
Dynamic Latent Scale for GAN Inversion 

Jeongik Cho a and Adam Krzyzak b  
Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada 

Keywords: Generative Adversarial Network, Feature Learning, Representation Learning, GAN Inversion. 

Abstract: When the latent random variable of GAN is an i.i.d. random variable, the encoder trained with mean squared 

error loss to invert the generator does not converge because the generator loses the information of the latent 

random variable. In this paper, we introduce a dynamic latent scale GAN, a method for training a generator 

that does not lose the information of the latent random variable, and an encoder that inverts the generator. 

Dynamic latent scale GAN dynamically scales each element of the latent random variable during GAN 

training to adjust the entropy of the latent random variable. As training progresses, the entropy of the latent 

random variable decreases until the generator does not lose the information of the latent random variable, 

which enables the encoder trained with squared error loss to converge. The scale of the latent random variable 

is approximated by tracing the element-wise variance of the predicted latent random variable from previous 

training steps. Since the scale of latent random variable changes dynamically, the encoder should be trained 

with the generator during GAN training. The encoder can be integrated with the discriminator, and the loss 

for the encoder is added to the generator loss for fast training. 

1 INTRODUCTION 

The generator of generative adversarial networks 

(GAN) (Goodfellow et al., 2014) is trained to map the 

latent random variable to the data random variable. 

Generally, independent and identically distributed 

(i.i.d.) random variable following simple distribution 

such as normal or uniform distribution is used as a 

latent random variable. 

Inverting generator is finding an inverse mapping 

of a generator of GAN. It can be used for feature 

learning (or representation learning) or various useful 

applications such as data manipulation.  

There are learning-based methods, optimization-

based methods, and hybrid methods for GAN 

inversion. Many methods and applications of GAN 

inversion are introduced in the GAN inversion survey 

paper (Xia et al., 2021).  

Among the learning-based methods, ALI 

(Dumoulin et al., 2017), AFL (Donahue et al., 2017), 

and BigBiGAN (Donahue et al., 2019) used cGAN 

(Mirza et al., 2014) to train an encoder that inverts the 

generator. However, those methods are difficult to 

train model, and the performance is not good. 

 

a  https://orcid.org/0000-0001-5396-2375 
b  https://orcid.org/0000-0003-0766-2659 

InfoGAN (Chen et al., 2016), ICGAN (Perarnau 

et al., 2016), and Controllable GAN (Zhuang et al., 

2021) used mean squared error (MSE) loss to train the 

encoder to recover the latent random variable. 

Assuming that the encoder is a gaussian model, 

training the encoder with MSE loss is a maximum 

likelihood estimation of the encoder (minimize 

negative log-likelihood). In-Domain GAN Inversion 

(Zhu et al., 2020), and AGEN (Ulyanov et al., 2018) 

added reconstruction loss to MSE loss for better 

performance. StyleMapGAN (Kim et al., 2021), 

Collaborative Learning for Faster StyleGAN 

Embedding (Guan et al., 2020), and Encoding in Style 

(Richardson et al., 2021) proposed model (StyleGAN 

(Karras et al., 2019) and StyleGAN2 (Karras et al., 

2020)) specific methods. 

However, using MSE loss to train the encoder 

results in a convergence problem because the 

generator may lose the information of the latent 

random variable. In other words, it is impossible to 

train an encoder that inverts the generator trained with 

the latent random variable as is because the generator 

may ignore some information of the latent random 

variable. 

Cho, J. and Krzyzak, A.
Dynamic Latent Scale for GAN Inversion.
DOI: 10.5220/0010816800003122
In Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2022), pages 221-228
ISBN: 978-989-758-549-4; ISSN: 2184-4313
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

221



In this paper, we introduce a dynamic latent scale 

GAN (DLSGAN), a learning-based method for 

training an encoder that inverts the generator of GAN. 

DLSGAN dynamically adjusts the scale of the latent 

random variable so that the generator does not lose 

the information of the latent random variable. This 

enables the encoder to converge when training the 

encoder with squared error loss (maximum likelihood 

estimation). 

The scale of the latent random variable depends 

on the amount of information that the encoder can 

recover. It can be approximated from the element-

wise variance of the predicted latent random variable 

from the encoder. DLSGAN traces the predicted 

latent codes of past training steps to approximate the 

element-wise variance of the predicted latent random 

variable. 

In DLSGAN, since the scale of a latent random 

variable dynamically changes, the encoder should be 

trained with a generator during GAN training. 

Furthermore, the encoder can be integrated with the 

discriminator for efficient training. Also, training the 

encoder can be accelerated by adding an encoder loss 

to generator loss. It means that the encoder and 

generator are trained cooperatively to minimize the 

encoder loss. This is possible because the encoder is 

trained during the GAN training.  

Full codes of our work are available at 

“https://github.com/jeongik-jo/DLSGAN”. 

2 PROBLEM STATEMENT 

Assume that generator 𝐺  maps the latent random 

variable 𝑍  to the data random variable 𝑋  (i.e., 𝑋 =
𝐺(𝑍)). Our goal is to train an encoder 𝐸 that inverts 

the generator 𝐺 (i.e., 𝑍 = 𝐸(𝐺(𝑍))). 

When the latent random variable 𝑍  is a 𝑑𝑧 -

dimensional i.i.d. random variable, the encoder 𝐸 can 

be considered as an integration of 𝑑𝑧 encoders, where 

each encoder is trained to recover each element of a 

latent random variable 𝑍 (i.e., 𝑍1 = 𝐸1(𝐺(𝑍)), 𝑍2 =

𝐸2(𝐺(𝑍)), … , 𝑍𝑑𝑧
= 𝐸𝑑𝑧

(𝐺(𝑍)) ). Assuming each 

encoder is a gaussian model, training each encoder 

with an MSE loss minimizes negative log-likelihood 

of each encoder. 

However, the integrated encoder 𝐸 cannot fully 

recover the latent random variable 𝑍 because there is 

no guarantee that the generator 𝐺  uses all the 

information of the latent random variable 𝑍 . For 

example, when the latent random variable 𝑍 has too 

many dimensions, generator 𝐺  can be trained to 

ignore some elements of the latent random variable 

𝑍 . Or, generator 𝐺  can be trained so that some 

elements of the latent random variable 𝑍  have 

relatively more information than others. In other 

words, different latent codes 𝑎 and 𝑏 sampled from 

the latent random variable 𝑍 can be mapped to the 

same or similar generated data points 𝐺(𝑎) and 𝐺(𝑏). 

Therefore, some encoders of the integrated encoder 𝐸 

cannot converge to predict some element of the latent 

random variable 𝑍. It means that the generator loses 

the information of the latent random variable 𝑍, and 

the encoder 𝐸  cannot perfectly recover the latent 

random variable 𝑍 from the generated data random 

variable 𝐺(𝑍). 

3 DYNAMIC LATENT SCALE 

GAN 

To prevent the generator 𝐺 from losing information 

of the latent random variable 𝑍 , we introduce a 

DLSGAN that dynamically adjusts the scale of each 

element of the latent random variable 𝑍. 

Assume that the latent random variable 𝑍 is 𝑑𝑧-

dimensional i.i.d. random variable with the variance 

𝜎2 . When the encoder 𝐸  is trained long enough to 

predict the latent random variable 𝑍  from the 

generated data random variable 𝐺(𝑍) with MSE loss, 

the variance of each element of the predicted latent 

random variable 𝑍′ = 𝐸(𝐺(𝑍))  represents 

information of the latent random variable 𝑍 that can 

be recovered from the generated data random variable 

𝐺(𝑍). If the variance of 𝑛-th predicted latent random 

variable 𝑍𝑛
′  is zero, it means that the encoder 𝐸 

cannot recover any information of 𝑛-th latent random 

variable 𝑍𝑛 from the generated data random variable 

𝐺(𝑍). On the other hand, if the variance of the 𝑛-th 

predicted latent random variable 𝑍𝑛
′  is 𝜎2 , then the 

encoder 𝐸 can recover all information of 𝑛-th latent 

random variable 𝑍𝑛 from the generated data random 

variable 𝐺(𝑍) . Therefore, if the element-wise 

variance of the predicted latent random variable 𝑍′ 

and the element-wise variance of the latent random 

variable 𝑍 are the same, it means that the generator 𝐺 

does not lose the information of the latent random 

variable 𝑍, and the encoder can converge to predict 

the latent random variable 𝑍 from the generated data 

random variable 𝐺(𝑍).  

DLSGAN dynamically adjusts the scale of each 

element of latent random variable 𝑍 according to the 

variance of each element of the predicted latent 

random variable 𝑍′ so that the element-wise variance 

of the latent random variable 𝑍 and predicted latent 

random variable 𝑍′  are equal. Since the dynamic 

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

222



latent scale GAN requires both the encoder 𝐸 and the 

generator 𝐺  to be trained together during GAN 

training, it is efficient to integrate the encoder 𝐸 into 

the discriminator 𝐷 . For the same reason, the 

generator 𝐺  and the encoder 𝐸  can be trained 

cooperatively. That is, encoder loss 𝐿𝑒𝑛𝑐  can be 

added to generator loss 𝐿𝑔. 

The following algorithm shows the process of 

obtaining the loss for training DLSGAN. 

Algorithm 1: Obtaining loss for training DLSGAN. 
 

function GetLoss (D,G,Z,X,v):  

1   z ← sample (Z) 

2   x ← sample (X) 

 

3   s ← √dzv
∘1/2

‖v∘1/2‖
2

 

4   ag,z
' ← D(G(z∘s)) 

5   Lenc ← avg((z-z')∘2∘s∘2) 

6   ar,_ ← D(x) 

 

7   Ld ← fd(ar,ag) + λencLenc 

8   Lg ← fg(ag) + λencLenc  

 

9   v ← update(v,z'
∘2

) 

 

10  return Ld, Lg, v  

In Algorithm 1, 𝐷 , 𝐺 , 𝑍 , and 𝑋  represent 

discriminator, generator, latent random variable, and 

data random variable, respectively. Since the encoder 

𝐸  is integrated with the discriminator 𝐷 , the 

discriminator 𝐷  outputs two values: 1-dimensional 

adversarial value and 𝑑𝑧-dimensional predicted latent 

code. 𝑣 represents the element-wise variance of the 

predicted latent random variable 𝑍′ . It is ideal to 

approximate the predicted latent variance vector 𝑣 for 

every training step, but for efficiency, the predicted 

latent variance vector 𝑣  is approximated through 

predicted latent codes from the past training steps.  

In lines 1 and 2, 𝑍 is a 𝑑𝑧-dimensional i.i.d. latent 

random variable, and 𝑋 is a data random variable. In 

Algorithm 1, it is assumed that latent random variable 

𝑍  follows a distribution with a mean of 0 and a 

variance of 1 for convenience. 𝑠𝑎𝑚𝑝𝑙𝑒 is a function 

that samples a single sample from a random variable. 

𝑧 represents a latent code, which is sampled from the 

latent random variable 𝑍. 𝑥 represents a data point, 

which is sampled from the data random variable 𝑋. 

In lines 3 and 4, 𝑠  is the latent scale vector. 

𝑣𝑒𝑐∘1/2  represents the element-wise square root of 

the example vector 𝑣𝑒𝑐 . ‖𝑣𝑒𝑐‖2  represents the L2 

norm of example vector 𝑣𝑒𝑐. “∘” represents element-

wise multiplication. 𝐺(𝑧 ∘ 𝑠)  is the generated data 

point with scaled latent code 𝑧 ∘ 𝑠 . In line 4, 𝑎𝑔 

represents the adversarial value of generated data, and 

𝑧′ represents the predicted latent code, respectively. 
When all elements of 𝑣 are the same, i.e., when the 

variance of all elements of predicted latent random 

variable 𝑍′  are the same, the scaled latent random 

variable 𝑍 ∘ 𝑠 has the largest differential entropy. On 

the other hand, when the variance of only one element 

of the predicted latent random variable is not 0, and 

the other elements are 0, the scaled latent random 

variable 𝑍 ∘ 𝑠 has the least differential entropy. √𝑑𝑧 

is a constant multiplied to make the scaled latent 

random variable 𝑍 ∘ 𝑠  equal to the latent random 

variable 𝑍 when the differential entropy of the scaled 

latent random variable 𝑍 ∘ 𝑠  is the largest. The 

differential entropy of the scaled latent random 

variable 𝑍 ∘ 𝑠 dynamically changes according to the 

variance of the predicted latent random variable 𝑍′ 

during GAN training. As GAN training progresses, 

the scaled latent random variable 𝑍 ∘ 𝑠 converges to 

have an optimal entropy representing the real data 

random variable 𝑋 through the generator 𝐺. 

In line 5, 𝑣𝑒𝑐∘2  represents the element-wise 

square of the example vector 𝑣𝑒𝑐. 𝑎𝑣𝑔 is a function 

that calculates the average of a vector. 𝐿𝑒𝑛𝑐 is encoder 

loss. The encoder loss 𝐿𝑒𝑛𝑐 is equal to the MSE loss 

between the scaled latent code 𝑧 ∘ 𝑠 and the scaled 

predicted latent code 𝑧′ ∘ 𝑠. 

In line 6, 𝑎𝑟 represents the adversarial value of a 

real data point 𝑥. “_” represents not using value. Since 

the latent code of the real data point 𝑥 is unknown, the 

predicted latent code for the real data point 𝑥 is not 

used in DLSGAN training. 

In lines 7 and 8, 𝑓𝑑  and 𝑓𝑔  are adversarial loss 

functions for discriminator 𝐷  and generator 𝐺 , 

respectively. One can find many adversarial losses in 

GAN adversarial losses compare paper (Lucic et al., 

2018). 𝜆𝑒𝑛𝑐  is encoder loss weight. One can see 

encoder loss 𝐿𝑒𝑛𝑐 is added to both generator loss 𝐿𝑔 

and discriminator loss 𝐿𝑑 . This means that the 

generator 𝐺  and discriminator 𝐷  are trained 

cooperatively to reduce the encoder loss 𝐿𝑒𝑛𝑐 . 

Training the encoder 𝐸  during the GAN training 

enables to add encoder loss 𝐿𝑒𝑛𝑐 to generator loss 𝐿𝑔. 

In line 9, 𝑢𝑝𝑑𝑎𝑡𝑒 function updates the predicted 

latent random variable variance 𝑣  with the new 

predicted latent code 𝑧′ . Since the mean of the 

predicted latent random variable 𝑍′  becomes 

Dynamic Latent Scale for GAN Inversion

223



automatically zero, 𝑧′∘2
 (element-wise square of 

predicted latent code 𝑧′ ) can be considered as the 

sample variance of the predicted latent random 

variable 𝑍′ . A moving average or an exponential 

moving average can be used for the 𝑢𝑝𝑑𝑎𝑡𝑒 function. 

Note that the latent code input to the generator 

should always be scaled by the scale vector 𝑠 . 

Therefore, the generated data point is 𝐺(𝑧 ∘ 𝑠), and 

the recovered data point of 𝑥 is 𝐺(𝑧𝑥 ∘ 𝑠), where 𝑧𝑥 is 

the predicted latent code of the real data point 𝑥. 

DLSGAN is still the maximum likelihood 

estimation of the encoder (minimize negative log-

likelihood), but the generator 𝐺  does not lose the 

information of the latent random variable 𝑍, which 

allows the encoder 𝐸 to converge when training the 

encoder 𝐸 with squared error loss.  

4 EXPERIMENT RESULTS AND 

DISCUSSION 

4.1 Experiment Settings 

We trained GAN to generate the CelebA dataset (Liu 

et al., 2015) resized to 128 × 128 resolution. As the 

model architecture, StyleGAN2 with a reduced filter 

size of convolution layers was used. 

Batch operation (minibatch stddev layer) in the 

discriminator and noise in the generator are removed 

so that the encoder encodes one data point as one 

latent code. As an adversarial loss, NSGAN with R1 

regularization (Mescheder et al., 2018) was used as 

StyleGAN2. The hyperparameters used for the 

experiments are as follows. Most hyperparameters are 

the same or similar as StyleGAN2. 
 

𝜆𝑒𝑛𝑐 = 1 

𝑑𝑧 = 512 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 (

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001
𝑏𝑒𝑡𝑎1 = 0

𝑏𝑒𝑡𝑎2 = 0.99
) 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑑𝑒𝑐𝑎𝑦 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ = 2% 

𝜆𝑟1 = 10 

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 16 

𝑒𝑝𝑜𝑐ℎ = 50 
 

Note that optimizer for the mapper of generator 

has × 0.01 learning rate as same as StyleGAN2. 𝜆𝑟1 
is R1 regularization weight. The original paper 

introduced R1 regularization used 𝛾/2  as 

regularization weight, so based on that definition, 𝛾 is 

20 when 𝜆𝑟1 is 10. 

We compared the performance of the model with 

and without dynamic latent scale. Without dynamic 

latent scale means MSE loss was used for encoder 

training. We also compared the effect of the encoder 

loss 𝐿𝑒𝑛𝑐  on generator loss 𝐿𝑔 . For the 𝑢𝑝𝑑𝑎𝑡𝑒 

function for dynamic latent scale, we used a moving 

average using the past 512 × 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 samples.  

The experiments were conducted for i.i.d. latent 

random variables with distributions 𝑁(0,12)  and 

𝑈(−√3, √3) so that the mean and the variance of the 

distribution are 0 and 1, respectively.  

4.2 Experiment Results 

The following figures present the performance results 

with and without dynamic latent scale and encoder 

loss 𝐿𝑒𝑛𝑐 on generator loss 𝐿𝑔 or not. 

 

Figure 1: FID comparison when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

 

Figure 2: FID comparison when 𝑍 =

(𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑈(−√3, √3). 

Figures 1 and 2 show the FID (Heusel et al., 2017) 

according to the training methods for each epoch. In 

figures 1 and 2, “DLS” and “No DLS” represent with 

dynamic latent scale and without dynamic latent 

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

224



scale, respectively. “D” represents weighted encoder 

loss 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐  was added to only discriminator loss 

𝐿𝑑 , and “DG” represents weighted encoder loss 

𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐 was added to both discriminator loss 𝐿𝑑 and 

generator loss 𝐿𝑔 . “No DLS, D” corresponds to 

previous learning-based methods that do not use a 

dynamic latent scale for GAN inversion (e.g., 

ICGAN, Controllable GAN). 

One can see that there is little difference in the 

generative performance for each training method. 

 

Figure 3: Average 𝐿𝑒𝑛𝑐 when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

 

Figure 4: Average 𝐿𝑒𝑛𝑐 when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑈(−√3, √3). 

Figures 3 and 4 show the average encoder loss 

𝐿𝑒𝑛𝑐  according to the training methods for each 

epoch. One can see that without dynamic latent scale, 

encoder loss 𝐿𝑒𝑛𝑐 hardly changes from 1. This shows 

that encoder 𝐸 trained without dynamic latent scale 

fails to converge because generator 𝐺  loses 

information of latent random variable 𝑍. On the other 

hand, one can see that the encoder loss 𝐿𝑒𝑛𝑐 

continuously decreases as training progresses with 

dynamic latent scale. This shows that the model 

converges with the dynamic latent scale. Also, one 

can see that the encoder loss 𝐿𝑒𝑛𝑐 is much lower when 

encoder loss 𝐿𝑒𝑛𝑐 is added to the generator loss 𝐿𝑔.  

 

Figure 5: Differential latent entropy of DLSGAN when 𝑍 =

(𝑍𝑖)
𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

 

Figure 6: Differential latent entropy of DLSGAN when 𝑍 =

(𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑈(−√3, √3). 

Figures 5 and 6 show differential entropy of 

scaled latent random variable 𝑍 ∘ 𝑠  with dynamic 

latent scale for each epoch. Like encoder loss 𝐿𝑒𝑛𝑐, 

one can see that the differential entropy of the scaled 

latent random variable 𝑍 ∘ 𝑠  decreases faster when 

encoder loss 𝐿𝑒𝑛𝑐  is added to the generator loss 𝐿𝑔. 

Note that differential entropy can be negative. 

 

Figure 7: Average PSNR for generated images 

reconstruction when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

Dynamic Latent Scale for GAN Inversion

225



 

Figure 8: Average PSNR for generated images 

reconstruction when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑈(−√3, √3). 

 

Figure 9: Average SSIM for generated images 

reconstruction when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

 

Figure 10: Average SSIM for generated images 

reconstruction when 𝑍 = (𝑍𝑖)
𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑈(−√3, √3). 

Figures 7-10 show the average PSNR and SSIM 

for each epoch when reconstruction is performed on 

the generated images. The higher the PSNR and 

SSIM, the better the image reconstruction 

performance. The PSNR ranges from zero to infinity, 

and the SSIM ranges from zero to one. One can see 

that the performance of reconstruction on generated 

images is much better with DLS, DG. Also, both with 

dynamic latent scale and without dynamic latent scale 

performed better when the encoder loss 𝐿𝑒𝑛𝑐 is added 

to the generator loss 𝐿𝑔. 

 

Figure 11: DLS, DG generated images reconstruction 

examples when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12) . Left: generated 

image, right: reconstructed image in each image pair. 

Figures 11 shows examples of generated images 

reconstruction, with dynamic latent scale and encoder 

loss 𝐿𝑒𝑛𝑐  on generator loss 𝐿𝑔  when 𝑍 =

(𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12).  

 

Figure 12: Average PSNR for test images reconstruction 

when 𝑍 = (𝑍𝑖)
𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

226



 

Figure 13: Average PSNR for test images reconstruction 

when 𝑍 = (𝑍𝑖)
𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑈(−√3, √3). 

 

Figure 14: Average SSIM for test images reconstruction 

when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

 

Figure 15: Average SSIM for test images reconstruction 

when 𝑍 = (𝑍𝑖)
𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑈(−√3, √3). 

Figures 12-15 show the average PSNR and SSIM 

for each epoch when reconstruction is performed on 

the test images (real images). One can notice that 

reconstruction performance on test images is much 

better with DLS, DG. 
 

 

Figure 16: DLS, DG test images reconstruction examples 

when 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12) . Left: test image, right: 

reconstructed image in each image pair. 

Figures 16 shows examples of generated images 

reconstruction with dynamic latent scale and encoder 

loss 𝐿𝑒𝑛𝑐  on generator loss 𝐿𝑔  when 𝑍 =

(𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

4.3 Latent Interpolation of DLSGAN 

The following figures show some additional results 

with DLS, DG, and 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). 

 

Figure 17: Latent interpolation on most important element.  

Figures 17 shows interpolating one important 

element of the latent random variable 𝑍 from -2 to 2 

with DLS, DG, and 𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0,12). The larger 

the elements of the scale vector 𝑠, the more important 

(more informative) elements.  

 

Dynamic Latent Scale for GAN Inversion

227



5 CONCLUSIONS 

In this paper, we proposed a DLSGAN, a method for 

training a generator that does not lose the information 

of the latent random variable, and an encoder that 

inverts the generator. Dynamic latent scale GAN 

dynamically adjusts the scale of the i.i.d. latent 

random variable to have the optimal entropy to 

express the data random variable. This ensures that 

the generator does not lose the information of the 

latent random variable so that the encoder can 

converge to invert the generator with maximum 

likelihood estimation. The encoder of DLSGAN 

showed much better performance than without 

dynamic latent scale. 

REFERENCES 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, 

Y. (2014). Generative Adversarial Nets. In Advances in 

Neural Information Processing Systems 27. 

Xia, W., Zhang, Y., Yang, Y., Xue, J. H., Zhou, B., and 

Yang, M. H. (2021). GAN Inversion: A Survey. arXiv 

preprint arXiv:2101.05278. 

Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, 

M., Mastropietro, O., and Courville, A. (2017). 

Adversarially Learned Inference. In International 

Conference on Learning Representations 2017. 

Donahue, J., Krähenbühl, P., and Darrell, T. (2017). 

Adversarial Feature Learning. In International 

Conference on Learning Representations 2017. 

Donahue, J., and Simonyan, K. (2019). Large Scale 

Adversarial Representation Learning. In International 

Conference on Learning Representations 2019. 

Mirza, M., Osindero, S. (2014). Conditional Generative 

Adversarial Nets. arXiv preprint arXiv:1411.1784. 

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, 

I., and Abbeel, P. (2016). InfoGAN: Interpretable 

Representation Learning by Information Maximizing 

Generative Adversarial Nets. In Advances in Neural 

Information Processing Systems 29. 

Perarnau, G., Weijer, J. V. D., Raducanu, B., and Álvarez, 

J. M. (2016). Invertible Conditional GANs for image 

editing. arXiv preprint arXiv:1611.06355. 

Zhuang, P., Koyejo, O. O., and Schwing, A. (2021). Enjoy 

Your Editing: Controllable GANs for Image Editing via 

Latent Space Navigation. In International Conference 

on Learning Representations 2021.  

Zhu, J., Shen, Y., Zhao, D., and Zhou, B. (2020). In-domain 

GAN Inversion for Real Image Editing. In Proceedings 

of European Conference on Computer Vision. 

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018). It 

Takes (Only) Two: Adversarial Generator-Encoder 

Networks. Proceedings of the AAAI Conference on 

Artificial Intelligence. 

Kim, H., Choi, Y., Kim, J., Yoo, S., and Uh, Y. (2021). 

Exploiting Spatial Dimensions of Latent in GAN for 

Real-Time Image Editing. Conference on Computer 

Vision and Pattern Recognition, pages 852-861. 

Guan, S., Tai, Y., Ni, B., Zhu, F., Huang, F., Yang, X. 

(2020). Collaborative Learning for Faster StyleGAN 

Embedding. arXiv preprint arXiv:2007.01758. 

Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, 

Y., Shapiro, S., and Cohen-Or, D. (2021). Encoding in 

Style: A StyleGAN Encoder for Image-to-Image 

Translation. Proceedings of the IEEE/CVF Conference 

on Computer Vision and Pattern Recognition, pages 

2287-2296. 

Karras T., Laine, S., and Aila, T. (2019). A Style-Based 

Generator Architecture for Generative Adversarial 

Networks. IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, pages 4396-4405. 

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., 

and Aila, T. (2020). Analyzing and Improving the 

Image Quality of StyleGAN. IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, pages 8107-

8116. 

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and 

Bousquet, O. (2018). Are GANs Created Equal? A 

Large-Scale Study. Advances in Neural Information 

Processing Systems 31. 

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep 

Learning Face Attributes in the Wild. Proceedings of 

International Conference on Computer Vision, pages 

3730-3738. 

Mescheder, M., Nowozin, S., and Geiger, A. (2018). Which 

Training Methods for GANs do actually Converge? 

Proceedings of the 35th International Conference on 

Machine Learning, pages 3481-3490. 

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and 

Hochreiter, S. (2017). GANs Trained by a Two Time-

Scale Update Rule Converge to a Local Nash 

Equilibrium. Proceedings of the 31st International 

Conference on Neural Information Processing System. 

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

228


