
Nearest-neighbor Search from Large Datasets using Narrow Sketches

Naoya Higuchi1, Yasunobu Imamura2, Vladimir Mic3, Takeshi Shinohara4, Kouichi Hirata4

and Tetsuji Kuboyama5

1Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
2THIRD INC., Shinjuku, Tokyo 160-0004, Japan

3Masaryk University, Brno, Czech Republic
4Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan
5Gakushuin University, Mejiro 1-5-1, Toshima, Tokyo 171-8588, Japan

fi
ori-icpram2022@tk.cc.gakushuin.ac.jp

Keywords: Narrow Sketch, Nearest-neighbor Search, Large Dataset, Sketch Enumeration, Partially Restored Distance.

Abstract: We consider the nearest-neighbor search on large-scale high-dimensional datasets that cannot fit in the main
memory. Sketches are bit strings that compactly express data points. Although it is usually thought that wide
sketches are needed for high-precision searches, we use relatively narrow sketches such as 22-bit or 24-bit, to
select a small set of candidates for the search. We use an asymmetric distance between data points and sketches
as the criteria for candidate selection, instead of traditionally used Hamming distance. It can be considered
a distance partially restoring quantization error. We utilize an efficient one-by-one sketch enumeration in the
order of the partially restored distance to realize a fast candidate selection. We use two datasets to demonstrate
the effectiveness of the method: YFCC100M-HNfc6 consisting of about 100 million 4,096 dimensional image
descriptors and DEEP1B consisting of 1 billion 96 dimensional vectors. Using a standard desktop computer,
we conducted a nearest-neighbor search for a query on datasets stored on SSD, where vectors are represented
by 8-bit integers. The proposed method executes the search in 5.8 seconds for the 400GB dataset YFCC100M,
and 0.24 seconds for the 100GB dataset DEEP1B, while keeping the recall of 90%.

1 INTRODUCTION

We discuss the realization of a fast and accurate
nearest-neighbor search (NN search, for short) from
large-scale datasets. Sketches are bit strings com-
pactly representing high-dimensional data (Wang
et al., 2007; Dong et al., 2008; Müller and Shino-
hara, 2009; Mic et al., 2015; Mic et al., 2016). The
mapping of a data point to sketch is considered as a
kind of dimension reduction (Higuchi et al., 2018).
We have succeeded in effectively searching for the
nearest neighbor of a query from high-dimensional
datasets that can be read into the main memory in ad-
vance (Higuchi et al., 2019a; Higuchi et al., 2019b).
We use a filtering algorithm sped up by enumer-
ating narrow sketches, such as 16-bit. In this pa-
per, we show that their search method using narrow
sketches also provides an efficient search even for
large datasets that do not fit in the main memory.

In this section, we give the outline of our previous
study and the contribution of this paper.

1.1 Our Previous Study

Traditionally, the NN search using sketches has been
utilizing the Hamming distance between sketches to
select the candidates for the nearest neighbor. We use
sketches based on the ball partitioning (BP, for short),
where each bit of sketch is determined by whether the
data point is inside a hypersphere or not. Since BP-
based sketches are regarded as quantized images of a
dimension reduction such as Simple-Map (Shinohara
and Ishizaka, 2002), there is a quantization error in the
distance between sketches. We proposed the partially
restored distance between data points and sketches
that provides a more accurate candidate selection than
the Hamming distance (Higuchi et al., 2018). Similar
distances are also introduced as the asymmetric dis-
tance in sketch (Dong et al., 2008) and product quan-
tization (Matsui et al., 2018).

We call a pair (c,r) of a data point c and a real
number r a pivot to specify the center and the ra-
dius of the hypersphere. Clearly, the pivot selection

Higuchi, N., Imamura, Y., Mic, V., Shinohara, T., Hirata, K. and Kuboyama, T.
Nearest-neighbor Search from Large Datasets using Narrow Sketches.
DOI: 10.5220/0010817600003122
In Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2022), pages 401-410
ISBN: 978-989-758-549-4; ISSN: 2184-4313
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

401

for sketching is one of the keys to achieving precise
filtering. Intuitively, the higher the information pre-
served by sketches, the more precise the search using
sketches. Therefore, we first tried to find a pivot set by
which the collision probability is low. This is almost
equivalent to the approach by the method of maxi-
mizing entropy. We applied a local search method
for pivot selection to minimize collision probability.
We have experienced the fact that many of the piv-
ots found by the local search lie in the corner of the
space. From this, we proposed the method of binary
quantization ball partitioning, QBP for short, which
restricts the centers of the pivots to corners of the
data space. To break the limits of the local search we
introduced a method named AIR (Annealing by In-
creasing Resampling) (Imamura et al., 2017; Higuchi
et al., 2020a). Although we can find a set of pivots
to provide sketches with a small collision probabil-
ity by AIR, the precision of the search could not be
improved. Recently, we proposed a pivot selection
directly using the search precision itself as the objec-
tive function of AIR instead of the collision probabil-
ity (Higuchi et al., 2020b), by which we can find a
pivot set to realize efficient sketching transformation.

Furthermore, we succeeded in effectively search-
ing for the nearest neighbor of a query from high-
dimensional datasets that can be read into the main
memory in advance (Higuchi et al., 2019a; Higuchi
et al., 2019b). We use a filtering algorithm sped up by
enumerating narrow sketches, such as 16-bit, one-by-
one in ascending order of partially restored distance.

1.2 Contribution of this Paper

In this paper, we show that the search method using
narrow sketches also provides an efficient search even
for large datasets that do not fit in the main memory.

There are not many large-scale datasets avail-
able to the public, while we use two datasets:
YFCC100M-HNfc6 (YFCC100M, for short) (Amato
et al., 2016a) and DEEP1B (Babenko and Lempit-
sky, 2016). DEEP1B consists of 1 billion 96 dimen-
sional vectors. Although the number of vectors in
YFCC100M is about 100 million and not so large as
DEEP1B, the dimensionality is high at 4,096.

In our experiments, vectors are represented by 8-
bit integers. The sizes of YFCC100M and DEEP1B
are about 400GB and 100GB, respectively. We use
a common desktop computer with a standard 8-core
processor and M.2 SSD. A naı̈ve NN search by se-
quential read requires about 300 seconds and 85 sec-
onds for YFCC100M and DEEP1B, respectively, on
average for a query. This speed is reasonable from the
fact that we use the SSD with a sequential read speed

of 2GB per second.
We consider a NN search divided into two stages.

At the first stage, the dataset is filtered to select solu-
tion candidates using narrow sketches. At the second
stage, the nearest neighbor is selected from the candi-
dates. The precision of the search is measured by the
recall, that is, the ratio that the correct answer is re-
trieved. The average search time for a query with the
recall of 90% is 11 seconds for YFCC100M using 24-
bit sketches, and 0.77 seconds for DEEP1B using 22-
bit sketches, respectively. If parallel processing with
8 threads is used, it can be shortened to 5.8 seconds
and 0.24 seconds, respectively.

The search method used in this paper is based
on the fast filtering by sketch enumeration (Higuchi
et al., 2019a; Higuchi et al., 2019b). The contribution
of this paper is to show practical findings to achieve a
high-speed and high-precision search even for a large
dataset that cannot be stored in the main memory, and
to bridge the gap between the existing method and its
practical use. Many useful insights have been gained
from the experiments counducted in this paper. In
fact, the experimental results imply that the proposed
method with narrower sketches outperforms the meth-
ods with wider sketches or other filtering methods em-
ployed in most NN searches.

2 NEAREST-NEIGHBOR SEARCH
USING NARROW SKETCHES

In this paper, we discuss an efficient NN search in a
metric space. When the dimensionality of data space
is high and the number of the searched data points is
large, it is necessary to introduce dimension reduction
with an indexing method to be released from so-called
“the curses of dimensionality.” The sketches are bit
strings representing data points and can be directly
used as indexes of the bucket method. The width of
a sketch is the length of the bit string. A mapping of
a data point to the sketch, which we call sketching, is
considered as a kind of dimension reduction as long
as the width of sketches is narrow. Thus, the sketch-
based method we propose provides both efficient in-
dexing and dimension reduction.

The NN search using sketches is performed in two
stages. The first stage narrows down the candidates
of solution based on the priorities of data points de-
fined by sketches, and then, the second stage selects
the nearest neighbor from the candidates. We call the
first stage filtering by sketches. Traditionally, the pri-
ority in filtering is defined by the Hamming distance
between sketches. The proposed method in this paper
uses an asymmetric partially restored distance D̃p be-

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

402

tween data points and sketches to define the priority of
the candidate data points (Higuchi et al., 2018). The
D̃p(q,ς) is defined as the Lp like aggregation of dis-
tance lower bounds between q and any x whose sketch
is ς. This approach provides more reliable filtering by
sketches.

The smaller the number of candidates selected,
and the more reliable prioritization in filtering, the
faster the search in the second stage we expect. A sim-
ple way to reduce the candidate set without degrad-
ing filtering performance is to use wide sketches. On
the other hand, the wider the sketches in filtering, the
higher the cost for filtering. Furthermore, accessing a
few data points scattered in the secondary storage be-
comes slow due to random access. Thus, only simply
reducing the number of candidates cannot achieve a
fast search.

To increase the speed of the entire search, it is
important to balance the number of candidates and
the data access efficiency of the second stage search.
We showed that the NN search with the narrow 16-
bit sketches is faster than that with the wide 32-bit or
more sketches (Higuchi et al., 2019b). One of the key
methods to realize a fast search is the efficient enu-
meration of narrow sketches in the order of priorities,
by which we can very quickly collect the candidates
in filtering.

In (Higuchi et al., 2019a; Higuchi et al., 2019b),
the search has been performed on-memory with all the
data loaded in the main memory. In this paper, we
show that the search using narrow sketches is effec-
tive even when the data is too large to fit in the main
memory.

In the rest of this section, we give a brief intro-
duction to the NN search using sketches. For details,
refer to the literature (Higuchi et al., 2019a; Higuchi
et al., 2020b).

2.1 Nearest-neighbor in a Metric Space

Let U be the space of data points to be searched. We
assume U is a metric space where the distance func-
tion D is defined. Given a positive integer k and a data
point q, a k-nearest-neighbor search (k-NN search for
short) for q from a dataset ds⊆U is the search for the
k closest points in ds to q. In this paper, we mainly
concern with the NN search, that is, the k-NN search
with k = 1. We summarize the notations used in this
paper in Table 1.

2.2 Sketching by Ball Partitioning

We use the sketching based on the ball partition-
ing, which defines each bit of the sketch to express

Table 1: Notations.

Notation Description

U the data space
x,y,x0, . . . data points in U
D(x,y) the distance between x and y
ds dataset {x0,x1, . . . ,xn−1} indexed

by numbers
n the number of data points in ds
k the number of data points in the

answer by the k-NN search
k′ the number of candidates selected

by sketch filtering
k′′ the number of sketches to select k′

candidates
q ∈U a query point
w the width (length) of sketches
σ(x) the sketch of x
ς a sketch of unspecified data point
D̃p(x,ς) the partially restored distance

between x and ς

b the number of nonempty buckets
when using the sketches as keys,
which is the same as the number of
sketches in {σ(x) | x ∈ ds}

whether the data point is inside a ball or not. A pivot
is a pair (c,r) of a data point c and a nonnegative value
r which defines the ball with the center c and the ra-
dius r. Each bit of a sketch is defined by the ball par-
titioning:

B(c,r)(x) =
{

0, if D(c,x)≤ r,
1, otherwise.

The sketching σΠ of width w is defined as the bit
concatenation using an ordered set Π = {(c0,r0), . . . ,
(cw−1,rw−1)} of w pivots:

σΠ(x) = B(c0,r0)(x) · · ·B(cw−1,rw−1)(x)

The sketch of x is denoted by σ(x) when Π is omitted.

2.3 Prioritization by Partially Restored
Distances

Since sketches can hold only partial information
about data points, we perform the NN search using
sketches in two stages to give an approximated result.
The first stage, called filtering by sketches, selects a
small subset of data points as the candidates of the an-
swer to the query. The second stage selects the nearest
neighbor from the candidates. The recall of the NN
search is the ratio that the correct answer is retrieved,
that is, the ratio that the correct answer is included in
candidates selected through the filtering by sketches.

Nearest-neighbor Search from Large Datasets using Narrow Sketches

403

The filtering by sketches is based on the priority
of sketches. Traditionally, the priority is given by the
Hamming distance between sketches defined as the
number of different bits. In this paper, we use D̃p that
is an asymmetric distance function between sketches
and data points, introduced in (Higuchi et al., 2018).
In our previous papers, we use a notation scorep for
the asymmetric distance. To avoid misunderstanding
and clarify the meaning of distance, we change the
notation to D̃p. The smaller the Hamming distance or
D̃p, the higher the priority to pass through the filter-
ing.

Sketches by ball partitioning are considered bit
strings consisting of quantized distances. Therefore,
the distance between sketches has a quantization er-
ror. Here, we explain the partially restoration of quan-
tization error. Let x = 0.4 and y = 0.6. Then quantized
values x′ and y′ of them by round operation are 0 and
1, respectively. Since D(x,y) = |0.4− 0.6| = 0.2 and
D(x′,y′) = |0− 1| = 1, the quantization error in dis-
tance is 0.8. When one of the raw values is used by
the distance calculation, D(x,y′) = |0.4−1| = D(x′,y)
= |0− 0.6| = 0.6 and the error is reduced to 0.4. We
call the asymmetric distance between the raw value
and the quantized value the partially restored distance
and denote it by D̃.

One of the keys to speeding up the NN search by
sketches is the fast filtering, where data points are
compressed into bit strings to avoid costly data access
and distance calculation. The filtering based only on
sketches is influenced by the error due to the quan-
tization of data points to sketches. In the filtering
stage, while uncompressed data points in the dataset
should not be accessed, as for query both uncom-
pressed and compressed points are available. There-
fore, we can improve the filtering performance by us-
ing the partially restored distance between the uncom-
pressed query point and compressed data points.

For a point x and a pivot (c,r), we define e(c,r)(x)
as the minimum distance from x to the boundary of
partitioning by B(c,r), that is,

e(c,r)(x) = |D(c,x)− r|.

Suppose any point x and y are on the different side of
ball partitioning by a pivot (c,r). Then, we can prove
that the distance D(x,y) is not less than e(c,r)(x) by
triangular inequality. Thus, we obtain a lower bound
δ(c,r)(x,s) on D(x,y) for any y such that B(c,r)(y) = s
as follows:

δ(c,r)(x,s) =
{

0, if B(c,r)(x) = s,
e(c,r)(x), otherwise.

For p≥ 1, we use an asymmetric distance D̃p defined
by a Lp like aggregation of the distance lower bounds

δ(ci,ri)(x,ςi) as the criteria to select candidates in the
first stage.

D̃p(x,ς) =
p

√
w−1

∑
i=0

(δ(ci,ri)(x,ςi))p,

where (ci,ri) is the i-th pivot and ςi the i-th bit of ς.
Here, we should note that D̃p is guaranteed to give

a distance lower bound only if p=∞. However, as we
will see in the experiments, D̃1 and D̃2 may provide
more accurate priorities for candidate selection than
D̃∞.

2.4 Filtering by Sketches

We employ two methods of filtering by sketches: full
scan and sketch enumeration.

Full scan
Compute D̃p(q,σ(xi)) for i = 0, . . . , n− 1, and
select top-k′ data points with the smallest D̃p.

Sketch enumeration
Using one-by-one sketch enumeration in increas-
ing order of D̃p(q,ς), select the beginning k′′

sketches from the enumeration.

The full scan is a naı̈ve method to calculate the pri-
orities of all data points and select the top-k′ priority
ones. Given a query q, it first computes D̃p(q,σ(xi))
for all i = 0, . . . , n− 1. The Hamming distance,
traditionally used as a sketch priority, can be cal-
culated very quickly. On the other hand, partially
restored distances are expensive to calculate in a
simple way. First, we get distance lower bounds
e(c j ,r j)(q) for all j = 0, . . . , w− 1. Next, we aggre-
gate lower bounds corresponding to the part where the
bit of σ(q) XOR σ(xi) is 1. However, since the full
scan calculates multiple partially restored distances,
D̃p(q,σ(x0)), D̃p(q,σ(x1)), . . . for a common q, it is
sufficient to calculate the lower bounds only once for
q. Furthermore, a table function can speed up the
aggregation. Therefore, the full scan can calculate
priorities by partially restored distances at the almost
same cost as for the Hamming distance. An algorithm
known as QUICKSELECT selects the top-k portion
from n ordered data in O(n+ k logk) time. The time
complexity of the full scan can be regarded as O(n)
because the number of candidates is very smaller than
the number of searched data points, that is, k′≪ n.

The sketch enumeration is a method introduced
in (Higuchi et al., 2019a), which uses one-by-one
sketch enumeration in the order of priority and uses
only the beginning of the enumeration. Assuming that
the number of sketches enumerated before obtaining
k′ candidates is k′′, the sketch enumeration takes a

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

404

function BATCHNNSEARCH1
for i = 0 to t−1 do

nearest[i]← ∞;

for j = 0 to n−1 do
read x j from ds;
for i = 0 to t−1 do

if D(qi,x j)< nearest[i] then
nearest[t]← D(qi,x j);
answer[i]← j;

return answer;

function BATCHNNSEARCH2
for i = 0 to t−1 do

nearest[i]← ∞;
for j = 0 to n−1 do

read x j from ds;
if D(qi,x j)< nearest[i] then

nearest[t]← D(qi,x j);
answer[i]← j;

return answer;
Algorithm 1: Two batch methods of NN search.

calculation time proportional to k′′ logk′′. If the to-
tal number 2w of w-bit sketches is small compared to
n, the time required for the sketch enumeration is neg-
ligible because k′′ is small and only a short beginning
of the enumeration is used. On the other hand, since
increasing w implies decreasing the average number
of data points with the same sketch, the required com-
putation time is increasing exponentially with respect
to w. When the sketch enumeration is used, D̃p is not
needed to be explicitly calculated.

2.5 Speed-up of NN Search by Parallel
Processing

The main purpose of this paper is to speed up indi-
vidual query processing. In experiments, we run the
NN search for multiple queries to measure the aver-
age search time. We compare the search times with
and without parallel processing.

Given multiple queries at a time, we consider a
method of speeding up the search by batch process-
ing. Assume that the dataset ds = {x0, . . . ,xn−1} is
stored in the secondary memory, whereas all of the
t query points q0, . . . ,qt−1 are in the main memory.
Consider the two outlines of the NN search algorithm
by a double loop in Algorithm 1. Here, when the near-
est neighbor to qi is x j, the algorithm returns the array
such that answer[i] = j as the query answer.

BATCHNNSEARCH1 uses the outer loop as the
data loop and the inner loop to process multiple

queries for each data. Since the data needs to be
read from the secondary storage only once, the cost
of data access decreases relatively as the number of
queries increases. In addition, the internal loop of
query processing can be easily parallelized with mul-
tiple threads. If this method is executed in parallel
processing with 8 threads, the ground truth of 1,000
queries for YFCC100M can be obtained in about 2
hours. This is about 7 seconds per query. This speed
becomes faster as the number of questions increases.
However, this method is only valid for batch process-
ing and should not be used to measure search time.

In our experiment, we run the batch process as
BATCHNNSEARCH2 and measure the search time for
multiple queries, where parallelization is only used
within individual searches.

3 EXPERIMENTS

In experiments, we use a standard desktop computer:
AMD Ryzen 7 3700X 8-Core Processor, 64GB RAM
(limited for experiments to reduce the impact of disk
cache), 2TB Intel 665p M.2 SSD, Ubuntu 20.04.2
LTS (Windows WSL1.0, where the file system of
Windows is used). We use GCC with OpenMP to
compile programs for multi-thread processing.

We use AIR to select the pivot sets for sketches
narrower than 26-bit where the search precision for a
small sample subset of the dataset is used as the objec-
tive function to maximize (Higuchi et al., 2020b). The
current version of the pivot selection by AIR is ap-
plicable only to narrow sketches. For wide sketches,
such as 48-bit and 192-bit, we use the pivot sets se-
lected based on QBP with collision probability to
minimize (Higuchi et al., 2018).

It is important to take the disk cache into account
when considering the speed of retrieval from datasets
stored in secondary storage. In our experiments, most
of the candidate sets to achieve the recall of 90% con-
tain more than 1 million data points. The intersection
of the two candidate sets of individual queries is very
small.

Since each data point of the YFCC100M is 4KB
in size, each query process should read at least 4GB
of data points as a potential solution. This is a
small subset of a dataset of about 400GB. Therefore,
in experiments measuring the search time from the
YFCC100M, we limit the main memory to the size
required by the program plus 4GB to reduce the ef-
fect of the disk cache to a negligible extent.

Since the size of the data point of DEEP1B is 100
bytes, it is difficult to reduce the influence of the disk
cache by the same method as for YFCC100M. If the

Nearest-neighbor Search from Large Datasets using Narrow Sketches

405

Table 2: The searched datasets.

dataset #p dim size #q

YFCC100M 108 4,096 400GB 1,000
DEEP1B 109 96 100GB 1,000

memory is made too small, the speed of the entire
search slows down. Therefore, we limit the memory
to the size required by the program plus 4GB so that
the processing speed is not slow, although the effect
of the disk cache remains to some extent.

3.1 YFCC100M-HNfc6 and DEEP1B

We conduct experiments on the datasets YFCC100M-
HNfc6 (Amato et al., 2016a) and DEEP1B (Babenko
and Lempitsky, 2016).

YFCC100M consists of about 1 million data
points, which are image visual features consisting of
4,096 nonnegative 32-bit floating points and normal-
ized to unit vectors (length = 1.0) in the Euclidean
space. In our experiments, we convert floating-point
data into unsigned 8-bit integers after multiplying
them by 1,000. The total size of YFCC100M is about
400GB. As query points, we extract 97 sets consist-
ing of 1,000 data points. We mainly use the first
set in experiments. The other 96 sets of queries are
used to confirm the robustness of the quality of our
search method. The rest is used as the data points to
be searched. The error introduced by our conversion
has a negligible effect on the NN search results.

DEEP1B consists of 1 billion data points and
10,000 query points. Data points are 96 dimensional
unit vectors represented by 32-bit floating points. In
our experiments, we convert them into signed 8-bit
integers after multiplying 255. The total size of
DEEP1B is about 100GB. We mainly use the first
1,000 queries in experiments.

Table 2 summarizes the datasets used in experi-
ments, where #p, dim, size, and #q are the number of
data points, the dimensionality of data, the size of the
dataset, and the number of queries, respectively.

3.2 Scanning Speed of Naı̈ve NN Search

At first, we present the scanning speed of the naı̈ve
NN search in Table 3, as a basis for comparison of
search speeds. The values in the rows serial and par-
allel are microseconds needed to scan each data point
by single thread processing and parallel processing
with 8 threads, respectively. The columns seq, bulk,
and rand include the scanning speed by sequantial
read, bulk read, and random read, respectively. In

Table 3: Scanning speed of naı̈ve NN search.

dataset process scanning speed (µs/d.p.)
seq bulk rand

YFCC100M serial 5.2 3.0 140
parallel 4.1 2.7 33

DEEP1B serial 3.4 0.085 136
parallel 0.93 0.066 19

bulk read, multiple consecutive data points are read
together.

Using these scanning speeds, we can estimate the
time of the naı̈ve NN search for YFCC100M at 520
seconds, which is shortened to 270 seconds by par-
allel processing with 8 threads and bulk read. On
the other hand, for DEEP1B, the search for a query
is estimated to take 66 seconds with 8-thread paral-
lel processing and bulk read, which is about 50 times
faster than 3,400 seconds by single thread process-
ing without bulk read. The reason why the speedup
for DEEP1B is larger than that for YFCC100M is ex-
plained by the difference in the dimensionalities and
the block size of SSD. Data points of DEEP1B are
represented by 96 bytes, which can be packed to-
gether in a 4KB block of SSD for every 40 data points.
The size of data point of YFCC100M is the same as
the block size. Scanning speeds by random reads are
the basis for the second stage search because candi-
dates after filtering by sketches may be scattered in
the storage.

3.3 Priorities of Sketches

We regard a priority as reliable so that the recall of the
NN search using the priority is high. Alternatively,
we consider the priority as reliable if the number of
candidates required to achieve the target recall rate is
reduced. We introduced asymmetric partially restored
distances, D̃∞, D̃1, and D̃2 (Higuchi et al., 2018), all of
which are more reliable priorities than the Hamming
distance. In this paper we compare the priorities on
YFCC100M and DEEP1B.

Table 4 provides the reliability of priorities by 24-
bit sketching as the number of candidates k′ required
to achieve the recall of 90%. Clearly, the three asym-
metric distances are all superior to the Hamming dis-
tance. In particular, D̃1 has the highest reliability. For
the later experiments, we adopt D̃1.

3.4 Filtering Cost

We can run the first stage filtering completely in
the main memory even for the large datases such as

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

406

Table 4: Reliability of priority by 24-bit sketches: the num-
ber of candidates k′ to achieve recall 90%.

dataset Ham D̃1 D̃2 D̃∞

YFCC100M 3.2M 1.4M 1.5M 2.5M
DEEP1B 9.5M 1.3M 1.7M 2.4M

Table 5: Filtering cost (sec/q).

dataset w k′ enum. full scan
ser. para.

YFCC100M

20 2.3M 0.0016 1.0 0.18
22 1.8M 0.0022 1.1 0.18
24 1.4M 0.0050 1.1 0.18
26 1.2M 0.0150 1.0 0.18

DEEP1B

20 2.6M 0.0017 11 2.3
22 1.6M 0.0012 9.5 2.3
24 1.3M 0.0014 9.9 2.3
26 0.90M 0.0020 12 2.4

Table 6: Search time (sec/q).

dataset w n/b k′ ser. para.

YFCC100M

20 110 2.3M 10 8.3
22 37 1.8M 9.4 6.8
24 15 1.4M 11 5.8
26 6.8 1.2M 21 6.9

DEEP1B

20 950 2.6M 0.83 0.41
22 240 1.6M 0.77 0.24
24 66 1.3M 0.94 0.26
26 23 0.90M 1.7 0.44

YFCC100M and DEEP1B. We prepare all sketches
for the searched data points in advance. Table 5 sum-
marizes the filtering costs. The number of candidates
k′ is set to achieve the recall of 90% for each sketch
width w. The column enum provides the costs by
the filtering by sketch enumeration. The columns of
fulls can provide the costs by serial processing and 8-
thread parallel processing. At this moment, we have
no implementation of sketch enumeration in a parallel
environment. For all w in Table 5, the full scan costs
almost independently on w and can be accelerated by
multi-thread processing. The filtering by sketch enu-
meration has a very small cost compared to the full
scan.

As we will see in Sect. 3.5, the NN search requires
more than 5.8 seconds per query for YFCC100M and
0.24 seconds for DEEP1B. The search times include
the whole query processing. Therefore, the costs of
filtering by sketch enumeration are very small com-
pared with the search times by narrow sketches.

3.5 Search Time

As shown in Table 3, the difference of the speed be-
tween sequential and random read in the secondary
storages is big. Therefore, we can expect that sort-
ing data points in the sketch order can speed up the
search. To observe the effect by sorting, we first run
the NN searches on the unsorted dataset. Search times
are given by the average seconds per query, sec/q. On
an unsorted dataset of YFCC100M, the NN search
time with k′= 1M was almost constant regardless of w,
150 sec/q by 1-thread and 36 sec/q by 8-thread. They
are roughly equal to the scanning speed by the ran-
dom read of 140 µs/data and 33 µs/data, respectively.
Similarly, the search times on the unsorted dataset of
DEEP1B are equal to the scanning speed by random
read. Therefore, we can see that the data access in the
search using the unsorted dataset is almost random.

Table 6 summarizes the search times on the sorted
datasets, where the number of candidates k′ is set to
achieve the recall of 90% for each width. The sketch
enumeration is used in the filtering. The ratio n/b is
the average number of data points in nonempty buck-
ets. When n/b is large, multiple data points with a
common sketch can be efficiently read from the sorted
dataset stored in the secondary storage. The columns
ser. and para. represent the search times by serial
processing and 8-thread parallel processing. For each
dataset, the shortest search time is shown in bold with
and without parallel processing.

For YFCC100M, the shortest search time is 9.4
seconds per query when 22-bit sketches are used by
single-thread, and 5.8 seconds per query when 24-bit
sketches by 8-thread processing. The speed-up ratio
by sketches is 300 / 9.4 = 32 and 270 / 5.8 = 47 for
single-thread and 8-thread, respectively.

For DEEP1B, the fastest search is realized by 22-
bit sketches, regardless of whether parallel comput-
ing is used, and they are 0.77 and 0.24 seconds per
query for single-thread and 8-thread processing, re-
spectively. The speed-up ratio is 85 / 0.77 = 110 and
66 / 0.24 = 280 for single-thread and 8-thread, respec-
tively.

The wider the sketches, the smaller k′ and the
larger n/b. Thus, there is a trade-off between k′

and n/b. For example, the 2nd stage search of
YFCC100M by 1-thread requires 10 seconds to scan
2.3M candidates, which corresponds scanning speed
4.3 µs/d.p. Table 7 summarizes the scanning speeds
in the 2nd stage of the search by narrow sketches.
There is a clear tendency that the larger the width,
the slower the scanning speed. The fastest search is
achieved by 24-bit sketches for YFCC100M and by
the 22-bit sketches for DEEP1B.

Nearest-neighbor Search from Large Datasets using Narrow Sketches

407

Table 7: Scanning speed of 2nd stage search (µs/d.p.).

dataset w n/b ser. para.

YFCC100M

20 110 4.3 3.6
22 37 5.2 3.8
24 15 7.9 4.1
26 6.8 18 5.8

DEEP1B

20 950 0.29 0.11
22 240 0.48 0.15
24 66 0.72 0.20
26 23 1.9 0.49

3.6 Comparison of Narrow Sketches
with Wide Sketches

To compare the performance of narrow sketches with
wide sketches, we execute additional experiments.
256-bit, 512-bit and 1024-bit sketches were used
for YFCC100M, and 96-bit, 192-bit and 384-bit for
DEEP1B. Filtering with wide sketches is done by the
full scan, since the filtering by sketch enumeration
works only for narrow sketches. Table 8 summarizes
the results by 8-thread parallel processing, where the
columns filt. and 2nd include the filtering cost and
the cost of the second stage search, respectively. The
number of candidates k′ is set to achieve the recall of
90% for each w.

The wider the sketches, the smaller the number
of candidates and the larger the filtering cost. Fur-
thermore, the scanning cost of the second stage of the
search becomes large as by random read. For exam-
ple, for YFCC100M, the 2nd stage of the search with
256-bit sketches requires 19 seconds to scan 450K
candidates, which corresponds to 43 µs/d.p., so it is
a bit slower than the scanning speed by random read
shown in Table 3. Thus, it is hard for wide sketches
to provide a faster search than narrow sketches.

For YFCC100M, 512-bit and 1024-bit sketches
provide a bit faster search than narrow sketches. How-
ever, wider sketches than 1024-bit cannot provide a
faster search. In contrast, no wide sketches provide
a faster search for DEEP1B. The difference between
YFCC100M and DEEP1B is explained by the scan-
ning speed. For YFCC100M, scanning speed by bulk
sequential read is about 10 times faster as by random
read. For DEEP1B, the speed ratio of bulk sequential
read to random read is more than 250.

4 DISCUSSION

Here, we discuss our achievements in comparison
with related work.

Table 8: Search time by wide sketches (sec/q).

dataset w k′ filt. 2nd total

YFCC100M 256 450K 0.25 19 19
512 90K 0.50 4.0 4.5

1,024 77K 1.5 3.6 5.1

DEEP1B
96 25K 2.0 0.59 2.6

192 2,600 2.1 0.06 2.1
384 400 3.0 0.01 3.0

4.1 Related Work

Before giving an overview of related work, we notice
that there are two confusing notations concerning the
accuracy of the search. We adopt the same notation
as Amato et al. (Amato et al., 2016b), i.e. recall@k
to denote the ratio of correct results for a given k-NN
query in the top-k results returned. Formally,

recall@k =
|E(q,k)∩A(q,k)|
|E(q,k)|

,

where |·| denotes the number of elements in a set,
E(q,k) and A(q,k) are the top-k sets obtained by the
exact and approximate k-NN searches for a query q,
respectively. This represents the quality of the entire
search.

On the other hand, in (Babenko and Lempitsky,
2016; Johnson et al., 2021), they use the notation
Recall@R to denote the rate of queries for which the
true nearest neighbor is included in a set of candidates
whose number of elements is R. Their interests are
only in the computational cost to get the set of R can-
didates. Recall@R is considered as the quality of the
indexing and does not represent the quality of the en-
tire search since we need to select the final answer out
of the candidates unless R = 1.

Amato et al. well explain the difficulty of NN
search on YFCC100M in (Amato et al., 2016b). How-
ever, they focus strictly on the search with a very
small number of candidates by sacrificing a signifi-
cant portion of quality for achieving a quick search.
In the paper (Amato et al., 2016a), they showed exper-
imental results using a set of 4,096-bit strings named
Binary. They employed the traditional Hamming dis-
tances between binary strings to select candidates and
reported recall@100 of 75% with 7,000 candidates.
Long bit strings, such as 4,096-bit, require a lot of
time and space just to get the candidates.

In (Babenko and Lempitsky, 2016) that introduced
DEEP1B, it is reported that the NN search with the
recall of 45% can be executed in 20 milliseconds.

Both of YFCC100M and DEEP1B are also used
in experiments using GPUs (Johnson et al., 2021).

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

408

Table 9: Recall@k of k-NN search.

dataset k=1 k=10 k=20 k=100

YFCC100M 90% 86% 84% 80%
DEEP1B 90% 86% 84% 79%

However, they execute the search on-memory using
compressed datasets and do not consider the cost of
the final selection using the uncompressed datasets.
Probably, direct handling large-scale dataset is not ap-
propriate for the computation with GPUs. In fact, for
example, they use a YFCC100M dataset of reduced
128 dimension by PCA.

4.2 Recall of the k-NN Search

We have discussed the NN search targeting the recall
of 90%. Table 9 summarizes the recall@k with the
same settings as the NN search. The k-NN search
speed is almost the same as the NN search. From this,
it can be confirmed that the proposed method has a
high performance even for the k-NN search.

4.3 Comparison with Related Work

We cannot directly compare the efficiency of our
method with those used in related work, since there
is presented no concrete time for the search or only
time to get the candidates by on-memory processing
with the recall lower than 90%. Therefore, here, we
compare them using the experimental results under a
different setting from Section 3.

In our experimental environment, we cannot run
the search using Binary stored in the main memory,
whose size is 50GB. By a rough estimation in the
converted YFCC100M of 400GB on SSD, the search
will run in 6 seconds to get candidates using Binary
and 0.2 seconds to select the answer from the 7,000
candidates. In contrast, our method executes a 100-
NN query with recall@100 = 80% in almost the same
time 6 seconds as a NN query with the recall of
90%. Thus, our method runs at the same speed as
the method reported by Amato et al. for YFCC100M
with a bit higher recall and less memory consumption.

It is a bit difficult to compare our method with the
methods by Babenko et al., since the computer en-
vironment such as processor and memory specifica-
tion is not shown in the literature. With the recall of
45%, even if the dataset is stored in secondary mem-
ory, using our method with the 8-thread parallel pro-
cessing, the search can run in almost the same time.
In our computer environment, it is impossible to read
the entire dataset into the main memory and execute
it. When the dataset Deep500M of half size is used,

the search can run on memory. If the recall rate is
45%, we can run the search for Deep500M in 1.5 mil-
liseconds with a single thread. Therefore, under an
environment with sufficient memory, we expect that
the search for DEEP1B with a recall rate of 45% can
be run in 3 milliseconds by our method.

We would like to emphasize that this paper fo-
cuses on rather higher recall rates since we aim to pro-
vide new insights for practical databses queries. The
subject in this paper is to realize a fast search from
a large-scale dataset stored in the secondary memory.
Here, for reference, we show the search speed of the
proposed method when the reduced dataset is loaded
in the main memory. For the datasets YFCC10M and
Deep100M which are subsets of one tenth size, we
can run the search on memory. For YFCC10M, using
24-bit sketches, the average search time for a query
is 21, 30, 47, and 120 milliseconds with recall 80%,
85%, 90%, and 95%, respectively. For Deep100M,
using 24-bit sketches, the average search time for a
query is 1.4, 1.9, 3.2, and 6.0 milliseconds with re-
call 80%, 85%, 90%, and 95%, respectively. Even for
Deep500M, 3.0, 4.1, 6.8, and 14 milliseconds, respec-
tively.

Thus, according to our best knowledge, the
method used in this paper exceeds the current search
engines in speed for the large datasets keeping a high
recall rate.

4.4 Comparison of Sketching with
Indexing Structures

Babenko et al. compared two commonly used in-
dexing structures IVFADC and IMI with two meth-
ods NO-IMI and GNO-IMI introduced by them. The
sketch-based methods are also considered indexing
structures. We compare wide sketches of 48, 96, and
192-bit with the four structures. Table 10 displays
the number k′ of candidates to achieve the recall of
90% in searching the dataset DEEP1B. The priority
of sketches is measured by the partially restored dis-
tance D̃1. The values for structures 1 to 4 are taken
from the paper by Babenko et al. (Babenko and Lem-
pitsky, 2016).

We can observe that the indexing by 96-bit
sketches has almost the same quality as GNO-IMI.
Furthermore, the indexing by 192-bit sketches, which
are only 24-byte in size, significantly outperforms
GNO-IMI. However, as already seen in the preced-
ing subsections, the fastest search with the recall 90%
is provided by narrow sketches. Thus, not only the in-
dexing quality but also the speed of selecting answers
from the candidates are important.

Nearest-neighbor Search from Large Datasets using Narrow Sketches

409

Table 10: Comparison of indexing structures.

indexing 1 2 3 4 5 6 7

k′(×103) 120 60 25 15 240 25 3
k′: the number of candidates to achieve the recall 90%
for DEEP1B. 1. INVADC, 2. IMI, 3. NO-IMI,
4. GNO-IMI, 5. 48-bit, 6. 96-bit, 7. 192-bit

5 CONCLUSION

Using two datasets YFCC100M-HNfc6 and DEEP1B
consisting of 100 million and 1 billion vectors, re-
spectively, we have demonstrated that narrow 22-bit
and 24-bit sketches provide fast and accurate NN
search. We have also described how difficult it is for
the wide sketches to outperform narrow sketches in
search speed. The key to fast search is to keep the
ability to narrow the candidates, as well as to speed
up the filtering.

One of the most important future tasks is the re-
vision of the pivot selection to make the sketching
more reliable. Since the current version of pivot selec-
tion by AIR can treat only narrow sketches, we have
to modify it. As we have observed in Section 4.4,
that 96-bit and 192-bit sketches provide the index-
ing structures with high quality without using AIR.
Therefore, we can expect that AIR can find indexing
structures with higher quality by not so wide sketches.

We also plan to build a search engine based on
double-filtering with narrow and wide sketches which
can be expected to search even larger datasets than
YFCC100M-HNfc6 and DEEP1B.

ACKNOWLEDGMENTS

This research was partly supported by ERDF
“CyberSecurity, CyberCrime and Critical Infor-
mation Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16 019/0000822), and also
by JSPS KAKENHI Grant Numbers 19H01133,
19K12125, 20H00595, 20H05962, 21H03559 and
20K20509.

REFERENCES

Amato, G., Falchi, F., Gennaro, C., and Rabitti, F.
(2016a). YFCC100M-HNfc6: A large-scale deep
features benchmark for similarity search. In Proc.
SISAP’16, LNCS 9939, Springer, pages 196–209.

Amato, G., Falchi, F., Gennaro, C., and Vadicamo, L.
(2016b). Deep permutations: Deep convolutional

neural networks and permutation-based indexing. In
Proc. SISAP’16, LNCS 9939, Springer, pages 93–106.

Babenko, A. and Lempitsky, V. (2016). Efficient indexing
of billion-scale datasets of deep descriptors. In Proc.
CVPR’16, IEEE Computer Society, pages 2055–2063.

Dong, W., Charikar, M., and Li, K. (2008). Asymmetric
distance estimation with sketches for similarity search
in high-dimensional spaces. In Proc. ACM SIGIR’08,
pages 123–130.

Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K., and
Shinohara, T. (2018). Nearest neighbor search using
sketches as quantized images of dimension reduction.
In Proc. ICPRAM’18, pages 356–363.

Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K.,
and Shinohara, T. (2019a). Fast filtering for nearest
neighbor search by sketch enumeration without using
matching. In Proc. AI 2019, LNAI 11919, Springer,
pages 240–252.

Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K., and
Shinohara, T. (2019b). Fast nearest neighbor search
with narrow 16-bit sketch. In Proc. ICPRAM’19,
pages 540–547.

Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K., and
Shinohara, T. (2020a). Annealing by increasing re-
sampling. In Revised Selected Papers, ICPRAM 2019,
LNCS 11996, Springer, pages 71–92.

Higuchi, N., Imamura, Y., Mic, V., Shinohara, T.,
Kuboyama, T., and Hirata, K. (2020b). Pivot selec-
tion for narrow sketches by optimization algorithms.
In Proc. SISAP’20, LNCS 12440, Springer, pages 33–
46.

Imamura, Y., Higuchi, N., Kuboyama, T., Hirata, K., and
Shinohara, T. (2017). Pivot selection for dimension
reduction using annealing by increasing resampling.
In Proc. LWDA’17, pages 15–24.

Johnson, J., Douze, M., and Jégou, H. (2021). Billion-scale
similarity search with GPUs. IEEE Transactions on
Big Data, 7(3):535–547.

Matsui, Y., Uchida, Y., Jégou, H., and Satoh, S. (2018). A
survey of product quantization. ITE Transactions on
Media Technology and Applications, 6(1):2–10.

Mic, V., Novak, D., and Zezula, P. (2015). Improving
sketches for similarity search. In Proc. MEMICS’15,
pages 45–57.

Mic, V., Novak, D., and Zezula, P. (2016). Speeding up sim-
ilarity search by sketches. In Proc. SISAP’16, pages
250–258.

Müller, A. and Shinohara, T. (2009). Efficient similarity
search by reducing I/O with compressed sketches. In
Proc. SISAP’09, pages 30–38.

Shinohara, T. and Ishizaka, H. (2002). On dimension re-
duction mappings for approximate retrieval of multi-
dimensional data. In Progress of Discovery Science,
LNCS 2281, Springer, pages 89–94.

Wang, Z., Dong, W., Josephson, W., Q. Lv, M. C., and Li,
K. (2007). Sizing sketches: A rank-based analysis
for similarity search. In Proc. ACM SIGMETRICS’07,
pages 157–168.

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

410

