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Abstract: The ability of neural networks to universally approximate any function enables them to learn relationships
between arbitrary kinds of data. This offers great potential in information security topics such as protocol
reverse engineering (PRE), which has seen little usage of neural networks (NNs) so far. In this paper, we
provide a novel approach for implementing PRE with solely NNs, demonstrating a simple yet effective re-
verse engineering of text-based protocols. This approach is modular by design and allows for the exchange
of neural network models at any step with better performing models. The architectures used include a convo-
lutional neural network (CNN), an autoencoder (AE), a generative adversarial net (GAN), a long short-term
memory (LSTM), and a self-organizing map (SOM). All of these models combine for a new protocol reverse
engineering approach. The results show that the widespread application layer protocols HTTP and FTP can
successfully be mimicked by artificial intelligence, thereby paving the way for use cases such as fuzzing. A
direct comparison to other PRE approaches is not possible due to the black-box nature of neural networks and
represents the main limitation of our work. Our experiments showed that this multi-model approach yield up
to 19% better message clustering, improved context distribution, and proving LSTM to be the best candidate

for generating new messages with up to 67.6% valid HTTP packages and 100% valid FTP packages.

1 INTRODUCTION

In 2012 deep neural networks (DNN) (Krizhevsky
et al., 2012) were introduced, showing great ability in
automated feature extraction for classification, which
led to a breakthrough in the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC)'. An increas-
ing number of challenges have been tackled by deep
learning since then. One exception to that trend has
been protocol reverse engineering (PRE), as most of
its progress was published from 2004 to 2013, miss-
ing the modern artificial intelligence (AI) boom. PRE
is a specific information security task that attempts to
recreate specifications about an unknown application
layer protocol from artifacts of its communications.
These inferred specifications can be used in a variety
of other security-related applications such as fuzzing.
The coverage of bugs and edge cases is generally im-
proved with guiding knowledge about the basic mes-
sage structure and internal state of the protocol.
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The capacity of deep learning to mimic network
protocols using reverse engineering and how to model
such an approach are the core scientific questions that
drove this project. This ability could enable fuzzing
to better harness future advances of the Al research
community. In our initial literature we selected the
two renowned approaches Prospex (Comparetti et al.,
2009) and Discoverer (Cui et al., 2007) to represent
a large body of ideas and strategies commonly used
in PRE. A novel approach is created based on these
two PRE designs to serve as an orientation for solv-
able neural network tasks and a framework for exper-
imentation. We then define several metrics and im-
plement the experimentation to come to a successful
conclusion. Our key contributions include the anal-
ysis of how to apply deep learning in a modular and
extendable way to the problems of protocol reverse
engineering, implementing a neural network-based
PRE approach on text-based protocols, and showing a
promising direction of future research. There are also
a few minor contributions of smaller workarounds to
solve problems during the experimentation, like the
convolutional embedding for the LSTMs.
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2 BACKGROUND

As we attempt to combine two areas of modern re-
search in this paper, a brief overview of both areas’
theoretical backgrounds is given in this section.

2.1 Protocol Reverse Engineering (PRE)

Communication over the internet and other digital
networks requires standardized protocols to ensure
uniform behavior. These protocols are generally used
in a stack with multiple layers, where each layer has
its specific tasks and serves as the operational basis
for the layers above. The widely known ISO/OSI-7-
layer model works as the standard guideline for such
a protocol stack (TC97, 1984).

Protocols can be divided into four types: text-
based or binary and stateful or stateless. PRE aims
to learn as much as possible about the specifications
of an unknown protocol by analyzing the artifacts that
the communication creates. This includes, but is not
limited to, message formats, syntax, grammar, con-
stants and keywords, message types, implicit or ex-
plicit state machines, and more. The taxonomy shown
in Table 1 lists the two possible kinds of artifacts: net-
work traffic messages or system calls inside the binary
of an application that communicates using the target
protocol. The two most commonly inferred properties
are the general message format/syntax and the under-
lying state automaton of a stateful protocol. A suc-
cessfully reverse-engineered protocol allows for fur-
ther analysis of the communication like deep package
inspection (Brook, 2018) and fuzzing (Besic, 2019).
Both can work more effectively if they have the de-
tailed specification of the protocol.

Two prominent PRE examples are Prospex (Com-
paretti et al., 2009) and Discoverer (Cui et al., 2007).
They were published in the middle of the major period
for PRE research between 2004 and 2013 (Duchene
et al., 2018; Narayan et al., 2015). From our initial
literature research, we judge both to be good represen-
tations of their respective PRE classes, as mentioned
in Table 1.

Protocol Specification Extraction (Prospex).
Prospex is a two-part PRE approach basing its
analysis on both network messages and execution
traces of a binary at runtime to infer the message for-
mat (Wondracek et al., 2008; Caballero et al., 2007)
and state automaton in a second part (Comparetti
et al., 2009). The highly distinctive features selected
for the clustering step are among the core reasons for
the success. They include file system reactions and
memory analysis by tainting bytes. Therefore, the
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similarity between messages is not only computed by
their format, but also by the reaction and response
they create. Next, an acceptor automaton was
designed to identify valid sequences of messages.
This automaton was later reduced using the exbar
algorithm (Lang, 1999). The final tool was extended
to be compatible with the fuzzing tool Peach Fuzzer?.
As a direct result, fuzzing can be improved on stateful
protocols. We learn from Prospex how a separation
of tasks such as the extraction of features, clustering
using an off the shelf method and finally reverse
engineering are key in PRE.

Discoverer. Discoverer identifies small clusters of
tokens within a message, which are then merged and
refined recursively. For this, it relies on the assump-
tion that protocols use common delimiter symbols to
separate parts of their message format, such as com-
mas, whitespaces, or line breaks. The interdepen-
dence of various fields (e.g., for addresses/variables)
in the message format and their data type (text or bi-
nary) is then learned by heuristics. We can see the
importance of identifying key features and their influ-
ence on clustering in the Discoverer approach.

2.2 Neural Network Architectures

All the models we use in this paper are types of neu-
ral networks. They consist of layers of interconnected
neurons, where each connection has a value to ad-
just the importance of the connection for the next
layer. These weights are adjusted to minimize an er-
ror function during training, but remain fixed for test-
ing and thereafter. This concept allows for compli-
cated mapping of input data distributions to output
results according to the universal approximation the-
orem (Hornik et al., 1989). As such, neural network
architectures are suitable tools for different data op-
erations such as classification, regression, clustering,
and more. In the following paragraphs, we describe
the different architectures used in the experimentation
of Section 4, what problems they are good at solving
and why we considered them for PRE.

Convolutional Neural Network (CNN). CNNs be-
came popular for their performance in image recogni-
tion tasks (Krizhevsky et al., 2012). The layers in this
architecture have a particular property: they are used
in a sliding window method over the input data. Their
weights for each of the sliding window steps remain
the same and can therefore be used to detect small,

Zhttp://peachfuzzer.com
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Table 1: Taxonomy for classifying PRE approaches by requirements (columns) and by results (rows).

PRE taxonomy requirements and results

Only network messages

Messages and executable binary at runtime

Inferring message format/grammar

Discoverer (Cui et al., 2007)

Wondracek (Wondracek et al., 2008)

Inferring state automaton

fixed patterns. Many such “kernels” exist in paral-
lel to each other in separate “channels” of one layer.
This structure allows individual kernels to approxi-
mate highly descriptive feature filters, thereby remov-
ing the traditional step of manual feature extraction
from the classification task. This architecture is ben-
eficial in any task involving images/pixel maps with
individual features occupying many adjacent pixels.
However, in theory, this concept can be applied to any
form of input data with patterns.

Autoencoder (AE). Autoencoders are neural net-
works designed to achieve dimensionality reduction
for a given input while retaining as much information
as possible. In training, the loss function demands
that the output equals the input as closely as possible.
The architecture itself has a bottleneck in a middle
layer to force the network to compress data but keep
reconstructable information (Hinton and Salakhutdi-
nov, 2006). The middle layer’s size has to balance
the compressing size and keep relevant information
in some unknown encoding. Naturally, this divides
the neural network into two components, namely the
encoder and the decoder part. After the AE has been
trained, the decoder element is removed so that any
input data will be returned in its encoded form only.

Generative Adversarial Network (GAN). GANs
were developed to create a generative model for
learned data distribution. The peculiarity of this ar-
chitecture comes from the use of two competing net-
works (Goodfellow et al., 2014). The first, known
as generator, uses random noise as input and tries to
create an image similar to those found in the train-
ing dataset. The second network, known as the dis-
criminator, is given either a true or a fake image ran-
domly and has to learn the distinction between them
by merely classifying true from fake. The error cor-
rection for the generator is based on the classifica-
tion result by the discriminator. This combination of
two networks causes a setup of competitive learning
where each NN tries to outdo the opposing one.

Long Short-Term Memory (LSTM). Recurrent
neural networks (RNNs) describe a type of architec-
ture, where some part of the internal hidden or input
state is recursively put into the network again for the
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Prospex (Comparetti et al., 2009)

next time step, thereby allowing the network to find
time dependencies inside the data. LSTMs are a kind
of RNNs with a strong ability to find sequential de-
pendencies over time while avoiding some common
problems with recurrent error correction (Hochreiter
and Schmidhuber, 1997). For working with text data
(sequential letters), it is common to use a dictionary
or alphabet along with a suitable embedding to con-
dense the information in a medium-sized vector for
each word or letter. The text is transformed into a

matrix of length, x lengthepeqding-

Self-organizing Map (SOM). SOMs are architec-
tures with one-dimensional or two-dimensional out-
put maps of neurons that contain the topology of the
data (Kohonen, 1982). This means that data with
similar properties and distribution of features will be
found in the same general area of the output map.
Thereby, clustering is implied. SOMs give each out-
put neuron a score related to the data. The winning
node can be returned for indexing.

3 MAIN APPROACH

This section presents a novel way of looking at the un-
derlying task structure of reverse engineering a pro-
tocol. It is divided into multiple steps that are han-
dled mostly sequentially. The approach is designed to
fit the capabilities of various neural network architec-
tures and provides modularity. This allows for the re-
placement of any model in the system by a better per-
forming one and thereby enabling novel Al designs to
be directly inserted into the process.

3.1 Data Gathering

To train a neural network, a representative dataset is
required. We chose a set of text-based application
layer protocol artifacts as a basis to allow for an easier
result evaluation as we do not have a direct compari-
son with other PRE approaches. The chosen protocols
are HTTP vl1.1 and FTP because they are commonly
used, abundantly available and lack encryption. We
use several sources of datasets to cover a broader mix
of implementations and message type distribution.
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3.2 Feature Extraction

In this first part, we want to extract highly distinguish-
able features. Both in Prospex and Discoverer, the
feature selection was an essential part of the work,
but the features were chosen by the researchers. We
intend to automate this process with neural networks.
Of particular interest are keywords, punctuation, syn-
tactic characters, and other patterns that distinguish
between different messages. Pseudo-random strings
such as tags and cookies are avoided, as they are gen-
erally unrelated to the protocol specifications.

3.3 Feature Reverse Engineering

In traditional protocol reverse engineering, the anal-
ysis infers rules, lists of variables or constants, and
grammar from the communication artifacts. With a
neural network, the learned knowledge is intrinsically
non-representative, meaning it is challenging to in-
terpret by humans. We use a generative evaluation
approach to judge the quality of the features learned
(and recreated) by the respective architectures. Such
a method will create new samples from the training
distribution and provide insights into what the neural
networks learned.

3.4 Clustering

Protocol messages can usually be grouped into types
whether or not the protocol explicitly specified these
groups. We can cluster these messages using infor-
mation like sequential order, functionality and general
format. The clustering would imply various types of
messages, and we consider this task to be well-suited
for neural networks (Bagdo et al., 2005).

3.5 State Recognition

A typical communication session usually involves
multiple messages being sent or received. In stateful
protocols, particular sequences of messages achieve a
more complex state between the communication par-
ties. These sequential patterns imply a representative
state automaton for the inner state of the protocol. We
think that a neural network with the capability of un-
derstanding sequential dependencies should be able
to learn the order of different message types and their
likelihood. This interpretation allows the usage of
time series prediction to imply the next state of the
protocol.
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3.6 Sequence Generation

As a last step, we combine all trained models into one
generative PREUNN Al Context information such as
cluster index and sequential dependencies can be in-
cluded in the feature reverse engineering to achieve
more accurate results. Ideally, this Al is capable of
producing valid messages, which are not part of the
training set but have comparable statistical properties.

4 EXPERIMENTS

This section lists all implementations for the main ap-
proach and the experiments, that were used to test var-
ious neural network architectures. The hyperparame-
ters of all neural networks are set to well-performing
numbers after some semi-extensive manual testing.
The scope of the project did not include major opti-
mizations as the hardware was unable to handle large
search spaces for automated hyperparameter tuning.
Our code is available on GitHub?. All experiments
were written in Python 3 using an object-oriented pro-
gramming style to ensure easy modification and ex-
tension of the experiments to new protocols. We se-
lected PyTorch? as the deep learning framework, and
all experiments were conducted on an NVIDIA GTX
970.

4.1 Data Preprocessing

We used two datasets in our tests. The first one con-
sists of the combination of multiple HTTP sources
(Garfinkel, 2008; Shiravi et al., 2012; Goo et al.,
2019; Sharafaldin et al., 2019) that were selected to
cover different implementations and scenarios. The
second dataset consists of FTP messages (Pang and
Paxson, 2003). Before any experiments can be con-
ducted, we examined the data for outliers and irregu-
larities. Data engineering usually takes up a signifi-
cant amount of time in any machine learning project;
however, with network traces in pcap files, we were
able to shorten this process. The network analysis tool
Wireshark® provides a widely used parser for proto-
col package analysis. We filtered for valid packages
of HTTP and FTP respectively and discarded the rest.

The length of application layer datagrams is lim-
ited by the underlying TCP protocol. An analysis of
the new pcap file showed that lengthy messages only
occur at image transfers (HTTP) or custom messages

3https://github.com/PREUNN/preunn
“https://pytorch.org/
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(FTP) and can subsequently be cut without significant
loss of information. We chose the length limit of 1024
bytes for all packages to uniform the neural network
inputs. Only 0.33% of HTTP and 0.18% of FTP data
that we use exceed this length limit.

As a further step for the HTTP experiments, all
content after the message header was removed, to
avoid XML and other non-HTTP data. We achieved
this by splitting each statement at every “\r\n\r\n”
occurrence and only using the first element of that
split. This double line break is the HTTP sign for
only payload following, and thus represents a conve-
nient way to clean the data. No filter was applied for
the FTP data.

Dataset bias is a common pitfall when developing
machine learning solutions. It describes an uneven
distribution of classes within the data, which causes
suboptimal feature learning in the neural networks.
The protocols themselves do not specify classes of
messages directly; however, the manually created
classification for both protocols are our baselines to
orient the class balance on. It is desirable that the neu-
ral networks still learn which types are more common
than others, but the imbalance in our dataset is over-
whelmingly in favor of two or three common message
types. To balance the number of messages per class,
we came up with this improvised formula:

N Osamples per class = V/ NOoccurrences * 100 (D

and visualized the distribution to see the effect in fig-
ure 1 and 2.

The packages for each class were selected ran-
domly until the limit was reached. This includes mul-
tiplications of rare messages to get a significant sam-
ple size in every class. Tests without this dataset bal-
ancing have shown strong signs of overfitting in most
experiments. We did not simply set all classes to the
same limit, as the notion of common and uncommon
should not be lost.

4.2 Feature Extraction

Neural networks are known to be highly flexible self-
learning feature extractors across various tasks. When
we try to interpret each message character as a pixel
integer value and thus the entire message as a one-
dimensional image, we can apply solutions for image-
based tasks. We selected two types of architectures
for feature extraction: an autoencoder and a convolu-
tional neural network. The feature mappings learned
by the models in these experiments later serve as input
to the clustering. By the black-box nature of neural
networks, we cannot directly measure the quality of
the feature mappings and will instead use the later re-
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Figure 1: HTTP dataset distributions in original (blue) and
balanced (green). The overwhelming bias in favor of GET
messages has been mitigated while preserving the notion of
this type being the most common.
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Figure 2: FTP dataset distributions in original (blue) and
balanced (green). With three dominant types and several
underrepresented types, the rebalancing smoothed the dis-
tribution significantly while preserving tendencies.

sults from clustering to evaluate both architecture. We
only defined auxiliary metrics for each experiment.

Autoencoder. Autoencoders only work on data of
fixed length and learn a compact representation of the
data. The network messages we use as data vary in
length, but generally do not exceed 1024 bytes. To
unify them, we pad shorter messages with zeros to
fill up the length of 1024. Small-scale tests indicate,
that padding/capping to this length does not impact
the performance of any model significantly. As the
expected output for the AE architecture is equal to
the input, we used the Hamming distance as a guid-
ing measure for success during the experimentation.
We train an autoencoder the following layer sizes:
1024 — 256 — 128 — 256 — 1024. We use softplus
activations, the Adam optimizer is set to a learning
rate = 0.0005, the loss function is Mean Square Er-
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ror (MSE), and the batch size = 128 for 10 epochs.
We use the resulting 128 neurons wide output of the
encoder part as the feature encoding for a message.
The data for this experiment was interpreted as pixels
and subsequently has a continuous nature in the inter-
val [0,255]. The distance achieved for data samples
of length 1024 bytes in training is 254.44 on average
for HTTP and 41.28 for FTP. The very high Ham-
ming distance results from the continuous nature of
the byte interpretations, even the padding symbols (0)
couldn’t be reconstructed entirely. We observe that
padding symbols often miss the same ASCII symbol
by 1 or 2 values if we interpret the ASCII table as
a scale from 0 to 255. In an image, such small col-
oration mistakes would hardly be noticeable. For the
alphabet as a continuous scale, the results often look
wrong. However, an autoencoder’s primary purpose
is to reduce the feature dimensionality for minimal
loss of information and the learning of patterns. In
this case, we managed to reduce the dimension from
1024 down to 128 while retaining satisfying recon-
struction properties during the experimentation. The
lower average Hamming distance for FTP can be ex-
plained by their much shorter average message length.

Convolutional Neural Network. CNNs are com-
monly used for supervised image classification. Our
training data does not contain any labels that can be
used for supervised learning. We came up with our
own unsupervised learning technique using data aug-
mentation. Messages are replicated and modified into
several known classes of augmentation types to ex-
tract information about the syntactic context. Our idea
is, that the ability of a CNN to differentiate between
these augmentation classes will teach it to become
fine-tuned to common patterns in the syntax. HTTP
or FTP statements are again padded/capped to a fixed
length of 1024, then divided into segments of vari-
ous lengths (1024, 32, 16, 8, 4), which are then put
into random order within the same statement. This ap-
proach results in 5 classes (unchanged and scrambled
into blocks of length 32, 16, 8, and 4, respectively). A
simplified example is illustrated in figure 3.

We chose an architecture that uses blocks of 1D
convolution, 1D batch normalization, softplus activa-
tion, and 20%-dropout in a total of 5 layers following
the channel sizes as follows: 1 — 128 — 64 — 32 —
16 — 8. The classification task was performed by two
fully connected layers, which were removed after the
training to get a feature map of 8 * 30 = 240 neurons,
which is larger than that of the autoencoder. We used
a visualization of the learned features as an additional
analytical method to evaluate the performance. A va-
riety of methods for model explanation have been pro-
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Class 1: unchanged
[afrfrlef[/]a].[1] [2[o]o] Jofk

\r
\n

Class 2: length of blocks: 8
[ T2Tolo] Tolx[:
Class 3: length of blocks: 4

| [o]x[i] [ [2[o]o]

Figure 3: An HTTP statement scrambled into 3 classes (un-
changed and blocks of length 8 and 4). The color indicates
the block-size and the order of the blocks is randomized.

HTTP/1.1 K
Date: Mon, 14 Jun 2010 11:33:55
(Red Hat)

Last-Modified: Mon,

0 200

Figure 4: Example of HTTP statement classification score
visualized by Grad-CAM. The padding has been cut off.
The semantically significant and consistent parts are high-
lighted, while pseudo randomness in the ETag is ignored.
The text highlighting in this figure is an approximation.

posed for image classification tasks. We use the vi-
sualization of pixel importance known as Grad-CAM
(Selvaraju et al., 2017) as our quality measurement
for syntactical features found by the model. Our ex-
periments showed mixed results. Regarding HTTP,
we see that various parts of a protocol message are
highlighted differently, see figure 4. The highlighted
parts often match syntactically relevant pieces, while
pseudo-random strings are ignored. This is precisely
the kind of syntactical feature extraction that is de-
sired for this experiment.

For FTP, the results are less visible in Grad-CAM,
as the average message length is much smaller. The
overall convergence of the experiment was also much
flatter than that of the HTTP version.

4.3 Feature Reverse Engineering

A common result of protocol reverse engineering is
the representation of the target protocol in the form
of rules or clusters. Neural networks do not allow
us to directly visualize their internal representation of



the features they extracted, however. To have a tan-
gible result outside clustering and sequence recogni-
tion, we want to be able to generate new messages as
proof of the correctness of the feature learning abil-
ity. We achieve this by using generative neural net-
work models and examine their outputs. There are
two possible choices of how a text message can be in-
terpreted: an image-like byte interpretation (as in the
feature extraction before) or a sequential interpreta-
tion as a sequence of ASCII alphabet symbols. We in-
vestigated both alternatives, using a default GAN ar-
chitecture for image-like byte interpretation, roughly
following the suggestions given by the original au-
thors (Goodfellow et al., 2014; Radford et al., 2015),
and an LSTM model for interpretation as a sequence
of ASCII symbols, with a modified embedding for
accounting the randomness in some parts of protocol
messages (cookies, addresses, etc.).

Generative Adversarial Net. The two networks a
GAN consists of, the generator and the discrimina-
tor, are trained in parallel. The generator uses four
1D transposed convolution layers with (kernel size,
stride)-parameter tuples of (2, 2), (4, 4), (8, 8), and
(16, 16) in ascending order. The first three layers
are followed by a 1D batch normalization and ReLU
activation each, while the last one ends with a sig-
moid function. The number of channels is as fol-
lows: 1024 — 1024 — 128 — 32 — 1. The dis-
criminator uses four 1D convolution layers with 1D
batch normalization (except for the first layer) and
LeakyReLU with a 0.2 slope and 20%-dropout. The
network is capped with a 360-neuron fully connected
layer. Channels are as follows: 1 — 10 — 20 — 60 —
90 — 1. We use a formula to keep either network
from overtaking the other in training: If one network
error went over a threshold OR the other network un-
der a particular border, then the overperforming net-
work is removed from training until the other catches
up. Both use an Adam optimizer with a learning rate
= 0.0005 and betas = (0.5, 0.99). As a loss function,
we used Binary Cross-Entropy (BCE).

The GAN model’s training did not indicate a sig-
nificant convergence towards a stable state. As the
pixel interpretation’s inaccuracy is limiting the GAN
from the start, combined with this architecture’s gen-
erally unstable nature, we are not surprised by this
disappointing result. Creating text from a continu-
ous data interpretation only sounded promising to us
when we considered the static structure used by a pro-
tocol. However, not even the padding symbols have
successfully been replicated with any significant ac-
curacy (about £3 ASCII values) by the GAN model.
Further, experiments using this architecture are omit-
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ted.

Long Short-Term Memory. LSTMs are advanced
recurrent networks, trained on sequences of fixed
lengths. To create such conditions, padding is out of
the question, as it would insert undesirable sequential
dependencies. We instead use a script, which con-
catenates statements to achieve more than four times
the required length, then choosing a substring of cor-
rect length starting from a random position. This
script is only used for the training to teach the se-
quential dependencies from letter to letter. Before
and after each statement, a unique symbol for start-
of-package (SOP) and end-of-package (EOP) is in-
serted so that the network can learn to distinguish
between different messages. The data is represented
as a one-hot-encoding of the ASCII alphabet. The
architecture uses an embedding layer followed by a
convolution layer (kernel size=4, stride=4) for em-
bedding adjustment. This trick is introduced here
as convolutional embedding, designed to balance be-
tween character-based and word-based embedding in
data formats with a lot of random noise on character
level. The hidden size of the embedding is flipped
with the feature-length dimension of the tensor; the
convolution layer interprets the hidden width as chan-
nels and the feature-length dimensions as image di-
mensions. Only the batch size remains the same. This
dimension transposition is reversed after the convolu-
tion, resulting in an embedded tensor with a quarter of
the length. This is given as input to a single-layered
LSTM. The output goes through the reversed pro-
cedure of the convolution embedding in a 1D trans-
posed convolution and a fully connected layer with
the same hyperparameters and dimension transposi-
tions. Figure 5 shows an overview of how this em-
bedding works. The way to interpret this kind of em-
bedding is a learnable, weighted 4-gram of charac-
ters, where the whole architecture only has to learn
the next character (from 0-1023 to 1-1024 by index).
This local context inside the 4-gram and the long-term
dependencies, which have been shortened by a factor
of 4, are easier to learn for the model and more sta-
ble to sample. For training, an Adam optimizer with a
learning rate = 0.005 and standard beta is used. Nega-
tive Log-Likelihood (NLL) is used as the loss func-
tion since the error is measured on character level.
This, of course, requires the input data mentioned at
the top to consist of message strings with a length that
are multiples of 4.

This sequence-based attempt at recreating HTTP
and FTP statements shows good results. The LSTM
architecture converges towards a minimal loss after
less than one epoch, indicating excellent structural
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Figure 5: Simplified illustration of the convolutional em-
bedding. It allows for a weighted length reduction of text
and increases the size of the alphabet.

HTTP/1.1 200 OK

Date: Mon, 14 Jun 2010 13:20:25 GMT

Server: Apache

Last-Modified: Mon, 21 Jun 2010 14:18:09 GMT
ETag: "2de9573-2b-486717fb77acO"
Accepted-Ranges: bytes

Content-Length: 43

Connection: close

Content-Type: text/html; charset=iso-8859-1

HTTP/1.1 200 OK

Date: Mon, 14 Jun 2010 13:20:25 GMT

Server: Apache

Content-Length: 43

Connection: close

Content-Type: text/html; charset=iso-8859-1

Figure 6: This figure shows two examples of HTTP state-
ments generated by an LSTM. For comparison, figure 4
shows an actual HTTP message from the dataset. One can
see that the general structure is similar, but the variable con-
tents have been changed, and some optional information
was added or altered. For fuzzing purposes, this is the de-
sired behavior.

learning and repeating patterns. We can explain this
by the nature of a text-based protocol such as HTTP
and FTP, which use keywords, a fixed grammar, and
a consistent alphabet. When sampling the LSTM (let-
ter by letter), a string with a valid message is pro-
duced and can be parsed using the SOP and EOP sym-
bols. We wrap the resulting statements with valid but
random headers of TCP and IP to become complete
network packages in a pcap file. The network analy-
sis tool Wireshark® showed 67.6% of the HTTP mes-
sages as valid, with the remaining ones classified as
TCP with a random payload. For FTP, a 100% quota
was reached, however FTP messages can be rather
simple to be valid. A few messages are repeated often
in the training data, which also appear in the output
of this experiment. Some generated examples can be
seen in figure 6. We see these results as a sound basis
for further experimentation.

Shttps://www.wireshark.org/
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Table 2: The FTP types have been manually grouped into
clusters of keywords/codes with similar meaning or pur-
pose.

misc

ACCT, ADAT, AUTH, CONF, ENC, MIC, PASS, PBSZ, PROT, QUIT, USER
230, 331, 332, 530, 532

PASV, EPSV, LPSV

227,228,229

ABOR, EPRT, LPRT, MODE, PORT, REST, RETR, TYPE, XSEM, XSEN
125, 150, 221, 225, 226, 421, 425, 426

ALLO, APPE, CDUP, CWD, DELE, LIST, MKD, MDTM, PWD, RMD, RNFR, RNTO,
STOR. STRU, SYST, XCUP, XMKD. XPWD. XRMD

212,213, 215, 250, 257, 350, 532
120, 200, 202, 211, 214, 220, 450, 451, 452, 500, 501, 502, 503, 504, 550, 551, 552, 553, 554, 555

Slo|u|s|lwln|—|o

®

©

4.4 Clustering

For clustering, the feature extraction results are rele-
vant to encode the data samples to a smaller format.
We initialize three SOMs and compare their results:
a baseline model with capped and padded messages
to a fixed length of 1024, a second SOM model using
the AE encoding, and a third model using the CNN
feature map. These three models differ in their input
size but have an identical output map dimension of
16 x 1 for HTTP and 64 x 1 for FTP. The different
numbers for the output dimensions for both protocols
are based on experimentation and roughly match the
variety of different message types for each protocol.
This can be adjusted by parameter for any new pro-
tocol or optimization purposes. Training is performed
with a learning rate = 0.005 and sigma = 1.5 for HTTP
and sigma = 3 for FTP. For details on the parameters,
please see the “MiniSom” library documentation’.
For this evaluation to work, we have to know the
true classes (synonym for types) for both protocols
in advance. This is not straightforward, as neither
protocol specifies explicit types/groups of messages
apart from requests and responses. For HTTP, the
responses especially have a wide range of meanings,
which we grouped by their respective code’s first digit
for this analysis, as they represent a basic meaning
of the code without going into too much detail. This
means that all messages from 200-299, all 300-399,
and all 400—499 messages are considered to be of the
same type, respectively. Along with all the valid key-
words that an HTTP statement can start with (GET,
POST, HEAD, DELETE, OPTIONS, PUT, TRACE,
CONNECT), this gives us a total of 11 clusters with
an additional miscellaneous one (MISC). For FTP,
we manually defined groupings of keywords and key-
codes with similar meaning or purpose, as shown in
Table 2. This was a manual process, and we do not
claim to have achieved perfection with this grouping.
For the experimentation on clustering, we use the

7https://github.com/JustGlowing/minisom



Table 3: Results of the clustering experiments for compari-
son. One can see an improvement over the baseline model
when using Autoencoder.

(a) HTTP clustering

Architecture Accuracy (dominant) | Avg. Confidence (dominant)

Baseline SOM 75% (75%) 58.34% (58.34%)
CNN + SOM 68.75% (68.75%) 53.61% (53.61%)
AE + SOM 87.5% (87.5%) 69.24% (69.24%)

(b) FTP clustering
Accuracy (dominant) | Avg. Confidence (dominant)
60.94% (72.22%) 51.8% (61.4%)
29.69% (29.69%) 18.19% (18.19%)
67.19% (86%) 56.11% (71.82%)

Architecture
Baseline SOM
CNN + SOM
AE + SOM

first multi-model approach. We compare three dif-
ferent configurations of self-organizing maps in terms
of their performance on our clustering metrics against
each other. Firstly, the 128 neuron-wide SOM will
use the encoding from the autoencoder model. Sec-
ondly, the 240 neuron-wide SOM will use the feature
maps of the CNN architecture. Lastly, as a baseline,
we use a raw SOM with 1024 neuron inputs for whole
statements.

We use two metrics to judge the effectiveness of
the clustering for each setup. The first is accuracy:
how many detected clusters match a message type of
the protocol with more than 50% confidence, which
will be referred to as a “dominant” cluster. Here, con-
fidence is defined as the relative share of a type among
all messages assigned to one cluster. If there are 120
messages of type A and 80 messages of type B, all
put into one cluster, then the confidence of this clus-

120
2 _60%. Th
120180 00% The

second metric is the average confidence among all
clusters. Both metrics are also reported for dominant
types only (> 50% for one type), to remove empty
and small clusters from the average.

Table 3 shows the results of the experiments.
Some setups using dedicated feature extractors can
outperform the baseline significantly. The autoen-
coder appears to be better suited for this task, perhaps
because the CNN architecture required a workaround
with data augmentation to even allow for training. For
further experiments that require cluster indexes, we
combine the AE and SOM architectures as a pipeline
to replace messages with their cluster index.

ter to represent type A will be

4.5 State Recognition

To recognize deeper states in a protocol, we use
the correlation of message sequences as they appear
chronologically in the dataset. For this, we replaced

PREUNN: Protocol Reverse Engineering using Neural Networks

1024 Chars/Bytes

p———a
HT ™

128 Chars/Bytes
Padding/Capping —

Autoencoder
(AE)

HTTP/1.1 302
Moved. . .

Prediction: Sequence: ‘ _
7@ )

Figure 7: This figure shows examples of HTTP statements
as they are processed for state recognition.

all messages with their cluster assigned by the cluster-
ing model. A simple LSTM with fitting dimensions
to the SOM output is sufficient to indicate highly cor-
related sequences by presenting the network’s confi-
dence for what the following message type could be.
The central idea of SOM learning is arranging sim-
ilar types of messages in proximity to one another,
thereby allowing the use of the MSE loss function to
approximate the correct message type in the LSTM
output. The use of Cross-Entropy (CRE) loss has
shown no convergence. For training, we use an Adam
optimizer with a learning rate = 0.005 and betas =
(0.3,0.9).

The setup is shown in figure 7. A simple time-
series prediction using a recurrent architecture shows
promising results in FTP, where actual states are im-
plied in the protocol. With the 64 indicated possi-
ble clusters, the LSTM matched 42% of the predicted
message types to the following actual message. This
number may seem low at first glance; however, for an
in-depth state fuzzing approach using many attempts,
we view this as a significant improvement over ran-
dom choice.

This experiment was also conducted for the HTTP
protocol, and the results are less impressive. Out of
the 16 implied clusters, 72% were correctly predicted.
This number may seem high at first glance but relies
on predicting the average cluster number aligned with
the dataset bias. In other words, the prediction simply
states two or three alternating types for the GET mes-
sage, which drives the prediction accuracy higher than
any different prediction pattern. The dataset could
not be balanced for classes in this experiment, as we
wanted to avoid changing any sequential dependen-
cies by randomly picking messages. As a result, the
input data for HTTP has a significant bias towards
GET message types, as the original data have, which
ultimately explains this behavior of the LSTM.

The results in this section showcase the potential
hazards of working with machine learning techniques,
mixing their embeddings and approaches, as well as
the interpretation of a predefined metric. Even though
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the results were a success in regard to the stateful pro-
tocol, which was our original aim for this experiment,
applying the same efforts to a stateless protocol shows
the weakness and dangerous pitfalls when interpret-
ing the metric. For both protocols, the metric is mis-
leading at face value. Only an analytic look at actual
prediction results did correct the error.

4.6 Sequence Generation

To fully mimic all aspects of the behavior of a pro-
tocol, we must be able to create syntactically cor-
rect messages with real-world distribution. We use
an LSTM model similar to the one for feature re-
verse engineering with added context. For any mes-
sage, instead of using a generic SOP and EOP symbol
as markers for beginning and end, we introduce new
special symbols, which are individualized by cluster
type. This results in 2 x 16 extra symbols for HTTP
and 2 x 64 additional symbols for FTP to be added to
the ASCII alphabet in their respective setups and sub-
sequently to the one-hot-encoding. The sequences put
into the LSTM, which uses a hidden size of 100 neu-
rons in two layers to account for the extra complexity,
have the beginnings and endings of each message in-
dicated by a cluster special SOP or EOP symbol. The
rest of the model architecture is identical to the one
used for feature reverse engineering, including con-
volutional embedding. Again, for training, we use the
Adam optimizer with a learning rate = 0.005 and de-
fault betas with an NLL loss function.

We use the same metric as for the feature re-
verse engineering LSTM. We parsed the generated
sequence into HTTP/FTP statements wrapped up in
some valid low-level protocol headers and collected
them in a pcap file. 63% of all sequences were iden-
tified as valid for HTTP and 100% for FTP by Wire-
shark. The excellent result on FTP is explainable for
the same reasons as in the feature reverse engineer-
ing, suffering from the simplicity of the messages and
training data. Figure 9 shows the type distribution of
both the feature reverse engineering and the sequence
generation for FTP to visualize the impact of adding
the other steps via cluster indexing. Only one class
stands out, which is either due to its simplicity or
a miscategorization of FTP types on our part. The
curve indicates, that a wider, more balanced distri-
bution of types was inferred. For the comparatively
lower HTTP result, as shown in figure 8, the messages
displayed a greater correlation between requests and
responses in the sequence generation. This implies
that the added context of types allows the neural net-
work to learn these connections more effectively. We
expect that more capable and larger architectures will
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Figure 8: HTTP feature reverse engineering (blue) vs. se-
quence generation (orange) results in terms of type distri-
bution. Sequence generation shows better request/response
correlation.
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Figure 9: FTP feature reverse engineering (blue) vs. se-
quence generation (orange) results in terms of type distribu-
tion. Sequence generation shows a better distribution except
for 1 class.

show an increase in the effectiveness of the observed
behavior.

This result lays the final foundation we needed to
enable deep learning-based fuzzing of any protocol,
as a PRE approach is designed to be generally appli-
cable.

5 RELATED WORK

Learn&Fuzz: Machine Learning for Input
Fuzzing. Based on the idea that fuzzing only re-
quires an approximately correct input, the authors
of (Godefroid et al., 2017) used a recurrent neu-
ral network to help in fuzzing a PDF parser in a
browser. The syntax for objects, a central building
block of PDFs, was inferred by an Al in this work.
The authors used three different sampling strategies
from their network to address various challenges in
fuzzing: NoSample, Sample, and SampleSpace. The
first one sees the RNN pick the letter with the highest



score among the output to ensure syntactically cor-
rect objects. The second strategy takes the network’s
softmax output as a probability distribution for pick-
ing the next letter. This increases the fuzzing cover-
age but may result in many ill-formed objects. Lastly,
the SampleSpace strategy combines the two previous.
No-Sample is used until a whitespace is generated.
The next following character is sampled by proba-
bility, only to switch back to the No-Sample strat-
egy again. This creates more syntactically correct ob-
jects while also creating a more comprehensive mix
of different objects. These strategies were used in
the LSTM sampling. Our sampling, however, has to
cover message context as well.

Machine Learning for Black-box Fuzzing of Net-
work Protocols. The authors (Fan and Chang,
2017) see their work as the first attempt to com-
bine an in-depth learning approach with black-box
fuzzing. They deploy a sequence-to-sequence model,
a two-part LSTM model invented for machine trans-
lation (Sutskever et al., 2014), to learn the seman-
tics of network protocols and create new output for
fuzzing purposes. Their work differs from this paper
in the number of steps taken and models employed to
learn details about the protocol. Here, a whole model
is presented, which was derived from previous work
on PRE. Additional information such as clustering or
context-based generation is missing as well.

GANFuzz: A GAN-based Industrial Network Pro-
tocol Fuzzing Framework. The GANFuzz Frame-
work (Hu et al., 2018) represents an alternative ap-
proach to protocol fuzzing using deep learning but
falls into the same category as the previous paper.
Instead of a sequence-to-sequence model, GANFuzz
uses a model known as a SequenceGAN (SeqGAN)
(Yu et al., 2017). This is a version of the common
GAN model but adjusted for text-based data using re-
inforcement learning. The authors of the paper train
one SeqGAN per message type, which they deduce
from a variety of clustering heuristics. This makes
their approach more similar to PREUNN but is still
missing several work steps, a concise work step mode,
and the generation of data done by context symbols
instead of entirely separate models.

Deep Neural Network-based Automatic Unknown
Protocol Classification System Using Histogram
Feature. Jung and Jeong demonstrated a machine-
learning-based PRE approach to classify unknown
protocols (Jung and Jeong, 2020). They use statistical
methods to extract features from ten different proto-
cols and feed them into a deep belief network, clas-

PREUNN: Protocol Reverse Engineering using Neural Networks

sifying the message based on these features. Based
on the approach, they report a classification accuracy
of about 99% on unknown datasets. Their method
differs from PREUNN in several ways. They semi-
automatically extract features using statistical meth-
ods, while we fully automated this process using an
autoencoder. Furthermore, their work’s goal is to
classify unknown protocol messages, whereas we aim
to generate new valid messages based on a novel pro-
tocol. Classification in PREUNN happens implicitly.

Network Traffic Classification (NTC). The topic
of NTC is related to PRE regarding feature extraction.
Several papers are combining NTC with ML and NN
(Lopez-Martin et al., 2017; Michael et al., 2017; Li
et al., 2018). However, the more complex steps of
PRE, like generating new packages for an unknown
protocol, are not addressed in those papers.

6 CONCLUSION

PREUNN represents a novel approach for the separa-
tion of traditional protocol reverse engineering tasks
that can be implemented using only neural networks.
In this paper, the widespread application layer proto-
col HTTP vl.1 and FTP were successfully reverse-
engineered using our approach. This highlights the
potential of several deep learning architectures such
as AEs for feature extraction, LSTMs for feature re-
verse engineering, SOMs for clustering, LSTMs for
state recognition, and finally a combination of the
above for sequence generation. The results achieved
include a decent, intuitively agreeable clustering and a
context-capable message generation model. We omit-
ted optimizations and testing the use of PREUNN for
fuzzing entirely due to time restraints and leave them
for future work. Our modular approach allows the use
of newer architectures from the fields of deep learn-
ing, such as natural language processing (e.g. BERT)
for improvements. Further future work could also in-
clude the use of reinforcement learning utilizing these
pre-trained models to create an automated fuzzer that
is capable of reverse engineering any similarly struc-
tured message-based language.
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