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Abstract: We propose DenseHMM – a modification of Hidden Markov Models (HMMs) that allows to learn dense
representations of both the hidden states and the (discrete) observables. Compared to the standard HMM,
transition probabilities are not atomic but composed of these representations via kernelization. Our approach
enables constraint-free and gradient-based optimization. We propose two optimization schemes that make use
of this: a modification of the Baum-Welch algorithm and a direct co-occurrence optimization. The latter one is
highly scalable and comes empirically without loss of performance compared to standard HMMs. We show
that the non-linearity of the kernelization is crucial for the expressiveness of the representations. The properties
of the DenseHMM like learned co-occurrences and log-likelihoods are studied empirically on synthetic and
biomedical datasets.

1 INTRODUCTION

Hidden Markov Models (Rabiner and Juang, 1986)
have been a state-of-the-art approach for modelling
sequential data for more than three decades (Hin-
ton et al., 2012). Their success story is proven by
a large number of applications ranging from natural
language modelling (Chen and Goodman, 1999) and
automatic speech recognition (Bahl et al., 1986; Varga
and Moore, 1990) over financial services (Bhusari and
Patil, 2016) to robotics (Fu et al., 2016). While still be-
ing used frequently, many more recent approaches are
based on neural networks instead, like feed-forward
neural networks (Schmidhuber, 2015), recurrent neu-
ral networks (Hochreiter and Schmidhuber, 1997) or
spiked neural networks (Tavanaei et al., 2019). How-
ever, the recent breakthroughs in the field of neural
networks (LeCun et al., 2015; Schmidhuber, 2015;
Goodfellow et al., 2016; Minar and Naher, 2018; Deng
et al., 2013; Paul et al., 2015; Wu et al., 2020) are
accompanied by an almost equally big lack of their
theoretical understanding. In contrast, HMMs come
with a broad theoretical understanding, for instance
of the parameter estimation (Yang et al., 2017), con-
vergence (Wu, 1983; Dempster et al., 1977), con-
sistency (Leroux, 1992) and short-term prediction
performance (Sharan et al., 2018), despite of their

non-convex optimization landscape.
Different from HMMs, (neural) representa-

tion learning became more prominent only re-
cently (Mikolov et al., 2013b; Pennington et al., 2014).
From the very first day following their release, ap-
proaches like word2vec or Glove (Mikolov et al.,
2013b; Pennington et al., 2014; Mikolov et al., 2013a;
Le and Mikolov, 2014) that yield dense representations
for state sequences, have significantly emphasized the
value of pre-trained representations of discrete sequen-
tial data for downstream tasks (Kim, 2014; Wang et al.,
2019). Since then those found application not only
in language modeling (Mikolov et al., 2013c; Zhang
et al., 2016b; Li and Yang, 2018; Almeida and Xexéo,
2019) but also in biology (Asgari and Mofrad, 2015;
Zou et al., 2019), graph analysis (Perozzi et al., 2014;
Grover and Leskovec, 2016) and even banking (Bal-
dassini and Serrano, 2018). Similar approaches have
received an overwhelming attention and became part
of the respective state-of-the-art approaches.

Ever since, the quality of representation models
increased steadily, driven especially by the natural
language community. Recently, so-called transformer
networks (Vaswani et al., 2017) were put forward, com-
plex deep architectures that leverage attention mecha-
nisms (Bahdanau et al., 2015; Kim et al., 2017). Their
complexity and tremendously large amounts of com-
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pute and training data lead again to remarkable im-
provements on a multitude of natural language pro-
cessing (NLP) tasks (Devlin et al., 2019).

These developments are particularly driven by the
question on how to optimally embed discrete sequences
into a continuous space. However, many existing ap-
proaches identify optimality solely with performance
and put less emphasize on aspects like conceptual sim-
plicity and theoretical soundness. Intensified discus-
sions on well-understood and therefore trustworthy
machine learning (Saltzer and Schroeder, 1975; Dwork
et al., 2012; Amodei et al., 2016; Gu et al., 2017;
Varshney, 2019; Toreini et al., 2020; Brundage et al.,
2020) indicate, however, that these latter aspects be-
come more and more crucial or even mandatory for
real-world learning systems. This holds especially true
when representing biological structures and systems
as derived insights may be used in downstream appli-
cations, e.g. of medical nature where physical harm
can occur.

In light of this, we propose DenseHMM – a modi-
fication of Hidden Markov Models that allows to learn
dense representations of both the hidden states and
the discrete observables (Figure 1). Compared to the
standard HMM, transition probabilities are not atomic
but composed of these representations. Concretely, we
contribute

• a parameter-efficient, non-linear matrix factoriza-
tion for HMMs,

• two competitive approaches to optimize the result-
ing DenseHMM

• and an empirical study of its performance and prop-
erties on diverse datasets.

The rest of the work is organized as follows: first,
we present related work on HMM parameter learn-
ing and matrix-factorization approaches in section 2.
Next, DenseHMM and its optimization schemes are
introduced in section 3. We study the effect of its soft-
max non-linearity and conduct empirical analyses and
comparisons with standard HMMs in sections 4 and 5,
respectively. A discussion in section 6 concludes our
paper.

2 RELATED WORK

HMMs are generative models with Markov proper-
ties for sequences of either discrete or continuous ob-
servation symbols (Rabiner, 1989). They assume a
number of non-observable (hidden) states that drive
the dynamics of the generated sequences. If domain
expertise allows to interpret these drivers, HMMs can
be fully understood. This distinguishes HMMs from

sequence-modelling neural networks like long short-
term memory networks (Hochreiter and Schmidhuber,
1997) and temporal convolutional networks (Bai et al.,
2018). More recent latent variable models that keep
the discrete structure of the latent space make use of,
e.g., Indian buffet processes (Griffiths and Ghahra-
mani, 2011). These allow to dynamically adapt the
dimension of the latent space dependent on data com-
plexity and thus afford more flexible modelling. While
we stay in the HMM model class, we argue that our
approach allows to extend or reduce the latent space in
a more principled way compared to standard HMMs.

Various approaches exist to learn the parameters of
hidden Markov models: A classical one is the Baum-
Welch algorithm (Rabiner, 1989) that handles the com-
plexity of the joint likelihood of hidden states and
observables by introducing an iterative two-step pro-
cedure that makes use of the forward-backward al-
gorithm (Rabiner and Juang, 1986). Another algo-
rithm for (local) likelihood maximization is (Baldi and
Chauvin, 1994). The authors of (Huang et al., 2018)
study HMM learning on observation co-occurrences
instead of observation sequences. Based on moments,
i.e. co- and triple-occurrences, bounds on the em-
pirical probabilities can be derived via spectral de-
composition (Anandkumar et al., 2012). Approaches
from Bayesian data analysis comprise Markov chain
Monte Carlo (MCMC) and variational inference (VI).
While MCMC can provide more stable and better re-
sults (Rybert Sipos, 2016), it traditionally suffers from
poor scalability. A more scalable stochastic-gradient
MCMC algorithm that tackles mini-batching of se-
quentially dependent data is (Ma et al., 2017). The
same authors propose a stochastic VI (SVI) algorithm
(Foti et al., 2014) that shares some technical details
with (Ma et al., 2017). SVI for hierarchical Dirich-
let process (HDP) HMMs is considered in (Zhang
et al., 2016a). For our DenseHMM, we adapt two
non-Bayesian procedures: the Baum-Welch algorithm
(Rabiner, 1989) and direct co-occurrence optimization
(Huang et al., 2018). The latter we optimize, solely
for convenience, using a deep learning framework.1

In (Tran et al., 2016) this idea was carried further, al-
lowing different modifications to the original HMM
context. Already earlier, combinations of HMMs and
neural networks were employed, for instance for auto-
matic speech recognition (Bourlard et al., 1992; Moon
and Hwang, 1997; Trentin and Gori, 1999).

Non-negative matrix factorization (NMF, (Lee and
Seung, 1999)) splits a matrix into a pair of low-rank
matrices with solely positive components. NMF for
HMM learning is used, e.g., in (Lakshminarayanan
and Raich, 2010; Cybenko and Crespi, 2011). In

1See appendix C for details.
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Figure 1: Exemplary DenseHMM to visualize the inner workings of our approach. All model components are shown before
(top row) and after training (bottom row). The transition matrices A (second column) and B (fourth column) are learned by
learning dense representations (first and third column). All representations are initialized by a standard Gaussian.

Figure 2: Structure of the DenseHMM. The HMM parame-
ters A,B and π are composed of vector representations such
that A = A(U, Z), B = B(V,W) and π = π(U,zstart).

contrast, we combine matrix factorization with a non-
linear kernel function to ensure non-negativity and
normalization of the HMM transition matrices. Fur-
ther foci of recent work on HMMs are identifiability
(Huang et al., 2018), i.e. uniqueness guarantees for an
obtained model, and optimized priors over transition
distributions (Qiao et al., 2015).

3 STRUCTURE AND
OPTIMIZATION OF THE DENSE
HMM

A HMM is defined by two time-discrete stochastic pro-
cesses: {Xt}t∈N is a Markov chain over hidden states
S = {si}n

i=1 and {Yt}t∈N is a process over observable
states O = {oi}m

i=1. The central assumption of HMMs
is that the probability to observe Yt = yt depends only
on the current state of the hidden process and the
probability to find Xt = xt only on the the previous
state of the hidden process, Xt−1 = xt−1 for all t ∈ N.
We denote the state-transition matrix as A ∈ Rn×n

Figure 3: Approximation quality of non-linear matrix fac-
torizations. The optimization errors (median, 25/75 per-
centile) of softmax (green) and normAbsLin (blue) matrices
are shown over the ratio of representation length l and matrix
size n. The vertical line indicates l = n.

with ai j = P(Xt = s j | Xt−1 = si), the emission matrix
as B ∈ Rn×m with bi j = P(Yt = o j | Xt = si) and the
initial state distribution as π ∈Rn with πi =P(X1 = si).
A HMM is fully parametrized by λ= (A,B,π).

HMMs can be seen as extensions of Markov chains
(MCs) which are in turn closely related to word2vec
embeddings. Let us elaborate on this: A MC has
no hidden states and is defined by just one process
{Xt}t∈N over observables. The transition dynamics of
the states of the MC is described by a transition ma-
trix A and an initial distribution π. Being in a given
state sI , the MC models conditional probabilities of
the form p(si | sI). MCs are structurally similar to
the approaches that learn word2vec representations,
i.e. continuous bag of words and skip-gram (Mikolov
et al., 2013b). Both models learn transitions between
the words of a text corpus. Each word wi of the vocab-
ulary is represented by a learned dense vector ui. The
transition probabilities between words are recovered
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from the scalar products of these vectors:

p(w j | wi) =
exp(ui ·v j)

∑k exp(ui ·vk)
∝ exp(ui ·v j). (1)

The learned word2vec representations are low-
dimensional and context-based, i.e. they contain se-
mantic information. This is in contrast to the trivial
and high-dimensional one-hot (or bag-of-word) encod-
ings.

Here we transfer the non-linear factorization ap-
proach of word2vec (eq. 1) to HMMs. This is done
by composing A,B and π of dense vector representa-
tions such that

ai j = ai j(U,Z) =
exp(u j ·zi)

∑k∈[n] exp(uk ·zi)
, (2a)

bik = bik(V,W) =
exp(vk ·wi)

∑k′∈[m] exp(vk′ ·wi)
, (2b)

πi = πi(U,zstart) =
exp(ui ·zstart)

∑k∈[n] exp(uk ·zstart)
, (2c)

for i, j ∈ [n] and k ∈ [m]. Let us motivate this transfor-
mation (Fig. 2) piece by piece: each representation
vector corresponds to either a hidden state (ui,wi,zi)
or an observation (vi). The vector ui (zi) is the incom-
ing (outgoing) representation of hidden state i along
the (hidden) Markov chain. wi is the outgoing rep-
resentation of hidden state i towards the observation
symbols. These are described by the vi. All vectors
are real-valued and of length l. A and B each depend
on two kinds of representations instead of only one to
enable non-symmetric transition matrices. Addition-
ally, to choose A independent of B, as is typical for
HMMs, we need wi as a third hidden representation. It
is convenient to summarize all representation vectors
of one kind in a matrix (U ,V ,W ,Z).

A softmax kernel maps the scalar products of the
representations onto the HMM parameters A,B and
π. Softmax maps to the simplex and thus ensures ai j,
bi j, πi to be in [0,1] as well as row-wise normalization
of A, B and π. While a different kernel function
may be chosen, a strong non-linearity, such as in the
softmax kernel, is essential to obtain matrices A and
B with high ranks (compare experiments in section
4).

This non-linear kernelization enables constraint-
free optimization which is a central property of our
approach. We use this fact in two different ways:
we derive a modified expectation-maximization (EM)
scheme in section 3.1 and study an alternative to
EM optimization that is based on co-occurrences in
section 3.2.

3.1 EM Optimization: a Gradient-based
M-step

We briefly recapitulate the EM-based Baum-Welch
algorithm (Bishop, 2007) and adapt it to learn the
proposed representations as part of the M-step:

Given a sequence o of length T ∈ N over observa-
tions O, the Baum-Welch algorithm finds parameters
λ that (locally) maximize the observation likelihoods.
A latent distribution Q over the hidden states S is intro-
duced such that the log-likelihood of the sequence
decomposes as follows: L(Q,λ) = logP(o,λ) =
L(Q,λ) + KL(Q||P(· | o,λ)). KL(P||Q) de-
notes the Kullback-Leibler divergence from Q to
P with P,Q being probability distributions and
L(Q,λ) = ∑x∈ST Q(x) log [P(x,o;λ)/Q(x)]. Start-
ing from an initial guess for λ, the algorithm alternates
between two sub-procedures, the E- and M-step: In
the E-step, the forward-backward algorithm (Bishop,
2007) is used to update Q = P(· | o;λ), which maxi-
mizes L(Q,λ) for fixed λ. The efficient computation
of the conditional probabilities γt(s,s′) := P(Xt−1 =
s,Xt = s′ | o) and γt(s) := P(Xt = s | o) for s,s′ ∈ S is
crucial for the E-step. In the M-step, the latent distribu-
tion Q is fixed and L(Q,λ) is maximized w.r.t. λ under
normalization constraints. As the Kullback-Leibler di-
vergence KL is set to zero in each E-step, the function
to maximize in the M-step becomes

L(Q,λ) = ∑
x∈ST

Q(x) log
P(x,o;λ)

Q(x)

= ∑
x∈ST

P(x | o;λold) log
P(x,o;λ)

P(x | o;λold)

with λold being the parameter obtained in the previous
M-step. Applying the logarithm to P(x,o;λ), which
has a product structure due to the Markov properties,
splits the optimization objective into three summands.
Each term depends on only one of the parameters
A,B,π:

A∗,B∗,π∗ = arg max
A,B,π

L(Q,λ)

=arg max
A,B,π

L1(Q,A)+L2(Q,B)+L3(Q,π).

Due to structural similarities between the three sum-
mands, we consider only L1 in the following. The
treatment of L2 and L3 can be found in appendix A.
For L1, we have

L1(Q,A) = ∑
i∈[n]T

P(si | o;λold)
T

∑
t=2

log(ait−1,it )

with multi-index si = si1 , ...,siT . The next step is to re-
write L1 in terms of γt and to use Lagrange multipliers
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to ensure normalization. This gives the following part
L̄1 of the full Lagrangian L̄ = L̄1 + L̄2 + L̄3:

L̄1 := ∑
i, j∈[n]

T

∑
t=2

γt(si,s j) logai j + ∑
i∈[n]

ϕi

(
1− ∑

j∈[n]
ai j

)
with Lagrange multipliers ϕi for each i ∈ [n] to ensure
that A is a proper transition matrix.

To optimize DenseHMM, we leave the E-step
unchanged and modify the M-step by applying the
parametrization of λ, i.e. equations (2a)-(2c), to the
Lagrangian L̄ . Please note that we can drop all nor-
malization constraints as they are explicitly enforced
by the softmax function. This turns the original con-
strained optimization problem of the M-step into an
unconstrained one, leading to a Lagrangian of the form
L̄dense = L̄dense

1 + L̄dense
2 + L̄dense

3 with

L̄dense
1 = ∑

i, j∈[n]

T

∑
t=2

γt(si,s j)u j ·zi

− ∑
i, j∈[n]

T

∑
t=2

γt(si,s j) log ∑
k∈[n]

exp(uk ·zi).

We optimize L̄dense with gradient-decent procedures
such as SGD (Bottou, 2010) and Adam (Kingma and
Ba, 2015).

3.2 Direct Optimization of Observation
Co-occurrences: Gradient-based and
Scalable

Inspired by (Huang et al., 2018), we investigate an
alternative to the EM scheme: directly optimizing
co-occurrence probabilities. The ground truth co-
occurrences Ωgt are obtained from training data o
by calculating the relative frequencies of subsequent
pairs (oi(t),o j(t +1)) ∈ O2. If we know that o is gen-
erated by a HMM with a stationary hidden process,
we can easily compute Ωgt analytically as follows:
we summarize all co-occurrence probabilities Ωi j =
P(Yt =oi,Yt+1 =o j) for i, j ∈ [m] in a co-occurrence
matrix Ω =BTΘB with Θkl = P(Xt = sk,Xt+1 = sl)
for k, l ∈ [n]. We can further write Θkl = P(Xt+1 =
sl |Xt = sk)P(Xt = sk) = Akl πk for i, j ∈ [n] under the
assumption that π is the stationary distribution of A,
i.e. π j = ∑i Ai j πi for all i, j ∈ [n]. Then, we obtain the
co-occurrence probabilities

Ωi j = ∑
k,l∈[n]

πk bki akl bl j for i, j ∈ [m]. (3)

Parametrizing the matrices A and B according to eq.
(2a,2b) yields

Ω
dense
i j (U ,V ,W ,Z)

= ∑
k,l∈[n]

πk bki(V,W)akl(U,Z)bl j(V,W)

for i, j ∈ [m]. Please note that π is not parametrized
here. Following our stationarity demand it is chosen as
the eigenvector vλ=1 of AT . We minimize the squared
distance between Ωdense and Ωgt w.r.t. the vector rep-
resentations, i.e.

argminU ,V ,W ,Z ||Ωgt −Ωdense(U ,V ,W ,Z)||2F ,

using gradient-decent procedures like SGD and Adam.

4 PROPERTIES OF THE DENSE
HMM

To further motivate our approach, please note that a
standard HMM with n hidden states and m observa-
tion symbols has n2 + n(m− 1)− 1 degrees of free-
dom (DOFs), whereas a DenseHMM with represen-
tation length l has l(3n+m+ 1) DOFs. Therefore,
a low-dimensional representation length l leads to
DenseHMMs with less DOFs compared to a standard
HMM for many values of n and m. A linear factoriza-
tion with representation length l < n leads to rank l
for the matrices A and B, whereas a non-linear factor-
ization can yield more expressive full rank matrices.
This effect of non-linearities may be best understood
with a simple toy example: assume a 2x2 matrix with
co-linear columns: [[1,2], [2,4]]. Applying a softmax
column-wise leads to a matrix ∝ [[e,e2],C[e2,e4]] with
linearly independent columns. More general, the soft-
max rescales and rotates each column of UZ and
V W differently and (except for special cases) thus
increases the matrix rank to full rank. It is worth to
mention that any other kernel k : Rl ×Rl → R+ could
be used instead of exp in the softmax to recover the
HMM parameters from the representations, e.g. sig-
moid, ReLU or RBFs.

As non-linear matrix factorization is a central
building block of our approach, we compare the
approximation quality of softmax with an appropriate
linear factorization in the following setup: we generate
a Dirichlet-distributed ground truth matrix Agt ∈Rn×n

and approximate it (i) by Ã = softmax(UZ) defined
by softmax(UZ)ij = exp

(
(UZ)ij

)
/∑k exp((UZ)ik)

and (ii) by a normalized absolute matrix
product Ã = normAbsLin(UZ) defined by
normAbsLin(UZ)ij = |(UZ)ij|/∑k |(UZ)ik|. Note
that we report the resulting error ||Ã−Agt||F divided
by ||Agt||F to get comparable losses independent of
the size of Agt. These optimizations are performed
for matrix sizes n = 3,5,10, several representation
lengths l and 10 different Agt for each (n, l) pair.
Table 1 in appendix A provides all considered (n, l)
pairs and detailed results. Fig. 3 shows that the
softmax non-linearity yields closer approximations of
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Agt compared to normAbsLin. Moreover, we observe
on a qualitative level significantly faster convergence
for softmax as l increases. For softmax, vector lengths
l ≈ n/3 suffice to closely fit Agt while the piece-wise
linear normAbsLin requires l = n. This result is in
accordance with our remarks above.

5 EMPIRICAL EVALUATION

We investigate the outlined optimization schemes
w.r.t. obtained model quality and behaviors. We com-
pare the following types of models:

H EM
dense: a DenseHMM optimized with the EM

optimization scheme (section 3.1),

H direct
dense : a DenseHMM optimized with direct op-

timization of co-occurrences (section
3.2),

Hstand: a standard HMM optimized with
the Baum-Welch algorithm (Rabiner,
1989).

These models all have the same number of hidden
states n and observation symbols m. If a standard
HMM and a DenseHMM use the same n and m, one of
the models may have less DOFs than the other (cp. sec-
tion 4). Therefore, we also consider the model H fair

stand,
which is a standard HMM with a similar amount of
DOFs compared to a given Hdense model. We denote
the number of hidden states in H fair

stand as nfair, which
is the positive solution of n2

fair + nfair(m − 1)− 1 =
l(3n+m+1) rounded to the nearest integer. Note that
nfair can get significantly larger than n for l > n and
therefore H fair

stand is expected to outperform the other
models in these cases.

We use two standard measures to assess
model quality: the co-occurrence mean absolute
deviation (MAD) and the normalized negative log-
likelihood (NLL). The MAD between two co-
occurrence matrices Ωgt and Ωmodel is defined as
1/m2

∑i, j∈[m] |Ωmodel
i j − Ω

gt
i j |. We compute both Ωgt

and Ωmodel based on sufficiently long sampled se-
quences (more details in appendix C). In the case
of synthetically generated ground truth sequences,
we compute Ωgt analytically instead. In addition,
we take a look at the negative log-likelihood of the
ground truth test sequences {otest

i } under the model,
i.e. NLL = −∑i logP(otest

i ;λ). We conduct experi-
ments with n ∈ {3,5,10} and different representation
lengths l for each n. For each (n, l) combination, we
run 10 experiments with different train-test splits. We
evaluate the median and 25/75 percentiles of the co-
occurrence MADs and the normalized NLLs for each
of the four models (see appendix C for details).

In the following, we consider synthetically gener-
ated data as well as two real-world datasets: amino
acid sequences from the RCSB PDB dataset (Berman
et al., 2000) and part-of-speech tag sequences of
biomedical text (Smith et al., 2004), referred to as
the MedPost dataset.

Synthetic Sequences. We sample training and test
ground truth sequences from a standard HMM Hsyn
that is constructed as follows: Each row of the tran-
sition matrices A and B is drawn from a Dirichlet
distribution Dir(α), where all entries in α are set to
a fixed value α = 0.1. The initial state distribution π
is set to the normalized eigenvector vλ=1 of AT . This
renders Hsyn stationary and allows a simple analytical
calculation of Ωgt according to eq. 3. For both training
and testing, we sample 10 sequences, each of length
200 with m = n emission symbols. Figure 4 left shows
our evaluation w.r.t. co-occurrence MADs. Note that
the performance of Hstand changes slightly with l for
fixed n as training is performed on different sequences
for every (n, l) pair. This is because the sequences
are re-drawn from Hsyn for every experiment. The
standard HMMs and H direct

dense perform similarly, with
H direct

dense performing slightly better throughout the ex-
periments and especially for n = 3. H EM

dense shows a
higher MAD than the other models. The good perfor-
mance of H direct

dense may be explained by the fact that it
optimizes a function similar to co-occurrence MADs,
whereas the other models aim to optimize negative log-
likelihoods. The results in Figure 4 right show that the
DenseHMMs reach comparable NLLs, although the
standard HMMs perform slightly better in this metric.

Proteins. The RCSB PDB dataset (Berman et al.,
2000) consists of 512,145 amino acid sequences from
which we only take the first 1,024. After applying
preprocessing (described in further detail in appendix
C), we randomly shuffle the sequences and split train
and test data 50:50 for each experiment. Figure 5 left
shows the results of our evaluation w.r.t. co-occurrence
MADs. H EM

dense performs slightly worse than both
Hstand and H fair

stand. We observe that H direct
dense yields the

best results. While the co-occurrence MADs of H EM
dense,

Hstand and H fair
stand stay roughly constant throughout

different experiments, H direct
dense can utilize larger n and

l to further decrease co-occurrence MADs. As can be
seen in Figure 5 right, all models achieve almost identi-
cal normalized NLLs throughout the experiments. The
results suggest that model size has only a minor im-
pact on normalized NLL performance for the protein
dataset.
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Figure 4: Co-occurrence mean absolute deviation (left) and
normalized negative log-likelihood (right) of the models
H EM

dense , H direct
dense , H fair

stand , Hstand on synthetically generated
sequences evaluated for multiple combinations of n and l.

Figure 5: Co-occurrence mean absolute deviation (left) and
normalized negative log-likelihood (right) of the models
H EM

dense , H direct
dense , H fair

stand , Hstand on amino acid sequences
evaluated for multiple combinations of n and l.

Part-of-Speech Sequences. The MedPost dataset
(Smith et al., 2004) consists of 5,700 sentences. Each

Figure 6: Co-occurrence mean absolute deviation (left) and
normalized negative log-likelihood (right) of the models
H EM

dense , H direct
dense , H fair

stand , Hstand on part-of-speech tag se-
quences (Medpost) evaluated for multiple combinations of n
and l.

sentence consists of words that are tagged with one of
60 part-of-speech items. Sequences of part-of-speech
tags are considered such that each sequence corre-
sponds to one sentence. We apply preprocessing sim-
ilar to the protein dataset (more details in appendix
C). The sequences are randomly shuffled and train and
test data is split 50:50 for each experiment. Figure
6 left shows performance of our models in terms of
co-occurrence MADs. We see that the performance
of the standard HMM models as well as H direct

dense in-
creases with increasing n. The number of hidden states
seems to be a major driver of performance. Accord-
ingly, H fair

standimproves with growing nfair(l) ∝ l. Plus,
we have nfair > n for l ≈ n which fully explains why
H fair

stand is the best performing model in these cases.
Overall, H direct

dense performs competitive to H fair
stand, es-

pecially for the practically more relevant cases with
l < n. Similar to the other datasets, H EM

dense performs
worse than the other models and is barely affected by
increasing n. Both DenseHMM models have increas-
ing performance for increasing l. Normalized NLLs
(Figure 6 right) are best for the standard HMM models.
Both DenseHMM models achieve similar normalized
NLLs, which are slightly worse than the ones achieved
by the standard HMM models.
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6 DISCUSSION

We learn hidden Markov models by learning dense,
real-valued vector representations for its hidden and
observable states. The involved softmax non-linearity
enables to learn high-rank transition matrices, i.e. pre-
vents that the matrix ranks are immediately determined
by the chosen (in most cases) low-dimensional repre-
sentation length. We successfully optimize our models
in two different ways and find direct co-occurrence
optimization to yield competitive results compared to
the standard HMM. This optimization technique re-
quires only one gradient descent procedure and no
iterative multi-step schemes. It is highly scalable with
training data size and also with model size - as it is
implemented in a modern deep-learning framework.
The optimization is stable and does neither require
fine-tuning of learning rate nor of the representation
initializations. We release our full tensorflow code to
foster active use of DenseHMM in the community.

We leave it to future work to adapt DenseHMMs to
HMMs with continuous emissions and study variants
of DenseHMM with fewer kinds of learnable repre-
sentations. First experiments with DenseHMMs that
learn only Z and V lead to almost comparable model
quality. From a practitioner’s viewpoint, it is worth
to investigate how DenseHMM and the learned repre-
sentations perform on downstream tasks. Using the
MedPost dataset, one could consider part-of-speech
labeling of word sequences via the Viterbi algorithm
after identifying the hidden states of the model with
a pre-defined set of ground truth tags. For the protein
dataset, a comparison with LSTM-based and BERT
embeddings (Bepler and Berger, 2019; Min et al.,
2019) could help to understand similarities and dif-
ferences resulting from modern representation learn-
ing techniques. An analysis of geometrical proper-
ties of the learned representations seems promising
for systems with l ≫ 1 as exp(l) many vectors can
be almost-orthogonal in Rl . The V representations
are a natural choice for such a study as they directly
correspond to observation items. The integration of
Bayesian optimization techniques like MCMC and VI
with DenseHMM is another research avenue.
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APPENDIX

A Full Lagrangians of Standard
HMM and DenseHMM

The full Lagrangian of the standard HMM model in
the M-step reads

L̄ = L̄1 + L̄2 + L̄3

= ∑
i, j∈[n]

T

∑
t=2

γt(si,s j) logai j + ∑
i∈[n]

ϕi

(
1− ∑

j∈[n]
ai j

)
+ ∑

i∈[n]

T

∑
t=1

γt(si) logbi, jot
+ ∑

i∈[n]
εi

(
1− ∑

j∈[m]

bi j

)
+ ∑

i∈[n]
γ1(si) logπi + ϕ̄

(
1− ∑

i∈[n]
πi

)
,

where jot describes the index of the observation ob-
served at time t and ϕ̄,εi are Lagrange multipliers. Ap-
plying the transformations A = A(U, Z), B = B(V,W)
and π = π(U,zstart) yields the full Lagrangian of the
DenseHMM:

L̄dense = L̄dense
1 + L̄dense

2 + L̄dense
3

= ∑
i, j∈[n]

T

∑
t=2

γt(si,s j)u j ·zi

− ∑
i, j∈[n]

T

∑
t=2

γt(si,s j) log ∑
k∈[n]

exp(uk ·zi)

+ ∑
i∈[n]

T

∑
t=1

γt(si)v jot
·wi

− ∑
i∈[n]

T

∑
t=1

γt(si) log ∑
j∈[m]

exp(v j ·wi)

+ ∑
i∈[n]

γ1(si)ui ·zstart

− ∑
i∈[n]

γ1(si) log ∑
j∈[n]

exp(u j ·zstart).

B Non-linear A-Matrix Factorization

All matrix sizes n and representation lengths l that
contribute to the visualized l/n ratios in Figure 3 are
shown in Table 1.

C Implementation Details and Data
Preprocessing

Implementation Details. The backbone of our im-
plementation is the library hmmlearn2 that provides
functions to optimize and score HMMs. The optimiza-
tion schemes for the DenseHMM models H EM

dense and
H direct

dense are implemented in tensorflow (Abadi et al.,
2016). Both models use tf.train.AdamOptimizer
with a fixed learning rate for optimization. At this point
we note that experiments done with other optimizers
such that tf.train.GradientDescentOptimizer
lead to similar results in the evaluation. The repre-
sentations are initialized using a standard isotropic
Gaussian distribution. NLL values are normalized by
the number of test sequences and by the maximum test
sequence length.

Hardware Used. All experiments are conducted
on a Intel(R) Xeon(R) Silver 4116 CPU with
2.10GHz and a NVidia Tesla V100.

Protein Dataset Preprocessing. The first 1,024 se-
quences of the RCSB PDB dataset have 22 unique
symbols. We cut each sequence after a length of 512.
Note that less than 4.9% of the 1,024 sequences ex-
ceed that length. Additionally, we collect the symbols
of lowest frequency that together make up less than
0.2% of all symbols in the sequences and map them
onto one residual symbol. This reduces the number of
unique symbols in the sequences from 22 to 19.

Part-of-speech Sequences Preprocessing. We take
1,000 sequences from the Medpost dataset (from
tag_mb.ioc) and cut them after a length of 40 which
affects less than 15% of all sequences. We also collect
the tags of lowest frequency that together make up less
than 1% of all tags in the sequences and map them
onto one residual tag. This reduces the number of tag
items from 60 to 42.

Calculation of Ωgt and ΩModel. The co-occurrence
matrices Ωmodel and Ωgt used to calculate the co-
occurrence MADs in section 5 are estimated by
counting subsequent pairs of observation symbols
(oi(t),o j(t +1)) ∈ O2. For real-world data, Ωgt is es-
timated based on the test data ground truth sequences.
Equally long sequences sampled from the trained
model are used to estimate Ωmodel. In case of synthetic
data, Ωgt is calculated analytically (eq. 3) instead.

2https://github.com/hmmlearn/hmmlearn
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Table 1: Approximation errors (median with 25/75 percentile) of normAbsLin-based and softmax-based matrix factorizations
for different matrix sizes n and representation lengths l.

n l median (25/75 percentile) of loss(Ã,Agt)

Ã = normAbsLin(UZ) Ã = softmax(UZ)

3 1 0.678 (0.652/0.696) 0.048 (0.004/0.110)
3 2 0.162 (0.002/0.270) 0.001 (0.000/0.001)
3 3 0.001 (0.001/0.001) 0.001 (0.000/0.001)
3 5 0.001 (0.001/0.001) 0.001 (0.001/0.001)

5 1 0.769 (0.745/0.827) 0.453 (0.321/0.505)
5 3 0.346 (0.093/0.396) 0.001 (0.001/0.003)
5 5 0.001 (0.001/0.002) 0.001 (0.001/0.001)
5 10 0.001 (0.001/0.002) 0.002 (0.001/0.003)

10 1 0.862 (0.851/0.868) 0.616 (0.581/0.645)
10 5 0.310 (0.235/0.345) 0.012 (0.005/0.028)
10 10 0.002 (0.002/0.002) 0.003 (0.002/0.005)
10 15 0.002 (0.002/0.002) 0.003 (0.003/0.043)
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