

from 94.4% to 97.8%, but the confidence scores 

differed significantly. The configuration FR-B-0.001-

0.6 (Model: FR, image set B, LR 0.001 and IOU 0.6) 

at run 2 achieved the highest average confidence score 

of 99.99%, however, all the FR models achieved an 

average confidence score above 99% (Table 2). The 
configuration SSD-C-0.001-0.6 at run 3 achieved the 

lowest average confidence score of 80.92%. The 

highest average confidence score for the SSD was 

91.98 achieved by SSD-B-0.001-0.5 at run 2. 

Table 2: IOU accuracy and confidence scores.  

Model 

Config 
Run 

Accuracy 

(%) 

Av 

Conf 

(%) 

Min 

Conf 

(%) 

Max 

Conf 

(%) 

SSD-A-

0.0005-0.5 

1 96.7 89.42 4 100 

2 96.7 91.62 13 100 

3 96.7 81.00 26 100 

SSD-B-

0.001-0.5 

1 95.6 86.37 12 100 

2 97.8 91.98 39 100 

3 96.7 91.17 44 100 

SSD-C-

0.001-0.6 

1 97.8 86.10 13 100 

2 97.8 86.78 5 100 

3 95.6 80.92 15 100 

FR-A-0.01-

0.5 

1 94.4 99.18 64 100 

2 96.7 99.46 57 100 

3 96.7 99.20 67 100 

FR-B- 0.001-

0.6 

1 97.8 99.43 81 100 

2 97.8 99.99 93 100 

3 97.8 99.80 95 100 

FR-C-0.005-

0.7  

1 97.8 99.62 85 100 

2 95.6 99.07 52 100 

3 97.8 99.54 69 100 

3.6 Significance Evaluations for IOU  

The significance of the mAP scores achieved by all 

model configurations was evaluated using a nested 

ANOVA test by comparing the two frameworks and 

how each was affected by the image set and IOUs. 
The results show that there were significant 

differences between the two frameworks and among 

the three image sets: A, B, and C; however, there was 

no significant difference among the different IOUs. 

This produced an R2 of 85.09%.  After removing IOU 

from the nested ANOVA, the results showed 

significant differences in mAP values between the 

two models and also among different image sets 

within the models. (Model: F=29.79, SS=0.067, 

p=0.005, Image Set: F=7.18, SS=0.009, p<0.001). 

This produced an R2 of 83.48%. The post-hoc test 

revealed that there was a significant difference for FR 
with image sets A and C and for SSD with image sets 

B and C, all with p-values <0.05. 

4 CONCLUSIONS 

The intention of this study was to create a cost-

effective and fast-working computer-based model 

that could act as an identification tool to aid or replace 
more traditional methods such as the visual 

identification through morphology or by using 

molecular methods of identification. The model can 

be executed simply with little computer training, and 
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can do the identification automatically with high 

accuracy (>97%). Using the MS COCO metric 

system, the model that produced the highest mAP 
value (0.751) was the configuration framework FR 

using image-set C, LR 0.005 and IOU 0.7. When 

comparing the models, the nested ANOVAs showed 

significant differences in mAP values between the 

SSD and FR frameworks, as expected from previous 

studies (Arcos-Garcia et al., 2018; Janahiraman et al., 

2019), however, any significance between the 

remaining factors and variables within the model had 

not been explored previously. Almost all of the 

models using FR achieved mAP values over 0.7 with 

the highest reported value of 0.751, whereas the 
models using the SSD framework achieved mAP 

values under 0.7 with the highest reported value of 

0.698. Interestingly, there was very little difference 

between any of the models in terms of accuracy. All 

models were able to positively classify the majority 

of test images with an accuracy of 94.4% - 97.8%. 

Previous studies have shown that there is no 

universal LR values (Chudzik et al., 2020), 

suggesting that each model and its associated neural 

network would require an optimisation of its own LR 

value. When experimenting with hyperparameter 

values, the combination of learning rates and model 
architectures showed significant relationships. 

Significant effects were found when the SSD 

framework was paired with LR 0.01, and when the 

FR framework was paired with LR 0.0005. There was 

no significant relationship between the different IOU 

values trialled and mAP values. However, there was 

a small effect of model performance (1.61% 

difference in the strength of the relationship with and 

without IOU). Thus, all together, varying the IOU 

threshold hyperparameter value could be considered 

negligible in the general performance output of the 
models. 

The deep learning method proposed here utilises 

trained object detection models and can classify 

images in less than a second. In its present state, the 

model using object detection and deep learning 

involves chironomids to be collected on a site, 

euthanised and their head capsules being placed on 

microscope slides. These slides are then viewed 

through a microscope lens and images are taken. 

Images then need to be transferred to a computer 

where they can be examined by the object detection 

models which will classify the chironomid head 
capsule to one of the three genera. The initial stages 

require the use of costly workstations and an expert 

to work out the optimum training conditions. 

However, once the actual model has been developed, 

anyone with access to a computer can use it. When 

combined with a camera device, such as an affordable 

USB camera, this automatic computer model could be 

used to identify chironomid larvae specimens just by 
passing them in front of a camera feed rather than 

using digital images exclusively. However, it is worth 

mentioning that this demonstration only covers a very 

small fraction of the chironomid diversity, where only 

three genera were detected out of an estimated 200+ 

genera worldwide and did not distinguish species 

taxonomy level, where there are an estimated 20,000+ 

species worldwide. The use of computer vision 

models and, in particular, deep learning techniques 

for object detection in ecological sciences are still in 

their infancy. This study, however, illustrates how 
this technique can be used to rapidly identify 

taxonomically challenging organisms. It is envisaged 

that future work in object detection will open new 

opportunities for biological diversity and 

biomonitoring, not only of chironomids but also other 

group of freshwater organisms. 
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