
Incremental Feature Learning for Fraud Data Stream

Armin Sadreddin and Samira Sadaoui
Department of Computer Science, University of Regina, Regina, Canada

Keywords: Incremental Feature Learning, Transfer Learning, Data Stream, Data Privacy, Credit-card Fraud Data.

Abstract: Our research addresses the actual behavior of the credit-card fraud detection environment where financial
transactions containing sensitive data must not be amassed in a considerable amount to train robust classifiers.
We introduce an adaptive learning approach that adjusts frequently and efficiently to new transaction chunks;
each chunk is discarded after each training step. Our approach combines transfer learning and incremental
feature learning. The former improves the feature relevancy for subsequent chunks, and the latter increases
performance during training by dynamically determining the optimal network architecture for each new chunk.
We show the effectiveness and efficiency of our approach experimentally on an actual fraud dataset.

1 INTRODUCTION

A tremendous volume of credit card transactions is
conducted daily, especially with COVID-19. Nev-
ertheless, this e-commerce activity attracted many
fraudsters and led to monetary losses for credit card
holders. For instance, for 2019, the Nelson Report es-
timated the worldwide financial loss from Credit Card
Fraud (CCF) to $28.65 billion (Worldwide Credit
Card Fraud Statistics 2019, 2020). Over the last ten
years, users that revealed at least one CCF soared
by 71% in Canada (Credit Card Fraud Statistics In
Canada 2021, 2021). Detecting fraudulent payments
necessities vital resources, such as powerful process-
ing, ample data storage, and human expertise. CCF
detection is complex to address due to the follow-
ing challenges: (1) Transactions are generated con-
tinuously and speedily. In this data stream context,
fraud must be detected in real-time to avoid losses
on the users’ side; (2) Conventional Machine Learn-
ing Algorithms (MLAs), including deep learning, re-
quire storing many transactions to conduct training.
However, financial data must not be accumulated in a
large quantity by the learned models because of data
sensitivity and confidentiality; and (3) MLAs can-
not adapt previous knowledge to newly available data
to improve their accuracy, making the fraud detec-
tion models obsolete and unreliable in the long run.
Most of the studies on CCF detection employed con-
ventional MLAs (non adaptive) that are inadequate
for the CCF learning environment. Additionally, in
the industry, a new fraud prediction system is created

from scratch for every number of days to learn the
new behavior from incoming transactions (Lebichot
et al., 2020). However, re-training for each new data
is time-consuming, and the past learned knowledge is
lost.

To overcome the above challenges, we develop
a new adaptive learning algorithm that adjusts fre-
quently and efficiently to new transaction data,
grouped in chunks or mini-batches. We decide how
much data to collect in each chunk depending on the
incremental training frequency (i.e., every day or ev-
ery week). More the frequency is shorter, less sensi-
tive data is accumulated. In our study, a chunk con-
tains the payment transactions of one day, which is
still enough for a robust adaptation. We process one
chunk at a time in the short-term memory and discard
it after each model’s adaptation, without the necessity
of storing it. The proposed adaptive approach com-
bines transfer learning and incremental feature learn-
ing. Thanks to transfer learning, we extract more
valuable features from the original ones and reuse the
new features for the subsequent transaction chunks.
For instance, in the image processing area, the first
layers of the neural network extract more representa-
tive features that can be reused in another image pro-
cessing task. Following the same reasoning, we use
the first layers to collect more beneficial features and
then add a new network to utilize those features. By
doing so, we take advantage of the previous chunks’
knowledge.

Our Incremental Feature Learning (IFL) algo-
rithm adapts gradually to the new transaction chunks

268
Sadreddin, A. and Sadaoui, S.
Incremental Feature Learning for Fraud Data Stream.
DOI: 10.5220/0010812700003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 268-275
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

by (1) preserving the previously learned knowledge
and (2) dynamically adjusting the network architec-
ture for each new chunk to achieve the highest per-
formance during training. IFL expands the network
topology by adding new hidden layers and new units
during each adaptation phase. Determining the most
suitable model’s architecture leading to the best per-
formance is a complex problem. Our IFL approach
adds hidden units one by one until the model does not
converge anymore. Nevertheless, as we are chang-
ing the network architecture to increase the perfor-
mance, we may over-fit the resulted model. Hence,
we utilize a validation chunk during training to avoid
over-fitting after each extension. More precisely, only
the weights of the new hidden units are updated each
time and the previous units are frozen to store the pre-
vious knowledge. Thus, less computational time is
needed to conduct learning for each new chunk. In
this way, our IFL approach will always outperform
other incremental learning approaches as the former
continuously adapts its architecture to reach optimal
accuracy. Most of the architecture of past incremen-
tal learning approaches is permanently fixed (Anowar
and Sadaoui, 2021), and the accuracy may not im-
prove when new chunks are fed to the model. Imple-
menting the IFL algorithm is challenging, requiring a
deep investigation of the building blocks and libraries
of MLA toolkits, such as creating a new hidden unit,
adding a new connection, and freezing the weights of
a old connection (not to be re-optimized). Moreover,
using a real CCF dataset, we create training, testing,
and validation data chunks and handle the highly im-
balanced chunks. For a robust validation of our IFL
algorithm, we develop four fraud classifiers, trained
on different chunks, and then compare their predic-
tive performances on unseen data. The experimental
results show the efficiency of the proposed learning
approach.

The study (Guan and Li, 2001) was the first one
to develop an IFL approach. This approach, which
is elementary, adopted a network topology that is not
common because the input layer is directly connected
to the output layer. During training, it freezes all the
weights connected to the output unit. Although freez-
ing these weights can speed up training, it will how-
ever reduce the model’s performance. Also, this pa-
per does not provide details on the algorithm design
and its implementation. Our paper presents all the
stages of our IFL algorithm that learns progressively
from newly available chunks. Through a concrete ex-
ample, based on constructive neural networks, we il-
lustrate step by step the sophisticated behavior of our
adaptive approach.

2 RELATED WORK

We review recent research on detecting CCF and
highlight its weaknesses. The majority of studies con-
ducted batch learning, such as (Hassan et al., 2020)
that explored deep learning, like BiLSTM and Bi-
GRU, and classical learning, such as Decision Tree,
Ada Boosting, Logistic Regression, Random For-
est, Voting and Naive Base. Since the fraud dataset
is highly imbalanced, the authors adopted random
under-sampling, over-sampling and SMOTE. The hy-
brid of over-sampling, BiLSTM and BiGRU lead to
the highest accuracy. Another work (Nguyen et al.,
2020) also assessed several MLAs, including LSTM,
2-D CNN, 1-D CNN, Random Forest, ANN and
SVM, using different data sampling methods on three
credit-card datasets. LSTM and 1-D CNN combined
with SMOTE returned the best results. We believe
LSTM can be a good option for incremental learn-
ing since this algorithm can remember past data and
therefore creates predictions using the current inputs
and past data, leading to a better response to the en-
vironmental changes. In both papers, LSTMs and the
other models were trained on very large datasets, re-
quiring storing sensitive information forever. Nev-
ertheless, since user transactions are available incre-
mentally, conventional MLAs are inappropriate for
streaming data. Our proposed method aims to address
the real CCF classification context.

In (Anowar and Sadaoui, 2020), the authors first
utilized SMOTE-ENN to handle a highly imbalanced
CCF dataset and then divided the dataset into multiple
training chunks to simulate incoming data. They pro-
posed an ANN-based incremental learning approach
that learns gradually from new chunks using an in-
cremental memory model. For adjusting the model
each time, the memory consists of one past chunk (so
that data are not forgotten immediately) and one re-
cent chunk (to conduct the model adaptation). The
authors demonstrated that incremental learning is su-
perior to static learning. However, using two chunks
every time can be expensive computationally. Also,
since the ANN topology is fixed, the model cannot
adapt to significant changes in the chunk patterns. In
our study, the ANN architecture is dynamic to build
an optimal fraud detection model. Instead of using
two chunks simultaneously, leading to storing more
data, we use only one chunk. With transfer learning,
we take advantage of the previous chunk without stor-
ing it.

In (Bayram et al., 2020), the authors introduced
a Gradient Boosting Trees (GBT) approach, which is
just an ensemble of decision trees, to minimize the
loss function gradually. The ensemble is updated for

Incremental Feature Learning for Fraud Data Stream

269

Table 1: Original and Re-Sampled Training and Testing
Chunks.

(a) Highly Imbalanced Chunks

Original Dataset
Fraud Normal
473 283253

Chunk 1: transactions of day1
Train Ratio Test Ratio

101352 1:532 43437 1:529
Chunk 2: transactions of day2

Train Ratio Test and Validation Ratio
97255 1:689 41682 1:694

(b) Re-balanced Chunks

Train Chunk1
Fraud Normal Total
33383 101162 134545

Test Chunk1
Fraud Normal Total
14307 43355 57662

Train Chunk2
Fraud Normal Total
32047 97114 129161

Test Chunk2
Fraud Normal Total
6867 20811 27678

Validation Chunk2
Fraud Normal Total
6867 20811 27678

each new group of transactions by appending a new
Decision Tree to create a more robust GBT model.
The authors developed three models: static GBT
(batch learning), re-trained GBT (re-training all the
transactions by including the investigated ones), and
incremental GBT (ensemble). All these methods ne-
cessitate storing a tremendous quantity of user trans-
actions. The authors divided the credit-card dataset
into several sub-datasets w.r.t time (month) and eval-
uated the three models for each month (four months
in total). Although the re-trained GBT (performed
with 1.6 million transactions) achieved the best per-
formance, it is 3000 times slower than the incremen-
tal approach. Since re-training is too time-consuming,
we aim to improve the accuracy and training time for
learning incrementally.

3 DATA CHUNK PREPARATION

We utilize a public, anonymized CCF dataset consist-
ing of 284807 users’ purchasing transactions that oc-
curred during two days in September 2013 (Credit
Card Fraud Detection, Anonymized credit card trans-
actions labeled as fraudulent or genuine, 2016). It is

worth mentioning that CCF datasets are lacking in the
literature due to data confidentiality. The 2-class fraud
dataset possesses 29 predictive features obtained with
the feature extraction method PCA. However, the two
features Time and Amount as kept as is, because their
actual values are essential for training. Time rep-
resents the seconds passed between the current and
the first transactions in the dataset. After examining
the dataset, only 0.172% (492) of the transactions is
fraudulent. We found duplicated fraud data (19) that
we eliminated. We are in the presence of a highly im-
balanced dataset where the count of legitimate data
is much higher than the count of fraudulent data. In
this case, classifiers will be biased towards the Nor-
mal class and will wrongly classify the Fraud class.

We split the fraud dataset into two chunks us-
ing the transaction’s time: the first chunk is related
to the first day and the second chunk to the second
day. We use the first chunk to perform transfer learn-
ing and the second chunk IFL. In Table 1 (a), using
the stratified method, we divide the first chunk into
70% training and 30% testing, and the second chunk
into 70% training, 15% validation and 15% testing.
As observed, the training chunks are highly imbal-
anced. Hence, we adopt the successful over-sampling
method SMOTE using the new class distribution ra-
tio of Normal instances to Fraud instances equals 1.3.
We over-sample the Fraud class to keep all of them as
they are rare events. For example, the training chunk2
has a highly imbalanced class ratio of 1:689 that we
re-balance with the new ratio of 1.3. Table 1 (b) ex-
poses the re-sampled training, validation and testing
chunks.

4 INCREMENTAL FEATURE
LEARNING

For our fraud classification problem, we first build the
initial model on the first chunk and then utilize the
transformed features to train on the second chunk us-
ing the optimal number of hidden units. Instead of re-
training from scratch the entire model for each new
chunk, we only train the newly added units and freeze
all the previous layers. This strategy will significantly
decrease the training time so that the classifier identi-
fies fraud activities much faster. The most difference
of incremental learning from conventional learning is
that the former does not assume the availability of suf-
ficient training data, as data are available over time
(Guan and Li, 2001). So, based on these facts, im-
proving learning for each newly supplied chunk is an
excellent approach.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

270

Algorithm 1 conducts transfer learning and then
IFL. We first build the initial network with four fully
connected layers, where the first layer has the input
features, the first hidden layer 500 units, the second
hidden layer ten units, and the output layer one unit
for the binary classification. The study (Anowar and
Sadaoui, 2020), which validated an incremental learn-
ing approach with the same credit-card dataset, deter-
mined that 500 units as the best number for the first
hidden layer. Hence, we train this first network on the
first chunk. Then, after removing the output unit, we
refit the initial model using previous knowledge and
the second chunk. Now, the second hidden layer rep-
resents the transformed features (called tSubset) i.e.,
the new dimensional space more relevant to the target
class because it is obtained with previous knowledge.
Here, tSubset contains the values corresponding to the
transformed features. For example, assume we have
100,000 transactions in the second chunk. Using the
refitted model, we convert each transaction of 29 val-
ues to ten new values. So, our transformed tSubset
will contain 100,000 new data with 10 new features.
With transfer learning (Weiss et al., 2016), our model
takes information from a previously learned task and
uses it to learn a related task. The model can extract
useful features from the input features, and instead of
learning this knowledge again, we use it via the past
network.

We actually extend the initial network with two
sub-networks; the first sub-NN considers the high-
level features, and the second sub-NN the low-level
features. We leverage both of them to predict the out-
put more efficiently. Also, the study (Wang et al.,
2014) showed that creating sub-networks according
to the features’ relevancy can lead to a better out-
come. We add the second sub-NN to improve more
the model’s performance. A similar idea is used in
the incremental approach defined in (Guan and Li,
2001) by connecting the original inputs directly to the
output unit with the same motivation. Another paper
(Wang et al., 2021) compared the performance results
of connecting the inputs to the output unit directly.
These are the reasons we use high-level features for
creating the first sub-NN and then low-level features
for creating the second sub-NN. Thus, we can gradu-
ally improve the accuracy using newly available data
without forgetting the previous knowledge (stored in
the previous weights). Also, the training time will be
much lower as we only train the new chunk and one
unit only per epoch. Our approach can be used for any
number of chunks by appending a new hidden layer to
the first sub-NN.

Algorithm 2, proposed in our past study (Sadred-
din and Sadaoui, 2021), shows how to extend a sub-

NN with new hidden units and connections. The
main challenge is determining the number of units
that should be added to attain the best training perfor-
mance. In transfer learning, we add a predetermined
number of layers and units to the previously trained
model. It can lead to fewer layers/units, but, the re-
sulting model will return poor predictions. On the
other hand, it can add unnecessary layers/units, which
only increases the learning time. Since the numbers
of layers and units are predetermined, all the units are
trained together and not one at a time like our pro-
posed method. So, the training time will be very time-
consuming. We determine the needed number of units
in our work by adding and training them one by one.
This approach is highly efficient computationally.

Furthermore, instead of computing the gradient
descent for all the new units at once for each epoch,
which is time-consuming, we utilize the “patience”
parameter as the early stopping criterion. Based
on the convergence threshold, this parameter checks
whether the error is reducing or not in a certain num-
ber of epochs.

4.1 An Illustrative Example

Based on the CCF chunks, we illustrate the behavior
of our IFL algorithm in Figures 1, 2, and 3, where
the green color denotes new connections and new
units and the red color the frozen part of the NN
(weight are not re-learned). Figure 1 creates the ini-
tial NN and trains it on chunk1. After deleting the
output unit, the algorithm utilizes previously learned
weights and creates the refitted model by training with
chunk2. Figure 2 first adds the first sub-NN to the ini-
tial model and then keeps training on the data of the
transformed features by including new hidden units
and connections and freezing past weights until the
training performance is not converging anymore. Fig-
ure 3 creates the second sub-NN using the original
features, connects it to the output unit of the previous
model, freezes all the previous weights, and trains it
on chunk2 until the model is not converging anymore.

5 VALIDATION

Since the CCF features have different value ranges
and with significant discrepancies, we first normal-
ize them into the same range. To this end, we train
the initial network (four fully connected layers) on
chunk1 using various ranges to determine the most
appropriate feature scale. The range of [-5, +5] re-
turned the best performance. Using random search,
we tune the network’s hyper-parameters, such as the

Incremental Feature Learning for Fraud Data Stream

271

(a) create initial model on chunk1 (b) transform input features with
chunk2 using past weights

Figure 1: Transformed Features.

(a) add/train subNN1 & freeze past NN (b) add hidden unit(s) until no convergence

Figure 2: Network training and expansion using transformed features.

(a) add/train subNN2 & freeze past NN (b) add hidden unit(s) until no convergence

Figure 3: Network training and expansion using original features.

learning rate to 0.001, batch size to 1024, epoch to
100, convergence threshold to 0.01, and patience to
10. We employ the Adam optimizer to learn the best
weights. In our experiment, we develop four main
fraud classifiers: (1) The initial classifier trained on
train chunk1 and tested on test chunk1, (2) The ini-
tial classifier evaluated on test chunk2, (3) The initial

classifier re-trained on train chunk2 and tested on test
chunk2, and (4) The optimal final classifier, produced
with our IFL algorithm, trained on train chunk2 and
assessed on test chunk2.

For a proper comparison, we utilize the same un-
seen dataset to assess the last three classifiers, based
on five quality metrics for evaluating the predictive

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

272

Algorithm 1: Transfer Learning and Incremental Feature
Learning.

Inputs: trainChunk1, trainChunk2,
validChunk2, threshold, nEpoch
Result: optimal model

(*Initial Model with Chunk1*)
iniNN← build network with four fully
connected layers;

iniModel← train initNN on trainChunk1;
(*Refitted Model with Chunk2*)
refModel← delete output unit of initModel;
refModel← feedforward trainChunk2 using
past weights;

(*Transformed Feature Sub-dataset*)
traSet← extract transformed features;
traSubset← create sub-dataset w.r.t traSet
and trainChunk2;

(*Incremental Feature Learning*)
(*Sub-NN Training and Extension with
Transformed Features*)
subNN1← create network (2 hidden units
and 1 output unit);

model1← train subNN1 with traSubset by
freezing all past weights;

extModel1= Algorithm2(model1, traSubset,
validChunk2, threshold, nEpoch);

(*Sub-NN Training and Extension with Input
Features*)
subNN2← create network (2 hidden units);
subNN2← connect hidden units to output
unit of extModel1 ;

model2← freeze weights of previous units
except hidden and output units;

model2← train subNN2 with trainChunk2;
extModel2← Algorithm2(model2,
trainChunk2, validChunk2, threshold,
nEpoch);

return extModel2;

performances: Precision, Recall, F1-score, False
Negative Rate (FNR), and Time (in seconds). Due to
the randomness of neural networks, we run ten train-
ing sessions for each of the four classifiers. As a re-
sult, for each classifier, we develop ten models, and
test each one of them on the corresponding testing
dataset. In summary, we build and assess a tally of
40 models. We consider the average of the ten testing
sessions for comparing the four fraud classifiers.

5.1 Feature Transformation

Using the initial classifier’s knowledge obtained with
the first transaction chunk, we transform the input fea-
tures by feed-forwarding the second chunk to the first

Algorithm 2: Model Extension with New Hidden Units until
No Convergence.

Inputs: model; trainData, validData,
threshold, nEpoch
Result: extended model

preValAcc← 0;
while True do

curValAcc← compute accuracy of model
using validData;

while (curValAcc is converging with
patience of nEpoch) do

model← train non-frozen weights
with trainData;

curValAcc← compute accuracy of
model using validData;

if (curValAcc - preValAcc < threshold)
and (preValAcc 6= 0) then

Break;
preValAcc← curValAcc;
model← add new hidden unit to hidden

layer;
model← freeze weights of previous units

except new hidden and output units;
return model;

classifier. Figure 4 exposes the distribution of the new
features. The transformed features (10 in total) are
now more relevant to the target class. After checking
their correlation values with the class output, we find
them much higher than the original features.

5.2 Performance Evaluation

1. Initial Classifier: We first build the initial clas-
sifier, trained on train chunk1 and assessed on test
chunk1 (Table 2). After that, we evaluate the same
classifier using test chunk2 (Table 3). According to
the 10-round testing results of these two classifiers,
F-score decreased by 4.6% for the second chunk.
Changes in data patterns, such as concept drift, may
have caused this decrease (Lebichot et al., 2020).
Credit card datasets are known to contain concept
drift, and as a consequence, the model’s performance
decreases (Abdallah et al., 2016). We reached good
accuracy with the first classifier by splitting the data
into chunks and normalizing and re-sampling them.
Yet, when passing the second chunk to the first clas-
sifier, the performance decreased. So, our goal is to
build a model capable of adapting itself to the changes
in the data.
2. Re-trained Classifier: Here, we re-train from
scratch the initial classifier using train chunk2 and
evaluate its accuracy on test chunk2 (Table 3). In this
case, F1-score decreased by 0.5% for the re-trained

Incremental Feature Learning for Fraud Data Stream

273

Figure 4: Distribution of the New Features.

Table 2: Training and Testing on Transaction Chunk1.

Classifier Metric #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Aver.

Initial
Precis 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.999
Recall 0.87 0.87 0.93 0.84 0.85 0.83 0.84 0.87 0.77 0.84 0.851

F1 0.93 0.93 0.96 0.91 0.92 0.91 0.91 0.93 0.87 0.91 0.918

Table 3: Training and Testing on Transaction Chunk2.

Classifier Metric #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Aver.

Initial
Precis 1.00 0.99 0.98 0.98 0.99 1.00 0.99 1.00 0.99 0.99 0.991
Recall 0.71 0.77 0.84 0.84 0.81 0.75 0.76 0.85 0.67 0.81 0.781

F1 0.83 0.87 0.90 0.90 0.89 0.86 0.86 0.92 0.80 0.89 0.872

Retrained

Precis 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.70 0.79 0.76 0.82 0.85 0.74 0.84 0.87 0.69 0.66 0.772

F1 0.82 0.88 0.86 0.90 0.92 0.85 0.91 0.93 0.81 0.79 0.867
Time 23s 22s 24s 23s 22s 23s 23s 22s 22s 23s 22.7s

Optimal

Precis 0.97 0.95 0.95 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.957
Recall 0.86 0.86 0.89 0.88 0.90 0.80 0.90 0.97 0.76 0.88 0.870

F1 0.91 0.90 0.92 0.92 0.93 0.87 0.92 0.96 0.85 0.92 0.910
Time 18s 15s 12s 19s 25s 16s 16s 16s 22s 19s 17.8s

classifier. This expected decrease is due to the higher
number of instances in train chunk1 (60% of data)
than in train chunk2 (40% of data). Therefore, re-
training a model from scratch is not a good solution
(as done in the industry).
3. Optimal Classifier: Lastly, in Table 3, we develop
the final optimal model using our IFL algorithm. Us-
ing only one chunk, F1-score of the final classifier
improved by 3.8% compared to the initial classifier
(trained on chunk1). Also, Recall, an essential met-
ric in fraud detection, is augmented with 8.9%, which
means we have fewer false negatives with the second
chunk. Moreover, as we are training only the new hid-
den units, the training time is less than the time of the
re-trained classifier. We can conclude that the final
classifier outperforms the initial and re-trained classi-
fiers using only one chunk.

Another important metric for fraud detection is the
False Negative Rate (FNR), which refers to the rate of

fraudulent transactions detected as normal. Accord-
ing to the average of the ten experiments, the FNR
values of the initial classifier on test chunk1 (called
ICTC1) is 0.149 and on test chunk2 (ICTC2) is
0.219. The FNR of the re-trained classifier (RCTC2)
is 0.228, and FNR of the optimal classifier (OCTC2)
is 0.13. These values demonstrate that the final classi-
fier caches more fraudulent cases when fed with new
chunks, reducing FNR over time.

In our point of view, financial transactions should
not be stored in a large quantity and for a long time by
the fraud classifiers because of confidentiality issues.
In this challenging situation, we train the classifier in-
crementally, chunk by chunk, and discard each chunk
right away. In Table 3, the proposed adaptive learn-
ing algorithm can enhance the performance using one
chunk at a time and with less computational cost.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

274

6 CONCLUSION

Intending to address the actual behavior of the CCF
detection environment, we introduced a new incre-
mental classification algorithm that adjusts gradually
and efficiently to new transaction chunks based on
transfer learning and IFL. Transfer learning, which
preserves past knowledge, transforms original fea-
tures into more valuable ones. Then, our adaptive al-
gorithm utilizes them to adapt to subsequent chunks.
IFL extends the network architecture incrementally
by determining the optimal number of hidden units
for each new chunk. Our dynamic learning approach
improves the performance during training without the
necessity of accumulating and storing a large vol-
ume of data and spending too much time on learn-
ing since only the new weights are learned. The pro-
posed approach can be employed on everyday credit
card transactions to prevent the performance from de-
creasing by using current and past knowledge.

REFERENCES

Abdallah, A., Maarof, M. A., and Zainal, A. (2016). Fraud
detection system: A survey. J. Netw. Comput. Appl.,
68:90–113.

Anowar, F. and Sadaoui, S. (2020). Incremental Neural-
Network Learning for Big Fraud Data. In Interna-
tional Conference on Systems, Man, and Cybernetics,
SMC, Toronto, ON, Canada, pages 3551–3557. IEEE.

Anowar, F. and Sadaoui, S. (2021). Incremental Learning
Framework for Real-World Fraud Detection Environ-
ment. Computational Intelligence, 37(1):635–656.

Bayram, B., Köroğlu, B., and Gönen, M. (2020). Im-
proving Fraud Detection and Concept Drift Adapta-
tion in Credit Card Transactions Using Incremental
Gradient Boosting Trees. In 19th IEEE International
Conference on Machine Learning and Applications
(ICMLA), pages 545–550.

Credit Card Fraud Detection, Anonymized credit card
transactions labeled as fraudulent or genuine (2016).
https://www.kaggle.com/mlg-ulb/creditcardfraud, last
accessed on March 2021.

Credit Card Fraud Statistics In Canada 2021 (2021).
https://www.simplerate.ca/credit-card-fraud-
statistics-canada/, last accessed on May 2021.

Guan, S. U. and Li, S. (2001). Incremental learning with
respect to new incoming input attributes. Neural Pro-
cess. Lett., 14(3):241–260.

Hassan, N., Altiti, O., Ayah, A. A., and Younes, M. (2020).
Credit Card Fraud Detection Based on Machine and
Deep Learning. In 11th International Conference
on Information and Communication Systems (ICICS),
pages 204–208.

Lebichot, B., Paldino, G. M., Bontempi, G., Siblini, W., He-
Guelton, L., and Oblé, F. (2020). Incremental Learn-

ing Strategies for Credit Cards Fraud Detection: Ex-
tended Abstract. In Webb, G. I., Zhang, Z., Tseng,
V. S., Williams, G., Vlachos, M., and Cao, L., ed-
itors, 7th International Conference on Data Science
and Advanced Analytics, DSAA 2020, Sydney, Aus-
tralia, pages 785–786. IEEE.

Nguyen, T. T., Tahir, H., Abdelrazek, M., and Babar, A.
(2020). Deep Learning Methods for Credit Card Fraud
Detection.

Sadreddin, A. and Sadaoui, S. (2021). Incremental Feature
Learning Using Constructive Neural Networks. In The
33rd IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI), pages 1–5.

Wang, T., Guan, S., Man, K. L., and Ting, T. (2014).
Eeg eye state identification using incremental attribute
learning with time-series classification. Mathematical
Problems in Engineering, 2014:1–9.

Wang, Y., Wang, L., Yang, F., Di, W., and Chang, Q. (2021).
Advantages of direct input-to-output connections in
neural networks: The elman network for stock index
forecasting. Inf. Sci., 547:1066–1079.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A
survey of transfer learning. Journal of Big Data,
3(1):1–40.

Worldwide Credit Card Fraud Statistics 2019 (2020).
https://nilsonreport.com
/content promo.php?id promo=16/, last accessed on
June 2021.

Incremental Feature Learning for Fraud Data Stream

275

