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Abstract: Testing kit scarcity plays an important role in aggravating any epidemiological response against pandemics
such as COVID-19, especially for resource-constrained countries. Better decision-making tools are essential
to assist policymakers in containing the disease from spreading to a large extent despite limited resource
availability. We propose a testing kit allocation framework that comprises three components: estimation of
time-varying prevalence rates using empirical Bayes model, testing kit allocation using multi-armed bandit
algorithms, and pooled testing technique to extract the maximum utility from the available testing kits. We
conduct simulation experiments based on real-world data and obtain results to demonstrate the enhanced
efficiency in detecting COVID-19 cases. We conclude that Bayesian estimation of prevalence coupled with
bandit-based allocation performs significantly well. We also identify scenarios under which pooled testing
offers a strong advantage.

1 INTRODUCTION AND
LITERATURE REVIEW

COVID-19 has enormously disrupted the normal
functioning of vital aspects of society across the
planet and has essentially exposed several weak spots
in our preparedness against highly contagious respi-
ratory viral diseases. Unlike the global trend, India
witnessed a gradual increase in the number of cases in
the first wave (Jain et al., 2021). In the initial phases
when community transmission has not yet started, in-
creased testing may help detect and isolate potential
super-spreaders and thus keep the viral spread under
manageable levels. But since during this phase, the
availability of reliable testing kits is scarce, optimal
allocation of testing kits becomes critical to flatten the
curve.

The pooled testing technique may help tackle this
challenge. In this technique introduced by Dorf-
man (1943), people are divided into groups, and each
group is allocated one testing kit. If there is even one
infected person in a group, that group’s sample will
give a positive result. Individuals belonging to the
positive groups are tested again but in smaller groups.
When the disease prevalence is low, pooling may be
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very effective (Guha et al., 2021).
Deckert et al. (2020) proposed two approaches for

pooling, viz. a routine high-throughput technique,
and a novel context-sensitive technique. Mutesa et al.
(2020) proposed an algorithm for pooled testing based
on hypercubic geometry. Hanel and Thurner (2020)
computed group sizes to minimize the number of
false positives. Contrary to the common approaches,
Ghosh et al. (2020) proposed a single round pooling
technique. Although pooling may be more advanta-
geous than traditional approaches, its utility becomes
limited for large population sizes.

Besides pooled testing, another way to improve
testing is the optimal allocation of testing kits. Buhat
et al. (2021) used a non-linear programming model to
allocate COVID-19 testing kits in Philippines. This
model incorporates demographic factors but is not
suitable for dynamic allocation. Du et al. (2021) pro-
posed an optimal allocation strategy based on preva-
lence probability estimation. Prevalence rate or sim-
ply prevalence is the fraction of people infected in a
community by a disease. Usually, the daily test posi-
tivity rate (TPR), which is the fraction of people who
tested positive out of the total number of people tested
in a day is used as a prevalence rate indicator. But
it is highly unlikely that the people who were tested
will give a true representation of the entire population
because the tested fraction mostly comprises symp-
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tomatic individuals and those who come in contact
with COVID-positive patients. Yang et al. (2020) es-
timate prevalence using a representative randomized
sample method claiming that the actual prevalence is
two or three times more. Bastani et al. (2021) use an
empirical Bayes model to estimate prevalence for pas-
senger arrival at Greek airports by making use of the
past two weeks’ testing data.

The major conflict to allocate testing kits lies in
choosing between locations where estimated preva-
lence is high and those with lower prevalence esti-
mates. Such exploration-exploitation trade-off sce-
narios are usually modeled as multi-armed bandit
(MAB) problems. Several solution strategies have
been developed including UCB1, Thompson sam-
pling and Gittins index (Chapelle and Li, 2011).
While computing the exact Gittins index is compu-
tationally intractable, Bastani et al. (2021) modeled
COVID-19 testing kit allocation as bandit problem
and solved it using optimistic Gittins index method.

To validate the efficacy of an allocation frame-
work, we need to estimate the number of undetected
cases in a region. Several studies have been conducted
to estimate undetected cases. Lau et al. (2020) inves-
tigate the undetected cases globally using the corre-
lation between Healthcare Access and Quality Index
and COVID-19 prevalence. Pedersen and Meneghini
(2020) used an epidemic dynamics model to estimate
the number of undetected cases in Italy. Böhning et al.
(2020) propose a capture-recapture method to find out
the undetected cases.

In this paper, we propose a framework for
COVID-19 testing kit allocation to maximize the uti-
lization of limited resources. This framework com-
prises (i) prevalence estimation model (ii) allocation
model based on MAB (iii) pooling testing plan gen-
eration. The prevalence estimation model is based
on the empirical Bayes method. For MAB, we used
two solution methods, viz. Thompson Sampling (TS)
and optimistic Gittins index. We also considered two
types of pooling by (i) limiting the maximum number
of testing rounds to two, and (ii) placing no limit.

2 PROBLEM DESCRIPTION

The objective of the testing kit allocation problem is
to maximize the number of infected individuals de-
tected. We assume that if one testing kit is used for
each person, the number of infected persons detected
will be the total number of tests done times the preva-
lence rate. Indian healthcare system comprises hospi-
tals at different levels in a hierarchical fashion (Shoaib
and Ramamohan, 2021). The availability of testing

kits in a hospital may depend on several factors and
we may also have to take into account the specially
designated testing labs besides the normally operating
hospitals (Mohd et al., 2021). We assume that every
city has a single testing lab to which the allocated kits
are supplied by a central authority and where pooled
testing is performed.

The pooled testing is performed over multiple
rounds and initially, the people who need to be tested
are divided into blocks and one testing kit is allocated
per block. Then, in the next round of testing, peo-
ple from the positively tested blocks are further sub-
divided into smaller blocks. This process is repeated
until no block tests positive or we reach the stage of
individual testing. When we place no limits on the
number of testing rounds, the decision problem in-
cludes computing the number of rounds as well as
the block sizes for each round. These two parame-
ter specifications define what we shall refer to as the
pooling scheme. When there is a specified value for
the number of testing rounds, only the block sizes
for each round need to be computed. Mutesa et al.
(2020) reported that the pooled sample gives positive
results even if diluted with 100 negative samples, so
for the present study we assume pooled testing to be
efficiently scalable for testing a large cohort.

Now consider city c and take a particular day de-
noted by t following the usual convention of denoting
a time step. Let nrct and brct respectively denote the
number of testing blocks and the size of each testing
block for the rth round of testing. The first round of
testing clubs all the samples together and tests them.
Thus, the total number of people who have been tested
in the country is given by max∑

T
t=1 ∑

C
c=1 n1ctb1ct .

Here C is the total number of cities competing for
testing kits and T is the time horizon. If ρct is the
prevalence rate for city c for time step t, the objective
of the allocation problem may be rewritten as follows

max
T

∑
t=1

C

∑
c=1

n1ctb1ctρct (1)

If Kct and Rt respectively denote the number of test-
ing kits allocated by the central authority to and the
number of testing rounds conducted in city c at time
step t, then we obtain a constraint as follows

Rt

∑
r=1

nrctbrct ≤ Kct ∀c = 1, · · · ,C, t = 1, · · · ,T (2)

If Kt is the total number of testing kits available with
central authority for allocation at time step t, then we
obtain another constraint as follows

C

∑
c=1

Rt

∑
r=1

nrctbrct ≤ Kt ∀t = 1, · · · ,T (3)
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In pooled testing, the final round involves individ-
ual testing. Also in each round except the first, tests
are only repeated for blocks that tested positive in the
previous round. So if prct be the proportion of blocks
that tested positive in rth round, these two constraints
are written as follows

bRt ct = 1 ∀c = 1, · · · ,C; t = 1, · · · ,T (4)

br+1,ct = prctbrct ∀r = 1, · · · ,Rt −1; c; t (5)

The nonlinear nature of the proposed problem makes
it difficult to find the optimal answers efficiently even
if we obtain the data of infected persons and the pre-
vailing infection rate.

3 DATA COLLECTION

The testing kits are allocated by a central authority to
the cities every day. Thus to develop the proposed al-
location framework, the daily data of testing kit avail-
ability are required. An empirical Bayes model is
used to compute the prevalence for each city and the
estimate is updated daily. For this purpose, we require
the daily data of the number of tests conducted and the
number of positive cases detected.

COVID19-India API (COVID19India, 2021) pro-
vides data for the number of tested, infected, recov-
ered, and deceased people on daily basis in time-
series format. This API portal is not official but con-
solidates information from various sources including
the official ones. Since lab-level data is not avail-
able and we already assumed one lab per city, so we
only collect city-level data. Based on data availabil-
ity, we selected five Indian cities, viz. Ahmedabad,
Bengaluru, Chennai, Delhi, and Jaipur, for testing our
framework.

Data before July 1, 2020, are deleted because suf-
ficient data are not available for that period. The data
is obtained in cumulative form. From the cumula-
tive data, daily numbers are found by successive dif-
ferencing. There were also missing data for which
imputation was done using the Last Observation Car-
ried Forward (LOCF) method which fills the missing
values based on the most recent data points available
(Heyting et al., 1992).

Similarly, we created another dataset comprising
65 Indian cities by additionally including 60 more
cities mostly from semi-urban and rural areas which
quite expectedly led to a much larger variance among
the demographic factors. We chose July 1, 2020, as
the starting date for collecting data in both cases. But
unlike the five-city dataset, where data was recorded
until October 31, 2020, we stopped data collection

for the 65-city dataset on August 30, 2020, because
of computational restrictions. We perform extensive
computational experiments on the five-city dataset to
determine suitable parameter values which were then
deployed on the 65-city dataset.

4 ALLOCATION FRAMEWORK

We describe the three components of the proposed al-
location framework in the following sections. A sum-
mary of the allocation framework is depicted as Algo-
rithm 1.

Algorithm 1: Testing Kit Allocation.
Input: Set of cities: C; data of past D days; testing kits

available centrally on a specific day: K
Output: Testing kit allocation: ac∀c = 1, · · · ,C; Number

of persons that get tested using the allocated kits in
each city; Pooled testing schemes of all cities

1: for c = 1 : C do
2: Estimate prevalence using empirical Bayes
3: Base-level kit allocation to each city:

ac←
q

100
× K

C
4: Posterior update of prevalence parameters using

Equations 10 or 11
5: end for
6: K← K(1− q

100
)

7: while K > 0 do
8: Compute bandit-based dynamic allocation indices

for all cities
9: c′←max

c
{DAI(c)}

10: ac′ ← ac′ +1
11: Posterior update of prevalence parameters using

Equations 10 or 11 K← K−1
12: end while
13: for c = 1 : C do
14: Find pooled testing capacity using Algorithm 3
15: Find pooled testing scheme using Algorithm 2
16: end for

4.1 Prevalence Estimation

Prevalence denotes the proportion of the population
in a city that is infected by the SARS-CoV-2 virus at
a particular time step and is the sole criterion adopted
in the present framework to decide how many testing
kits are allocated to each city. We use an empirical
Bayes method to estimate prevalence. The event of a
person getting a positive test result shall be modeled
as a Bernoulli random variable taking the prevalence
rate to be the probability of success. Consequently,
for the set of all persons living in a city, we shall use
the binomial distribution to model the number of pos-
itive cases.
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Since we assume the collected data to follow a bi-
nomial distribution, we apply a prior on its parameter,
viz. the probability of success in the form of a beta
distribution as per the standard Bayes paradigm. The
two parameters for the beta distribution are updated
daily using the data of past D days. If Sct persons are
tested in city c on day t, and if Ict is the number of
positive cases, then the prevalence rate for the city c
for the day t0 are written as follows

ρc =
I(D)
c

S(D)
c

=
∑

t0−D
t=t0−1 Ict

∑
t0−D
t=t0−1 Sct

(6)

Applying the strong law of large numbers to the mean
and variance formula of beta distribution as shown by
Bastani et al. (2021), we may come up with two esti-
mators θ̂1 and θ̂2 as follows

θ̂1 =
∑

C
c=1 ρc

C
θ̂2 =

1
C

C

∑
c=1

I(D)
c (I(D)

c −1)

S(D)
c (S(D)

c −1)
(7)

Then the prior estimates for the parameters of the beta
distribution are computed as follows

α0 =
θ̂2

1(1− θ̂1)

θ̂2− θ̂2
1
− θ̂2 β0 = α0

(1− θ̂1)

θ̂1
(8)

Thereafter, the posterior estimates are straightforward
to compute using conjugacy

αc = α0 + I(D)
c βc = β0 +S(D)

c − I(D)
c (9)

If the estimated prevalence rate is very low, the bi-
nomial variable is approximated by a Poisson dis-
tribution for which the gamma distribution serves as
the conjugate prior. The shape and scale parameters
of the prior gamma distribution are intuitively set as
k = I(D)

c and θ = 1 but even this simple choice turns
out to be very effective.

4.2 Bandit Allocation

After estimating the prevalence and obtaining the test-
ing kit availability data, the allocation process is mod-
eled as a multi-armed bandit problem. There are sev-
eral solution methods available for the bandit problem
but we use the two most popular ones, viz. optimistic
Gittins index and Thompson sampling.

When we strictly follow the bandit methods and
some cities turn out to record far fewer cases than oth-
ers, then the standard implementation of bandit algo-
rithms are found to stop allocating testing kits to those
cities which may have an adverse domino effect later
because, in the next few days, the number of cases in
such dormant cities may aggravate resulting in poor
detection performance. To remedy this situation, we

decided to equally distribute a fraction (denoted as
q%) of the available testing kits among all cities first
while the remaining testing kits are distributed as per
the bandit method. Even if q = 0 this method outper-
forms the baseline method discussed later.

The Thompson sampling method proceeds by ran-
domly sampling a value from the most recently es-
timated posterior distribution for each city’s preva-
lence. Then the city whose randomly sampled value is
maximum gets assigned a testing kit. The parameter
values depending on whether beta or gamma distri-
bution was selected are changed for the selected city
using the posterior update Equations 10 and 11 where
ρ is the estimated prevalence rate and a is the num-
ber of testing kits allocated (Lynch, 2007). The entire
process is repeated until all testing kits are used up.

α
′ = α+aρ β

′ = β+a(1−ρ) (10)

k′ = k+aρ θ
′ =

θ

aθ+1
(11)

In the Gittins index method, everything remains the
same as in the Thompson sampling method except
that instead of randomly sampling values we compute
dynamic allocation indices for each city. More specif-
ically, we use compute optimistic Gittins index from
(Gutin and Farias, 2016). For the beta prior, it is com-
puted using Equation 12 where F is the cumulative
distribution function and γ is the discount rate set to
0.9 in this paper.

λ =
α

α+β

(
1− γFα+1,β(λ)

)
+ γλ

(
1−Fα,β(λ)

)
(12)

4.3 Pooled Testing

After the testing kits are allocated to the cities by the
central authority, we need to estimate the number of
people who got tested and those who showed a posi-
tive coronavirus (COVID-19) test result. For this pur-
pose, we develop a simulation model which computes
the pooling scheme and also determines the number
of testing kits required τ∗ to test S people in a city
whose prevalence rate is estimated to be ρ.

This pooled testing simulator is described in Al-
gorithm 2 where r denotes the index of testing round
as before, Sr denotes the number of persons who need
to be tested in that round, and pr is the number of
positive-tested blocks in round r. If patient samples
are not pooled as in the standard way of testing, then
the number of tests required τ∗ would simply be equal
to the number of persons who need to be tested. We
use the variable τ0 to keep track of the number of tests
performed in the previous round whereas τ tracks the
total number of testing kits needed for that particular
pooling scheme.
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Initially, we start by assuming S testing kits will
suffice for the city population and setting the num-
ber of testing rounds to be two. We first compute
the maximum block size for the first round (b1) and
set the second round block size to be one (bR) as per
usual. The simulator then tries to identify whether the
two-stage pooling offers any advantage. If two-stage
pooling is better than no pooling at all, then we try to
test whether three-stage pooling would be even better
for which we need to compute the maximum block
size for the second round (b2).

This process of adding testing rounds continues
until we stop getting a reduction in the number of
testing kits required. If the number of testing rounds
is capped for technical reasons, we encode this con-
straint (r ≤ R) in the beginning to reduce extrane-
ous computations. In such a case, the block sizes
({br : r = 1, · · · ,R}) would be the only variable that
needs to be determined using the above approach.

Algorithm 2: Simulation Algorithm for Pooled Testing.
Input: Population size of city: S; current estimated

prevalence rate: ρ

Output: Minimum number of testing kits required to test
the specified population size: τ∗; Number of testing
rounds: R = max(r); Number of individual samples to
be pooled in each round: br∀r = 1, · · · ,R

1: τ0← 0
2: τ← S
3: r← 1
4: br← 2
5: Sr← S
6: Generate array of size S whose ρ% elements are

randomly designated as covid-positive
7: while true do
8: while true do
9: Update minimum estimate: τ∗← τ

10: Divide Sr into equal blocks of size br
11: Number of testing kits used: τ1← Sr/br
12: Find number of blocks pr that tested positive by

simulation
13: Number of individual tests required:

τ2← pr×br
14: Total testing kits utilized: τ← τ0 + τ1 + τ2
15: if τ < τ∗ then
16: Increase block size: br← br +1
17: else
18: break
19: end if
20: end while
21: if br > 2 then
22: τ0← τ0 + τ1
23: Increase number of rounds: r← r+1
24: Persons that need to be tested again: Sr
25: else
26: break
27: end if
28: end while

Now we shall describe how we may make use of
the pooled testing simulator to estimate how many
positive cases were detected in a city. We already
know the number of testing kits allocated to the city.
So to find out the maximum number of people that
may be tested using pooled testing with the assigned
number of testing kits K given that the prevalence rate
is known, we use the iterative Algorithm 3. We be-
gin with a naive estimate of the number of people S
that may be tested and then in each iteration, we es-
timate the number of testing kits τ required for these
S people under the best-suited pooling scheme which
Algorithm 2 tells us. If τ happens to be less than the
available number of testing kits K, then the number of
people under consideration S is increased and we do
this in steps of powers of 10.

Algorithm 3: Iterative Algorithm to Estimate Number of
Persons Tested.
Input: Testing kits allocated to city: K; current estimated

prevalence rate: ρ

Output: Number of persons that may get tested S∗
1: S∗← K
2: S← K
3: m← blog10(K)c
4: while m > 0 do
5: τ← number of testing kits required for conducting

pooled testing of S persons (Algorithm 2)
6: if τ < K then
7: S∗← S
8: S = S+10m

9: else
10: m = m−1
11: end if
12: end while

5 SIMULATION EXPERIMENTS

We primarily conduct our experiments on the 5-city
dataset with a time horizon of 100 days. To validate
the model, we compute the detection rate as the ratio
of the number of detected cases to the number of in-
fected individuals. After obtaining the daily number
of detected cases from the data, we estimate the num-
ber of undetected cases using the capture-recapture
method proposed by Böhning et al. (2020) according
to which if the new cases detected on day t is I(t) and
if D(t) denotes the number of deaths that day, then
the bias-corrected number of undetected cases is esti-
mated using Equation 13. Here I(t−1) is the number
of cases detected on day t−1.

U(t) =
I(t)(I(t)−1)

1+max{0, I(t−1)−D(t)}
(13)

We select the existing allocation done by the
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Figure 1: Runtime comparison between Python and Julia.

authorities as the baseline method and compare it
against different combinations of prevalence estima-
tion and allocation methods that were explained ear-
lier. We denote the Thompson sampling method using
beta-binomial and gamma-Poisson distribution mod-
els by BBTS and GPTS respectively. The optimistic
Gittins index method using the beta-binomial distri-
bution model shall be denoted by BBGI. We consider
two types of pooled testing models: (i) where the
maximum number of testing is limited to two denoted
by R2 (ii) where there is no restriction on the number
of rounds denoted by RX.

Thus, we shall consider a total of nine feasi-
ble combinations during our simulation experiments,
viz. BBTS, BBTSR2, BBTSRX, GPTS, GPTSR2,
GPTSRX, BBGI, BBGIR2, and BBGIRX. The entire
framework is primarily coded in Python 3.6.9 but cer-
tain parts like the iterative algorithm which turned out
to be significantly time-consuming in Python had to
be ported over to Julia 1.5.3 in order to leverage Ju-
lia’s fast computational performance. Figure 1 shows
runtime in seconds for running the iterative algorithm
for R2 pooling. The 5-city dataset was experimented
with by varying the time horizon. We clearly observe
that Python requires around 300 seconds to finish a
20-day model whereas Julia took 15 seconds for the
same. The simulation results were obtained on a sin-
gle core (serial execution) on an Intel i3-5005U CPU
2.4 GHz with 4GB memory, running elementary OS
5.1.7 Linux.

6 RESULTS

The allocation framework rests primarily on two im-
portant parameters: D which is used to estimate the
prior distribution, and q which denotes the fraction of
testing kits allocated equally to all cities. We found
suitable values for both by iteratively searching the
parameter space as shown in Figure 2. Thus, D is
taken to be between twelve and twenty days while
50% seems to be the best value chosen for q.

Let us now consider the estimation of the number

Figure 2: Effect of parameters D and q on detection rate.

Figure 3: Comparing number of detected cases and unde-
tected cases where total cases is the sum of both.

of undetected cases. Based on the method described
by Böhning et al. (2020), the number of undetected
cases is estimated using Equation 13, and the actual
number of infections turned out to be 1.7 to 2.8 times
more than that was detected. Figure 3 contrasts the
difference between the number of undetected and de-
tected cases.

We have used the fraction of positive cases de-
tected from among the infected individuals as the
metric for comparison among nine different alterna-
tives possible from the proposed allocation frame-
work. The detection ratios of COVID-19 cases for
all ten models have been averaged over the ten exper-
iments and the collected statistics are shown in Table
1. The sources of randomness are random sampling
in the TS method and random pooling.

Table 1: Comparison of ten allocation strategies.

Method Average Detection (%) SD(%)
GPTSRX 69.84 0.0331
GPTSR2 69.56 0.0092
BBTSRX 68.45 0.0531
BBTSR2 68.24 0.0381
BBGIRX 68.14 0.0238
BBGIR2 67.93 0.0246
GPTS 55.25 0.0003
BBTS 54.42 0.0077
BBGI 54.32 0
Baseline 48.55 0
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Figure 4: Daily detection rate for ten allocation strategies.

From Table 1, we observe that the MAB-based
models perform significantly better than the base-
line method. The Thompson sampling based mod-
els performed slightly better than the optimistic Git-
tins index based models. Similarly, the gamma-
Poisson models performed slightly better than the
beta-binomial models. Since we are dealing with
modeling count data of persons arriving for testing
in time-series format, it is usually expected for such
processes that the past history of detected cases plays
no role in predicting the future chances of obtain-
ing a positive result (memoryless property). In addi-
tion, when the number of infected individuals is suf-
ficiently low compared to the population size of city,
then the likelihood of the count data being best ap-
proximated as coming from a Poisson process is high.
This is reaffirmed by the observed results.

Figure 4 shows the detection performance for all
ten models over the 100 days confirming the trend we
observed in Table 1. The obvious point to stress from
these observations is that the pooled testing paradigm
leads to major efficiency gain over plain individual-
ized testing methods.

Also, the performance difference between two-
round pooling (R2) and multi-round (RX) models is
very small and so, for all practical purposes, it is ad-
visable to stick to two-stage pooled testing. So even
though we explored the multi-round pooled testing
models by assuming that the standard pooled testing
technique is scalable, it may not be technologically
feasible to have the sample collected from a single
patient undergo multiple rounds of testing. Neverthe-
less, our algorithm on average only suggests a maxi-
mum of three or four rounds.

Figure 5 shows that although at lower prevalence
rates, the pooling detects as many as 80% of the
infected individuals if the prevalence rate is high,
say more than 10%, then the difference between no-
pooling and pooling strategies becomes much lower.
This shows that once the disease has spread through
society in large numbers, the advantages afforded to

Figure 5: Effect of prevalence on detecting positive cases.

Figure 6: Detection performance for 65-city dataset.

us by the pooled testing technique are lost. But during
the initial phases of the pandemic, pooled testing may
indeed turn out to be a very effective tool for policy-
makers to contain the disease spread.

Based on the results from the five-city dataset,
three models, viz. GPTS, GPTSR2, and the baseline
method are used for the 65-city dataset over a period
of 20 days. The bandit model (GPTS) outperformed
baseline method which detects about 36.64% of the
infected cases; for GPTS, detection is about 38.83%;
for GPTSR2, it is 54.64%. The daily detection per-
formance is visualized in Figure 6. The overall detec-
tion rate is lower than for the five-city dataset. This
is primarily due to higher prevalence, poorer report-
ing of cases, larger lags in reporting test results, and
a higher proportion of undetected cases. The analy-
sis of the 65-city dataset reveals that on average there
are 2.8 times more undetected cases whereas, for the
five-city dataset, the undetected cases were on aver-
age about 2 times more.

7 CONCLUSION AND FUTURE
WORK

We demonstrated that bandit-based allocation strate-
gies outperform naive strategies that would allocate
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testing kits directly on the basis of test positivity rates,
and show good performance when combined with
pooled testing. It must also be noted that pooled test-
ing offers excellent advantages if prevalence rates are
low but the advantage starts dissipating as prevalence
rates begin to rise. We observed that two-stage pooled
testing is sufficient for the prevalence rates that show
up in the collected data, and introducing more test-
ing rounds does not lead to significant gains. We shall
use a compartmental model to track the disease preva-
lence at different locations as part of future work.
Exploring the usefulness of agent-based modeling to
handle the increased model complexity shall be inter-
esting.
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