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Abstract: The quick-change industrial environment pushes organisations to find new ways to improve efficiency, 
flexibility, and responsiveness. To do so, companies must not solely focus on improving the main value chain, 
but also the support services that provide for it. To this end, this paper focuses on a route optimization study, 
inspired by a real-case problem of the Manufacturing Tool Repair Service, from an automotive company. The 
problem consists of a vehicle routing problem with simultaneous delivery and pickup and time windows, 
subjected to specific service constraints. To solve it, we propose a Mathematical-Integer Linear Programming 
model, which is triggered by real-time data from the shopfloor. The approach was tested, and the results show 
an average of 30% improvement compared with the current situation. Additionally, the model was tested 
using modified benchmark instances and a time windows sensitivity analysis was performed. Considering the 
results obtained, future work regarding the application of a hybrid algorithm is proposed 

1 INTRODUCTION 

The ever-rising market competitiveness pushes 
organisations to find new ways to continuously 
improve. As a result, it is not effective for 
organisations to simply improve production process. 
Rather, they must also improve other services that 
support the value chain. In this perspective, the 
current work intents to improve the manufacturing 
tool pickup and delivery (P&D) service of an 
automotive company. This problem is a practical 
application of a vehicle routing problem (VRP) with 
simultaneous delivery and pickup, and time windows 
(VRPSDPTW). When applying time windows (TW) 
and simultaneous P&D constraints to the VRP, we 
obtained the problem addressed in this paper. Here, 
each customer can be, simultaneously, a pickup and a 
delivery customer, and the P&D must be done within 
pre-defined TW. As it will be presented ahead, the 
workers of the Manufacturing Tool Repair (MTR) 
service are responsible for picking the used tools from 
the production lines, repair them, and, after repair, 
deliver them. The absence of real-time information on 
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the number of tools available, forces MTR workers to 
constantly leave their workplace, to check the tools’ 
availability onsite. As a result, time lost travelling 
around the shopfloor is significant and the tool repair 
activity is constantly delayed. Thus, the present work 
intents to optimize this process, eliminating 
unnecessary dislocations and minimising the total 
travel times, using a Mathematical-Integer Linear 
Programming (MILP) model. To do so, it is 
considered that: (i) The MTR service uses 2 different 
vehicles with distinct capacities; (ii) A production 
line is more critical than another, if the time until the 
line stops, due to a lack of tools, is smaller. To the 
extent of our knowledge, despite the amount of 
literature about P&D, the VRPSDPTW is not 
commonly considered, although being usual in real-
world situations. Thus, this paper presents the 
following contributions: 
 Application of the VRPSDPTW in a real-

world situation, which considers the demand 
and minimal stock requirements at the 
customer;  
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 Real-time route trigger, definition, and 
optimization, by connecting the MILP and the 
company’s e-Kanban (presented in Romeira et 
al. (2021)), which is continuously monitoring 
the number of tools to P&D. 

This paper is organized as follows: In section 2, a 
brief review of other works, related to the 
VRPSDPTW is presented. The current problem, the 
optimization approach and the data pre-processing 
process are described in detail in section 3. In section 
4, the MILP model used is shown and the 
computational results of our approach are presented 
in section 5. Also, additional test results obtained with 
benchmark instances and a sensitivity analysis are 
presented. A summary and future works are presented 
in section 6. 

2 RELATED WORKS 

In this section a collection of works related to the 
VRPSPDTW is offered. Table 1 introduces a 
summary of the constraints used in these works, and 
Table 2 summarizes the related objective function(s).  

In Shahabi-Shahmiri et al. (2021) an hybrid 
approach was used to solve the heterogeneous 
VRPSPDTW (HVRPSPDTW) with cross-docking 
networks, split delivery and perishable products The 
authors achieved a 10% reduction in the travel time and 
a 29% reduction in the travel costs, when compared to 
a previous approach. Zhang et al. (2020) applied two 
different approaches to solve the same problem: an 
exact and a metaheuristic approach. These were tested 
in 15 instances obtained from company data. Their 
conclusions show that for larger instances the exact 
approach cannot reach the solution in a reasonable 
computational time (CPU). Then, the metaheuristic 
approach is used to solve those instances and compared 
to several state-of-the-art algorithms, showing that it 
converges quicker and has a better performance. L. Li 
et al. (2019) also solved this problem using a 
metaheuristic approach, which, for real-world 

instances, obtained solutions within a low CPU time 
(81 seconds). In the work of Madankumar and 
Rajendran (2019), an exact approach was used and 
tested with 24 modified instances given by Solomon 
(1987). The results show that it obtained optimal 
solutions with better CPU times than the model of 
Wang and Chen (2012). Using 8 to 10 of the same 
benchmark instances, Gupta et al. (2017) compared 
their metaheuristic approach to the best-known results. 
For instances C1 and C2, their approach matched the 
best-known results, and for R and RC, it obtained 
lower travel distances with a small trade-off in the 
number of vehicles. Moreover, in real-world instances 
it increased flexibility within the company when 
compared to the current situation. Besides the 
previously referred works, several others may be of 
interest. Liu et al. (2021), Zhou et al. (2020), H. Li et 
al. (2018) implemented metaheuristic approaches to 
solve the VRPSDPTW. Liu et al. (2021) solved the 
problem using metaheuristics aiming to minimise the 
transportation costs. The approach was tested with 
benchmarks instances generated by Wang and Chen 
(2012) and the results proved its effectiveness. Having 
a multi-objective VRPSDPTW, both Zhou et al. (2020) 
and H. Li et al. (2018) applied a metaheuristic 
approach. Both approaches outperformed algorithms 
proposed by J. Wang et al. (2016) in terms of 
convergence and diversity properties.  In contrast, Ji 
(2019) applied an exact model to minimise the travel 
distance. By testing 2 instances of the Solomon (1987) 
benchmarks, the author proved that the method is not 
suitable for large-size instances. Tang et al. (2021) 
proposed a hybrid approach, which found a good 
solution in 66% of the benchmark instances (H. F. 
Wang & Chen, 2012) and 10 new best-known 
solutions. Lastly, Hof and Schneider (2019), using a 
hybrid approach, focused on minimising the number of 
vehicles, travel distance and TW’s penalties. This 
approach, for medium-size instances, reduced the 
number of vehicles and the travel distance in 31 
instances. For large instances, the best solution had a 
16.93% GAP, and used less CPU time than the 
approach proposed by Wang et al. (2015).

Table 1: A summary of the VRPSPDTW constraints found in the literature. 

 Shahabi-Shahmiri 
et al. (2021) 

Zhang et 
al. (2020) 

L. Li et al. 
(2019) 

Madankumar & 
Rajendran (2019) 

Gupta et al. 
(2017) 

Our 
Work 

Vehicles' capacity x x x x x x 
Vehicles' type x      
Fleet's size  x x   x 
Each customer is visited by only one vehicle  x x x  x 
Time windows (Customers, Workers, etc) x x x x x x 
Each customer must be visited exactly once  x  x x x 
Each customer must be assigned to a route x x x x x  
Other constraints x x x x x x 
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Table 2: A summary of the VRPSPDTW objectives found in the literature. 

 Shahabi-Shahmiri 
et al. (2021) 

Zhang et al. 
(2020) 

L. Li et al. 
(2019) 

Madankumar & 
Rajendran (2019) 

Gupta et al. 
(2017) 

Our 
Work 

Minimise travel time x     x 
Minimise travel distance   x  x  
Minimise number of vehicles     x  
Minimise transportation costs x x  x   
Minimise waiting times     x  
Minimise time windows’ penalties  x x     
Minimise emissions     x  

To finish, Table 3 summarizes the approaches 
referred throughout this section. 

Table 3: A summary of the VRPSPDTW approaches found 
in the literature. 

Paper Exact 
Meta-

heuristic 
Hybrid 

Liu et al.(2021)  x  
Shahabi-Shahmiri et al. 

(2021) 
  x 

Tang et al. (2021)   x 
Zhang et al. (2020) x x  
Zhou et al. (2020)  x  

Hof & Schneider (2019)   x 
Ji (2019) x   

L. Li et al. (2019)  x  
Madankumar & Rajendran 

(2019) 
x   

H. Li et al. (2018)  x  
Gupta et al. (2017)  x  

Our Work x   

3 CASE STUDY 

3.1 Current MTR Service Description 

The MTR support service is responsible for the repair 
and calibration of the tools used in the company’s 
machines. As these tools have limited lifespans, 
which are related to the number of parts produced, the 
MTR workers pick the used tools from the production 
lines, and deliver, new or repaired ones. Currently, 
the MTR service team performs the following tasks: 
(i) Repair and calibration of tools (Value-added 
activity); (ii) Pick used tools from the production 
lines; (iii) Deliver repaired, or new, tools to the 
production lines. Since no production line must ever 
stop for lack of tools, and there is no real-time 
information on their availability to be collected, the 
MTR workers are forced to go onsite and check the 
stocks. This is a waste of time and productivity. Thus, 

the P&D activities must be minimised. Currently, to 
go to production, the workers follow 3 different 
standardized routes (A, B and C – Figure 1). This 
process takes an average of 18, 15 and 8 minutes, 
respectively. Presently, each route is done at least 2 
times per shift. However, sometimes there is an 
average of 6 additional trips per shift. The P&D is 
performed using one of 2 different vehicles: an 
automatic and a manual vehicle. The first has a higher 
average speed and a capacity of 150 tools, while the 
other a capacity of 90 tools. 

3.2 Optimization of the MTR Service 

The company’s e-Kanban system, developed in 
Romeira et al. (2021), gathers real-time data along the 
company’s internal value chain. To this system, it was 
added a Manufacturing Tool Stock menu that allows 
us to know, in real-time, which tools are available in 
each P&D point (the production lines, and from now 
on called customers), and how many are available in 
the MTR service to be delivered. During, a 
production shift, these data is continuously processed, 
and a route is triggered when: (i) There are enough 
tools available to create a P&D route; (ii) The tools’ 
stock is below the defined minimum stock values. 

This pre-processing gives us the customers to be 
visited and the tools to be picked and delivered. Then, 
this information, together with all the considerations 
related to the vehicles (average speeds and capacities) 
and the priority levels of each customer, are used to 
compute the routes. The VRPSDPTW is solved using 
a MILP model, where the main objective is to 
minimise the total travel time for each vehicle, 
considering the following general constraints: 
 Each customer is visited exactly once per route; 
 MTR service and customers’ TW (these 

indicate the priority level);  
 Vehicles’ capacities. 

Figure 2, sums up the process to obtain the inputs 
for the MILP model and shows the given outputs. As 
can be seen, the e-Kanban is continuously analysing 
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the tools onsite, and the tools available for delivery in 
the MTR service. Also, it is considered that: 
 All tools have similar dimensions; 
 The automatic vehicle only serves Route B, 

while the manual serves Route A and C; 
 The vehicles have different average speeds and 

service times (the automatic vehicle has a 
higher service time); 

 There are no circulation restrictions; 
 When a customer has a higher priority (defined 

by the stock level), it must be served first; 
 Every time a route alert is triggered, the MILP 

is called to compute a new route. 
Data Pre-processing Process. The data pre-
processing process is performed according to the 
flowchart in Figure 2, using the data retrieved by the 
e-Kanban regarding the tools’ availability in the 
customers and in the MTR service. A new route is 
created when the stock in a customer is below the 
minimal stock level or, when the number of tools 
available for P&D is sufficient to make a distribution. 
For the first, whenever the minimal stock level is 
reached a trip alert is created, because the related 
customer is now considered a priority customer. 
Then, the decision process is performed according to 
the Figure 2 flowchart. Note that, before the MILP is 
called, the Availability of tools for P&D procedure 
must be performed. This verifies the existence of non-
priority tools to be delivered and picked from these 
priority customers, with the aim of using the vehicle’s 
full capacity. So, if the vehicle’s capacity is not 
achieved with the priority tools, then for the same 
priority customers, the algorithm tries to load the 
vehicle with tools with the lowest stock level, re-
stocking the customer and/or tools to pick. For the 

second option, when there are no tools below the 
minimal stock, another procedure is called: Tools for 
P&D. Here, it is verified if there are customers with 
pickup stock above a pre-determined level, and for 
those, the availability  of  tools  to  deliver  is  checked. 

4 MILP MODEL 

The VRPSDPTW is defined on a direct graph 𝐺ሺ𝐶, 𝐴) , where the depot and customers are 
represented by a set of nodes and with different 
geographical location. The set of nodes and the set of 
edges in G are represented as 𝐶 ൌ ሼ1, … , 𝑐ሽ and 𝐴 ൌሼሺ𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝐶, 𝑖 ് 𝑗ሽ , respectively. The length of 
each arc is given by 𝑡௜௝, which is the time needed to 
travel from customer 𝑖 to 𝑗. Also, each customer has 
a P&D demand, represented by 𝑝௜  and 𝑑௜, 
respectively. To deliver the required demand, a set of 
vehicles 𝑉 ൌ ሼ0, … , 𝑣ሽ is available. Two vehicles are 
available, each with capacity 𝑄௞ , k ∈ V . Each 
customer 𝑖 ∈ 𝐶  must be visited within a predefined 
time window ሾ𝑎௜, 𝑏௜], and has a predefined service 
time 𝑠𝑡௜௞. Furthermore, the depot node (MTR service) 
also has a time window, ሾ𝑎଴, 𝑏଴], which defines the 
total time available to execute the P&D requirements 
in each shift. To meet the TW, the decision variable 𝑠௜௞  defines the arrival time of vehicle k ∈ V  to 
customer 𝑖  and to the depot. Another decision 
variable used is 𝑥௜௝௞  that takes value 1 if arc ሺ𝑖, 𝑗) is 
traversed by vehicle 𝑘 ∈ 𝑉, and zero otherwise. 
Considering the nature of the problem, the following 
integer variables are also considered: 

 
Figure 1: Route creation process and its outputs. 
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 𝑙௜௞, gives the total amount of load after vehicle 𝑘 visits customer 𝑖; 
 𝑙𝑑௜௞, gives the amount of load that remains to 

be delivered, by vehicle 𝑘, to customer 𝑖 and to 
all the following customers. 

 𝑙𝑝௜௞ , gives the amount of load that must be 
picked-up after vehicle 𝑘 visits customer 𝑖. 

Taking into consideration the above data and decision 
variables, a MILP vehicle-flow model was 
developed:  Min ෍ ෍ ෍ሺt୧୨ ൈ x୧୨୩ୡ

୨ୀଵ
ୡ

୧ୀଵ
୴

୩ୀଵ ) (1)

The objective (equation 1) is to minimise the total 
travel time and is subjected to the following 
constraints: ෍ ෍ xij

k
c

i=1, i≠j

=1, ∀ j≠1∈C
v

k=1

 (2)

෍ ෍ xij
k

c

j=1, i≠j

=1, ∀ i≠1∈C
v

k=1  (3)

෍ xih
k

c

i=1, i≠h

- ෍ xhj
k

c

j=1,j≠h

=0, ∀ k∈V, ∀ h∈C (4)

෍ x1j
k

c

j=1

≤1, ∀ k∈V (5)

෍ xi1
k

c

i=1

≤1, ∀ k∈V (6)

si
k+st௜+tij-MT൫1-xijk൯≤sj

k, ∀ k∈V, ∀ i≠j∈C (7)
ai ≤ si

k ≤ bi, ∀k∈V, ∀ i∈C (8)
ldi

k ≥ ldj
k+di-M1(1-xij

k), ∀ k∈V, ∀i,j≠1∈C (9)
ljk ≥ ldj

k+dj+pj, ∀ k∈V, ∀j≠1∈C (10)

ljk ≥ l௜k+dj ൅ pj-M2(1-xij
k), ∀ k∈V, ∀i≠1,j≠1∈C (11)

di ≤ ldi
k ≤ Qk, ∀k∈V, ∀ i∈C (12)

pi ≤ lik ≤ Qk, ∀k∈V, ∀ i≠1∈C (13)
lpjk ≥ lpi

k+pj-M3(1-xij
k), ∀ k∈V, ∀j,i≠1∈C (14)

pi ≤ lpi
k ≤ Qk, ∀k∈V, ∀ i∈C (15)lik = lpi

k+ ldi
k-di, ∀k∈V, ∀ i≠1∈C (16)

xij
k ∈ ሼ0,1ሽ; si

k ൒ 0; lik, ldi
klpi

k ൒ 0 and integer (17)
 

Constraints (2) and (3) ensure that each customer 
is visited exactly once and by only one vehicle. 
Constraint (4) guarantees the flow conservation, 
which means that if vehicle k arrives at customer i, it 
must also leave customer i. Both (5) and (6) ensure 
that each vehicle starts and ends its route in the depot. 
Inequalities (7) and (8) are related to the TW 
constraints. The first specifies the vehicle arrival time 
to a customer and the second guarantees that the 
vehicle arrives within the related TW. With constraint 
(9), the delivery quantity to be loaded at the depot is 
specified. Additionally (7) and (9) force an order for 
the vehicles visiting the routes, which ensures that no 
sub-tours without the depot are generated. 
Inequalities (10) and (11) indicate the amount of load 
in the vehicles after visiting the first customer and the 
other customers in the route, respectively. Constraints 
(12) and (13) guarantee that the vehicle capacity is not 
exceeded. For more information on the pickup 
loadings, 3 more constraints were added. With 
inequality (14) the pickup quantity that must be 
unloaded in the depot is determined. Constraint (15) 
guarantees that the vehicles capacity is not violated, 
and constraint (16) correlates the load variables to 
each other. Constraint (17) defines the variable’s 
domains. Constraints (7), (9), (11) and (14) are 
disjunctive constraints that are linearized by using 
large multipliers (‘‘big-M values’’). To create valid 
inequalities, one set 𝑀𝑇 ൌ 𝑠ଵ௞  and  𝑀1 ൌ 𝑀2 ൌ𝑀3 ൌ 𝑚𝑎𝑥𝑄௞ . 

 
Figure 2: Data pre-processing process. 
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5 COMPUTATIONAL RESULTS 

The model was tested with 10 types of instances from 
normal demand requirements and 3 types of instances 
with high demand quantities for each type of vehicle 
(the worst-case scenario). Thus, in total we analysed 
26 instances, 13 for the manual vehicle and other 13 
for the automatic vehicle. Each problem instance is 
defined by the quantity to P&D to each customer. The 
vehicles capacity is given in number of tools, and for 
the manual vehicle is equal to 90 and equal 150 for 
the automatic. Also, the customer’s location was 
obtained from the company’s layout (presented in 
Figure 1) and the travel arcs times were calculated 
according to each vehicles’ average speed. For each 
customer the service times (𝑠𝑡௜) and time windows 
([𝑎௜, 𝑏௜]) are defined according to real data. Note that, 
the TW are dynamic, based upon the customers’ 
priority in the route creation moment. Based on this, 
the customer with highest priority has earlier and 
tighter TW than the others.  
Results. The model presented was implemented 
using the CPLEX Studio IDE 20.1.0, and the 
experiments were run on an Intel (R) CORE(TM) i7-
10750H CPU 2,60GHz with 16Gb of memory. 

Table 4 shows the results obtained for the manual 
vehicle and Table 5 for the automatic vehicle. In the 
tables’ second column, the number of routes that the 
vehicle must make (Trips) is presented. This means, 
the number of times that the vehicle must leave and 
return to the depot to fulfil the demand requirements. 
The other columns of the table present the objective 
function value (OF) – time needed to perform the 
route in minutes, and the CPU time in seconds.  

The last column presents the GAP (in %), given 
by CPLEX, that is the tolerance on the GAP between 
the best integer solution and the best node remaining 
(best bound). For the manual vehicle, the results show 
that the optimal solution is achieved for 8 of the 13 
instances. For the remaining instances the obtained 
GAP is in average 5%, except for test instance 8, 
where the GAP is 23%. The solutions were obtained 
within a low CPU time (average 0.21 seconds). Also, 
the  number  of  trips  needed  to  fulfil  the  customers’ 

Table 4: MILP results for the manual vehicle. 

Instance Trips OF (min) CPU (s) GAP (%)
1 2 9.22 0.17 0
2 2 9.22 0.17 0
3 2 9.22 0.22 5.83
4 2 9.22 0.17 5.04
5 2 9.22 0.09 0
6 2 9.22 0.82 5.1
7 2 9.22 0.13 0
8 2 9.22 0.17 23.03
9 2 9.22 0.16 0
10 2 9.22 0.09 0
11 4 17.77 0.13 0
12 4 15 0.23 4.82
13 4 17.77 0.14 0

 

demand is 2, except for the last 3 instances (worst-
case scenario instances). These are the ones which 
have a high number of P&D demands, which, in some 
customers equals the vehicles’ capacity. For the 
instances with higher demand values, 2 optimal 
solutions were obtained within, approximately, 0.14 
seconds. For the automatic vehicle, the model only 
reaches the optimum to 3 solutions out of 13. 
Although the results obtained have an average GAP 
of 9.6%, they were obtained within good CPU time 
(17.8 seconds). When it comes to the high demand 
instances, the CPU time required is much higher than 
the average for other instances, especially for the 11th 
instance. Figure 3 presents a diagram with the 1st 
instance solution representation for the manual 
vehicle. The yellow circles represent the customers, 
and the blue square the depot. In green, we can see 
the number of tools delivered to each customer and in 
grey, the pickup quantities. Below the diagram, a 
table with the following information is presented: 
 Vehicle’s arrival time at customer; 
 Vehicle’s departure time from customer; 
 Picked load after leaving the customer (𝑙𝑝௜௞); 
 Load to be delivered to the customer and the 

following customers (𝑙𝑑௜௞); 
 Total load after the vehicle leaves the customer 

( 𝑙௜௞). 

 

 
Figure 3: Solution of the 1st instance for the manual vehicle. 
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Table 5: MILP results for the automatic vehicle. 

Instance Trips OF (min) CPU (s) GAP (%)
1 2 6.96 2.97 10.69
2 2 6.4 2.08 20.19
3 1 5.62 0.72 6.05
4 1 5.62 0.28 0
5 1 5.62 0.61 3.91
6 2 6.96 8.36 12.5
7 1 5.62 0.34 0
8 1 5.62 0.39 0
9 1 5.62 0.42 6.41
10 1 5.62 0.53 4
11 5 12.09 169.58 0.91
12 4 9.93 12.42 18.17
13 4 9.93 20.3 13.59

 

The total travel time, which includes the arcs 
travel times, the service time and possible waiting 
times, for this route is 13.19 minutes, and the MTR 
worker needs to go 2 times to the depot, due to the 
lack of vehicle’s capacity. With the current service 
organisation, the workers need 26 minutes to do the 
same service. This means that we reduced the time 
consumed by 49%. It is important to note that, even 
for the worst-case instances, the approach obtains a 
smaller travel time than the company’s current one 
for normal demand values. For the automatic vehicle, 
we have in average a 14% reduction compared to the 
current time for the same demand. 
Vehicle-flow model efficiency test and time 
windows sensitivity analysis. To test the model’s 
efficiency in more challenging problem instances, the 
adapted benchmarks from Li and Lim (2001) were 
used. These problems’ objective is to minimise the 
number of vehicles or routes.  Due to the size of those 
instances, only the first 20 customers of each instance 
(IC2, IR2 and IRC2) were considered and adapted to 
a VRPSDPTW. The results are presented in Table 6. 
If the optimal solution is not reached within a pre-
defined time limit (10 minutes), the costs’ column 
shows the best integer solution, and the CPU displays 
a “-”. Like in the real problems (section 5.1), the 
results in terms of solution GAP are not so good. 
According to the problems’ characteristics, the CPU 
time is relatively low. For the IRC problems, the 
optimal solution was not achieved for the last 2 
instances, within the time limit. 
A time windows sensitivity analysis using the 
automatic vehicle data was also performed. The tests 
were made by reducing the time windows range. The 
size of the time windows decreases from Case 1 to 
Case 5. The results (Table 7) show that for tighter 
time windows, the GAP becomes smaller. However, 
this only happens until a certain point. This is, 
because  of  the  reduced  time  windows,  one  single 
 

Table 6: Model results for the adapted benchmark problem 
instances. 

Instances Vehicle-Flow Model 
Costs CPU (sec) GAP (%)

IC201 252 0.01 0
IC202 202 1.69 11.88
IC203 194 8.69 2.36
IC204 186 4.01 0.96
IC205 251 0.75 1.40
IC206 230 1.64 3.28
IC207 218 1.89 1.87
IC208 205 3.74 3.78
IR202 399 46.84 0.87
IR203 354 91.19 0.71
IR204 289 42.68 0.81
IR205 350 1.86 1.19
IR206 318 11.4 2.83
IR207 318 61.82 0.69
IR208 260 2.53 1.08
IR209 312 3.87 2.26
IR210 353 79.06 0.69
IR211 293 253.83 0.46

IRC202 341 156.23 3.16
IRC203 309 - 20.95
IRC204 268 - 17.91

 

vehicle is no longer sufficient to make the route, not 
because of capacity, but because the depot TW (Case 
5). Also, when the TW are small (Case 4 and 5), the 
OF values increase by 11% and 32%, respectively. 
This can be related to the need to meet the TW, which 
results in a visiting order that is not as efficient in 
terms of travel distance. 

Table 7: Time Windows Sensitivity analysis. 

Case Trips OF (min) CPU (s) GAP (%)
Case 1 1 5.02 1.13 21.71
Case 2 1 5.02 1.22 18.63
Case 3 1 5.02 0.58 14.69
Case 4 1 5.62 1.42 10.50
Case 5 2 7.33 1.45 21.25

6 CONCLUSION AND FUTURE 
WORK 

A real-world problem of a Manufacturing Tool 
Repair Support Service of an automotive company is 
presented. One of the most time-consuming activities 
performed by this service consists in the P&D of the 
company’s manufacturing tools. Therefore, to 
minimize this time and to increase service efficiency, 
we modelled problem as a VRPSDPTW and solved 
it. The stock levels in the production lines, together 
with the number of repaired tools, are constantly 
monitored and processed. Hence, when needed, the 
MILP model generates routes with the sequence of 
customers to visit and the related tools to P&D. Also, 
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compared to the current situation, the presented work 
shows that, by using this approach, we can reduce up 
to 49% the total travel time for one vehicle and 14% 
for the other. Even in a worst-case scenario, the model 
best results than the current ones for both vehicles. To 
further improvements a 3-dimentional packing 
problem integrated with the P&D problem is under 
study. 
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