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ONERA, Université Paris Saclay, France

Keywords: Linear Programming, Polynomial Time Complexity, Number Representation.

Abstract: Gaussian elimination is known to be exponential when done naively. Indeed, theoretically, it is required to
take care of the intermediary numbers encountered during an algorithm, in particular of their binary sizes.
However, this point is weakly tackled for linear programming in state of the art. Thus, this paper introduces
a new polynomial times algorithm for linear programming focusing on this point: this algorithm offers an
explicit strategy to deal with all number representation issues. One key feature which makes this Newton
based algorithm more compliant with binary considerations is that the optimization is performed in the so-
called first phase of Newton descent and not in the so-called second phase like in the state of the art.

1 INTRODUCTION

Linear programming is a central optimization prob-
lem which aims to solve:

min
x∈QN , Ax≥b

cT x (1)

where A ∈ ZM×N is a matrix and b ∈ ZM , c ∈ ZN two
vectors with M being the number of constraints/rows
of A and N the number of variables/columns of A.

Today, the state of the art is central-path log-
barrier (Nesterov and Nemirovskii, 1994) and/or
path-following (Renegar, 1988) algorithms which
solves linear programs with total binary size L in less
than Õ(

√
ML) Newton steps (assuming N = O(M)).

As each Newton step is mainly the resolution of an
M×M linear system, the arithmetic time complex-
ity of those algorithms is Õ(Mω

√
ML) (Õ(.) notation

will be used instead of O(.) to express the fact that log
factors are omitted) where ω is the coefficient of ma-
trix multiplication i.e. 3 with simple algorithm but
2.38 with (Ambainis et al., 2015). Faster random-
ized algorithms like (Cohen et al., 2021) are not in
the scope of this paper.

However, considering that matrix inversion can be
done in Õ(Mω) operations is only half of the story. It
is true by considering operation on Z or Q as 1 oper-
ation. But, from theoretical point of view, either op-
erations are realized with fixed precision (opening the
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door to numerical instabilities), or, all numbers have
to be represented either by an arbitrary large integer
or a fraction of arbitrary large integer. But, in this
setting, it is required to count the number of binary
operations. Even more, it is required to take care of
the binary sizes of the number that appear during the
algorithm to avoid bad binary time complexity like in
naive Gaussian elimination which is exponential for
this reason (Fang and Havas, 1997).

Precisely, a binary-compliant algorithm for linear
programming should have all the 3 following features:

• a good arithmetic time complexity

• an explicit rounding strategy for the intermediary
numbers

• which maintains the binary size of those numbers
bounded by Õ(L)

Typically, Simplex-like algorithms (Dantzig, 1955)
have no binary issues because the intermediary points
are related to a linear subsystem of the input con-
straints but they have not a good arithmetic time com-
plexity. Inversely, most state of art methods rely on
scaling, i.e. at some point in the algorithm, there is
an operation like A = A(I + xxT ) in (Peña and So-
heili, 2016), or column(A,k) = 1

2 × column(A,k) in
(Chubanov, 2015) or µ = 1

2 × µ in (Anderson et al.,
1996) (a classical implementation for central path log
barrier). Yet, structurally, even if one could set up an
explicit rounding strategy, those algorithms will not
respect the property of having intermediary numbers
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bounded by Õ(L) as one variable scaled twice each of
the
√

ML steps is finally scaled by 2
√

ML.
Currently, from state of the art algorithms, only

(Renegar, 1988) has both the first and the third fea-
tures because in (Renegar, 1988) scaling is performed
with a factor (1 + O(1)√

M
) ( (1 + O(1)√

M
)
√

ML ≈ 2log(e)L

so this scaling still leads to a binary size of Õ(L)).
Yet, (Renegar, 1988) only offers a sketch of strategy
to round intermediary numbers, and, admits that it
sketch depends on several implicit constants. Thus,
there is not known algorithm with the 3 features al-
lowing to be fully binary-compliant.

Yet, this paper introduces a new algorithm related
to interior point algorithms but with those 3 features.
Currently, it requires Õ(ML) steps against Õ(

√
ML)

for (Renegar, 1988; Nesterov and Nemirovskii, 1994).
But, it is scaling free with variable sizes naturally
bounded by Õ(L). And, the internal variables can be
explicitly rounded to integer at the end of each New-
ton steps (potentially a final phase is required but this
final phase only last at most Õ(log(L)) so it is negli-
gible).

This situation is summarized by Table 1.
Finally, this algorithm also takes care of round-

ing/approximating operations which could lead to ir-
rational numbers (typically

√
2 has no binary num-

ber representation, so rounding should be used in-
stead), as, the main interest of this paper is to tackle
number representation issues. Independently, the of-
fered algorithm can be seen as a self concordant ver-
sion of Perceptron (Rosenblatt, 1958) and/or (Peña
and Soheili, 2016), it is faster than (Peña and Soheili,
2016) which requires Õ(M2

√
ML) Perceptron steps

i.e. Õ(M4
√

ML) arithmetic operations.

2 SELF CONCORDANT
PERCEPTRON

The offered algorithm is described in table 2.
Currently, this algorithm solves linear feasibility

a simpler form of linear programming which consists
to solve:

find x ∈ XA = {χ ∈QN , Aχ > 0} (2)

for a given matrix A ∈ ZM×N such that XA 6= /0 and
0 is the vector with all 0. Trivially, this problem is
equivalent to find x such that Ax≥ 1 with 1 the vector
filled by 1. Importantly, not all matrix A could be
encountered when solving linear feasibility because
the problem assumes XA 6= /0. Typically, the algorithm
offered in table 2 may have an undefined behavior if
the input matrix A does not verify XA 6= /0.

But, despite this linear feasibility problem may
seem very specific, it is theoretically equiva-
lent with general linear programming: some well
known strongly polynomial times pre/post processing
(mainly based on duality theory) allows to solve any
linear programming instance by solving a linear fea-
sibility instance with equivalent size and total binary
size and XA 6= /0. For completeness, these well known
equivalences are recalled in appendix.

Finally, a simplified version of the algorithm
which will be useful for proving the convergence is
provided in table 3 (yet it does not verify the binary-
compliant features). This simplified version allows to
see that the offered self concordant Perceptron is just
Newton descent on the function

FA(v) =
1
2

vT AAT v− ∑
m∈{1,...,M}

log(vm) (3)

3 PROOFS

3.1 Convergence

Theorem from (Nemirovski, 2004):
If Ψ(x) is a self concordant function (mainly sum
of quadratic, linear, constant and − log term), with a
minimum Ψ∗, then, the Newton descent starting from
xstart allows to compute xε such that Ψ(xε)−Ψ∗ ≤ ε

in Õ(Ψ(xstart)−Ψ∗ + log log( 1
ε
)) damped Newton

steps. Each step simply relies on two linear algebra
operations: λΨ(x)←

√
(∇xΨ)T (∇2

xΨ)−1(∇xΨ) and
x← x− 1

1+λΨ(x) (∇
2
xΨ)−1(∇xΨ). Precisely,

• While λΨ(x) ≥ 1
4 , each damped Newton step de-

creases Ψ of at least 1
4 − log( 5

4 ) ≥
1
50 . This so

called first phase can not last more than 50×
(Ψ(xstart)−Ψ∗) damped Newton steps.

• As soon as one has computed any xphase with
λΨ(xphase) ≤ 1

4 , then, Õ(log log( 1
ε
)) additional

steps are required to get xε such that Ψ(xε)−
Ψ∗ ≤ ε. This is the so called second phase with
quadratic convergence (i.e. log log(ε) steps lead
to a precision ε).

Lemma 1:
∀A ∈ QM×N , x ∈ QN such that Ax ≥ 1, and, v ≥ 0,
then, ||v||

2
2

||x||22
≤ ||AT v||22.

Proof. Cauchy inequality applied to xT (AT v) gives:
xT (AT v)≤ ||x||2×||AT v||2.

But, xT (AT v)= (Ax)T v≥ 1T v as v≥ 0 and Ax≥ 1.
Thus, 1T v≤ ||x||2×||AT v||2.
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Table 1: Self concordant Perceptron offers both a mastered internal binary size, and, an explicit rounding strategy while
having an arithmetic time complexity only higher than the state of the art by a factor

√
M.

Algorithm Q time complexity internal binary size bounded by Õ(L) explicit rounding
(Rosenblatt, 1958) exponential no no

(Dantzig, 1955) exponential yes yes
(Peña and Soheili, 2016) Õ(M4√ML) no no
(Anderson et al., 1996) Õ(Mω

√
ML) no no

(Renegar, 1988) Õ(Mω
√

ML) yes no
Self concordant Perceptron (this) Õ(MωML) yes yes

Table 2: Self concordant Perceptron solves linear feasibility
in Õ(ML) steps with mainly integer computations.

Algorithm(A)

1. Γ← int(1000M
√

Mmax
m

AmAT
m)+1

2. w←
(

int
(

Γ

√
M

1T AAT 1

)
+1
)
×1

3. if AAT w > 0 return w

4. H←

 w2
1 0 ...

0 ... 0
... 0 w2

M

AAT +Γ2I

5. h← Γ2×w

−

 w2
1 0 ...

0 ... 0
... 0 w2

M

AAT w

6. solve the integer linear system HN = h
//N may be fractional

7. λ2← |N T h|

8. compute θ, 1
2 θ≤ 1+

√
λ2

(1000)3M4
√

Mϒ3 ≤ θ

9. if λ2 >
Γ3

16 go to 10 else go to 13

10. q← int
(√

(w+θN )T AAT (w+θN )
MΓ2

)
+1

11. w← int( v+θN
q )+1

12. go to 3

13. w← v+θN
// no rounding for the so-called second phase

14. go to 3

As each side is positive, one could take the square
(and push ||x||2 to the left), this gives (1T v)2

||x||22
≤

||AT v||22. Yet, as v≥ 0, vT v≤ (1T v)2.

Lemma 2:
Let f (t) = 1

2||x||22
t2 − log(t) with any vector x with

||x|| ≥ 1, then, f is lower bounded with a minimum
f ∗ = 1−log(||x||2)

2 ≥− log(||x||2).

Table 3: A simplified version of the self concordant Percep-
tron algorithm.

Simplified Algorithm(A)

ϒ =
√

max
m

AmAT
m

v← 1
ϒ

1
while ¬(AAT v > 0) do

F ← 1
2 vT AAT v−∑

m
log(vm)

N ← (∇2
vF)−1(∇vF)

λ←
√
(∇vF)T N

v← v− 1
1+λ

N
end while
return v

Proof. f is a continuous function from ]0,∞[ to R.
f (t) →

t→∞
∞ due to the − log, and, f (t) →

t→∞
∞ due to

the t2. So, f is lower bounded with a minimum. As f
is smooth, this minimum is solution of f ′(t) = t

||x||22
−

1
t = 0 i.e. t∗ = ||x||2 and f ∗ = f (||x||2).

Lemma 3:
Assume XA 6= /0, FA is lower bounded - with FA the
function defined in equation (3) i.e.

FA(v) =
vT AAT v

2
−∑

m
log(vm)

Proof. If XA 6= /0, then, ∃x,Ax ≥ 1. But, following
lemma 1, it holds that FA(v) ≥ vT v

2xT x −∑
m

log(vm) =

∑
m

f (vm) (with the function f introduced in lemma 2).

So, FA(v) ≥ ∑
m

f ∗ ≥ −M log(||x||2) following lemma

2. Finally, as for all m, FA(v) ≥ f (vm)+ (M− 1) f ∗

and f (t)→∞ in 0 or ∞, then, it means F can not admit
an infimum on the border of ]0,∞[M . So the property
of being lower bounded (by M f ∗) without infimum at
the border implies that FA has a minimum F∗A , and so
F∗A ≥M f ∗.

From now, the assumption that XA 6= /0 will be omitted.

Remark: As FA (defined in eq.(3) has a minimum
when XA 6= /0 (lemma 3), then, theorem from (Ne-

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

42



mirovski, 2004) holds in this case: the damped New-
ton descent on FA from any vstart will provide v such
that FA(v)− F∗A ≤ ε in less than FA(vstart)− F∗A +

log log( 1
ε
).

Lemma 4:
FA(v)−F∗A ≤min

m
1

v2
mAmAT

m+1 ⇒ AAT v > 0

Proof. Let assume that there exists k such that
AkAT v≤ 0, and, let introduce w= v+t1k i.e. wm = vm
if m 6= k and wk = vk + t.

FA(wk) =
1
2 (v+ t1k)

T AAT (v+ t1k)−∑
m

log(vm)+

log(vk)− log(vk + t) = FA(v)+ tAkAT v+ 1
2 t2AkAT

k −
log(vk + t)+ log(vk). But, AkAT v ≤ 0, so FA(wk) ≤
FA(v) + 1

2 t2AkAT
k − log(vk + t) + log(vk), and, it is

clear that for 0≤ t� 1, FA(wk)< FA(v) (because this
is − log(vk + t) at first order).

Precisely, one could define Φ(t) = FA(v) +
1
2 t2AkAT

k − log(vk + t) + log(vk). Then, Φ′(t) =

AkAT
k t − 1

t+vk
and Φ′′(t) = AkAT

k + 1
(t+vk)2 and

Φ′′′(t) = − 2
(t+vk)3 . As, Φ′′′(t) ≤ 0 and t ≥ 0, Φ(t) ≤

Φ(0)+ tΦ′(0)+ t2

2 Φ′′(0) i.e.

Φ(t)≤− t
vk

+
t2

2
(AkAT

k +
1
v2

k
)

In particular, for t = vk
v2

k×AkAT
k +1

, FA(w) ≤ FA(v)−
1
2

1
v2

k×AkAT
k +1

. But, this is not possible if FA(v) is closer

than F∗A by this value.

Lemma 5:
Assume Ax≥ 1, then FA(v)≤FA(vstart)⇒ v≤ ||x||2×
(1+ ||x||2(FA(vstart)+M log(||x||2))×1.

Proof. From lemma 2, FA(v) ≥ ∑
m

f (vm) with f (t) =

t2

2||x||22
− log(t). Thus, for all k, FA(v) ≥ f (vk)+ (M−

1) f ∗ (and f ∗ =− log(||x||22) see lemma 2). So F(v)≤
FA(vstart)⇒ f (vk)≤ F(vstart)+M log(||x||22).

But, ∀t ≥ t∗,∃θ, f (t) = f (t∗) + (t − t∗) f ′(t∗) +
1
2 (t−t∗)2 f ′′(t∗)+ 1

6 (t−t∗)3 f ′′′(θ). Yet f ′′′(t)< 0 and
f ′(t∗) = 0, so it holds that f (t) ≥ 1

2 (t− t∗)2 f ′′(t∗) =
(t−t∗)2

||x||22
.

So f (t) ≤ FA(vstart) + M log(||x||2) ⇒ t ≤ t∗ +
||x||2

√
FA(vstart)+M log(||x||2). Applying this last

inequality to each component of v provide the ex-
pected inequality.

Theorem 1:
Damped Newton descent on FA starting from
any vstart will terminate eventually return-
ing v such that AAT v > 0 - precisely this

will happen at least when FA(v) − F∗A ≤
min

m
1

(||x||22×(1+||x||(F(vstart )+M log(||x||2)))2AmAT
m+1

Proof. This is just lemma 4 + lemma 5

3.2 Complexity

Definition for the rest of this paper,

ϒA =
√

max
m

AmAT
m (4)

In particular, FA(
1

ϒA
1) ≤ M2 + M log(ϒA) (from

Cauchy inequality).
Theorem from (Khachiyan, 1979):
There are standard complexity results about the link
between the total binary size L and the determinant
of a matrix since (Khachiyan, 1979). Typically, as-
suming XA 6= /0, there exists x such that Ax≥ 1. Even
more, one such x can be expressed as linear system
extracted from A. So, log(||x||22) = Õ(L) where L is
the total binary size of input matrix A. Also, trivially,
log(ϒA) = Õ(L).

Theorem 2:
The simplified self concordant Perceptron presented
in table 3 solves linear feasibility in less than Õ(ML)
Newton steps.

Importantly, the so-called second phase of the
Newton descent is negligible.

Proof. The proof is mainly the theorem from (Ne-
mirovski, 2004) with the correct value for vstart , F∗A ,ε.

First, theorem 1 provides the correct value for ε

(such that the algorithm outputs v with AAT v > 0).
Now, the ε is into a double log resulting in negligible
Õ(log(L)) complexity.

Thus, contrary to the state of the art, almost all
the algorithm takes place in the so called first phase
which lasts Õ(FA(vstart) − F∗A ) = Õ(ML) damped
Newton steps. Now, vstart =

1
ϒA

1, so FA(vstart) =

M2+M log(ϒA) = Õ(ML) and−F∗≤M log(||x||22) =
Õ(ML) from definition of ϒA, and, lemma 2, and,
from standard complexity results.

At this point, this paper proves that the simpli-
fied self concordant Perceptron (table 3) solves linear
feasibility in Õ(ML) damped Newton steps. How-
ever, this result is not really interesting by itself: it
is almost a corollary of self concordant theory from
(Nemirovski, 2004), and, better algorithms exists (re-
quiring only Õ(

√
ML) steps e.g. (Nesterov and Ne-

mirovskii, 1994)). Yet the interesting point of the pa-
per is the binary property of the complete self concor-
dant Perceptron (table 2), and, proven bellow.
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3.3 Binary Property

Lemma 6:
In damped Newton step, 1

1+λ
can be replace by a 2

approximation.

Proof. FA is convex so FA(v− θ(∇2
vFA)

−1(∇vFA)) ≤
1
2 (F(v) + FA(v − 1

1+λ(v) (∇
2
vFA)

−1(∇vFA))) if
1
2

1
1+λ(v) ≤ θ≤ 1

1+λ(v)

Lemma 7:
FA(
√

M
vT AAT v × v) < FA(v) - or with integer -

FA

(
1

int(
√

vT AAT v
M )+1

v

)
≤ FA(v)

Proof. Considering the function t → FA(t × v) triv-
ially proves that FA(v) decreases when v is normalized
such that vT AAT v goes closer to M.

The rounded version 1

int(
√

vT AAT v
M )+1

only ma-

nipulate integer and guarantees that vT AAT v ∈
[M

4 ,4M].

Definition for the rest of this paper,

ΓA = 1000M
√

MϒA (5)

Theorem 3:
Assume that vT AAT v≤ 4M, then:

∀ϖ ∈
[

0,
1

ΓA

]M

, F(v+ϖ)≤ F(v)+
1

200

In particular, ∀v,

F


int(ΓA×v1)+1

ΓA
...

int(ΓA×vM)+1
ΓA

≤ F(v)+
1

200

Proof. First, the log part only decreases when adding
ϖ≥ 0, thus, only the quadratic part should be consid-
ered. So F(v+ϖ)≤ F(v)+ 1

2 ϖT AAT ϖ+ϖT AAT v.
But, AT ϖ = ∑

m
ϖmAT

m so ||AT ϖ|| ≤ ∑
m

ϖm||AT
m|| ≤

||ϖ||∞Mϒ ≤ 1
500
√

M
and ||AT ϖ||2 = ϖT AAT ϖ ≤

1
(1000)2M .

So, ϖT AAT v ≤
√

ϖT AAT ϖ× vT AAT v ≤√
1

(500)2M ×4M ≤ 1
250 (from Cauchy). And,

1
2 ϖT AAT ϖ =≤ 1

2×(1000)2M ≤
50

1000 . Thus, it holds that

F(v+ϖ)≤ F(v)+ 1
200 .

Then, int(t)+1 is a special case of t+τ,τ ∈ [0,1],
so the offered rounding scheme correspond to add ϖ∈[
0, 1

ΓA

]M
.

Theorem 4:
The self concordant Perceptron presented in table 2 is
consistent with the simplified version (table 3), and,
adds:

• normalizing of v such that vT AAT v≤ 4M

• 2 approximation of 1
1+λ

• rounding all components of v with a common de-
nominator of ΓA

• and with w being the numerator after rounding
(could be seen as substitution w = ΓA× v)

and, thus, this algorithm converges like the simplified
version presented in table 3.

Proof. First, normalizing v is not an issue as it de-
creases FA as proven in lemma 7.

Then, as recalled in theorem from (Nemirovski,
2004), each damped Newton step (during the so called
first phase) decreases FA by at least 1

50 . Approximat-
ing of 1

1+λ
adds a factor 1

2 (see lemma 6).
Yet, as pointed in theorem 3, rounding on a com-

mon denominator of ΓA only increases FA by 1
200 .

So, combining damped Newton step with approx-
imation of 1

1+λ
+ normalization + rounding decreases

FA by at least 1
200 = 1

50 ×
1
2 −

1
200 ( 1

50 for the origi-
nal damped Newton step, 1

2 due to the approximation,
− 1

200 due to the rounding). From complexity point of
view, the conclusion is that the complete step of self
concordant Perceptron decreases FA by O(1).

Finally, to give an explanation of the steps
4 and 5 of algorithm table 2, ∇vFA = AAT v − 1

v1
...
1

vM

 So (ΓA)
3

 v1 ... 0
0 ... 0
0 ... vM

2

(∇vFA) =

−h And, ∇2
vFA = AAT +

 1
v1

... 0
0 ... 0
0 ... 1

vM

2

, so,

(ΓA)
2

 v1 ... 0
0 ... 0
0 ... vM

2

(∇2
vFA) = H

This way, N computed in step 6 of algorithm table
2 is the Newton direction adapted to w = Γ× v.

So, the self concordant Perceptron from table 2
has exactly the same property than the simplified ver-
sion of table 3.

4 CONCLUSIONS

This paper introduces an algorithm for linear pro-
gramming with arithmetic complexity of Õ(ML)
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Newton steps (higher from the state of the art by a
factor

√
M). But, this algorithm has good binary prop-

erty: it keeps the binary size of intermediary numbers
bounded by Õ(L), and, offers an explicit strategy for
rounding all intermediary numbers (see table 1).
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APPENDIX

Equivalence of Linear Programming and
Linear Feasibility

This paper provides an algorithm algo0 which re-
turns v such that AAT v > 0 on an input A assum-
ing ∃x, Ax ≥ 1 (undefined behaviour otherwise - v
is positive but this does not matter). Trivially, it is
thus possible to form algo1 which returns x such that
Ax > 0 on input A assuming such x exists by returning
AT algo0(A) (undefined behaviour otherwise).

• Thank to algo1, one could form algo2(A,b) which
returns x such that Ax > b assuming such x ex-
ists (undefined behaviour otherwise). Indeed, let
consider any A,b such that ∃x, Ax > b, finding
such x is equivalent to find a pair x, t such that
Ax− t×b > 0 and t > 0, because x

t is then a solu-
tion of the original problem. Formally, let A1 the
matrix A plus 1 as additional column and (0 1)
as additional row. Thus, one can get (x1 t1) by
computing algo1(A) and returning x1

t1
as output of

algo2(A,b).
Importantly, only constant number of vari-
ables/constraints are added, and, binary size is not
increased. So complexity of algo2(A,b) is the
same than algo1(A,b).

• Thank to algo2, one could form algo3(A,b) which
returns x such that Ax≥ b assuming such x exists.
Indeed, if ∃x/Ax ≥ b, then a fortiori ∃x, t such
that Ax+ t1× > b, 0 < t < 1

Ω(A) (with Ω(A) the
maximal subdeterminant of A). So, one could call
algo1 on A2,b2 with A2 being A plus 1 column
plus a row with 0 and Ω(A) and b2 being b plus
two 1. Thus, algo2(A2,b2) = x2, t2.
Now, one could consider greedy improvement
of min t

x,t, Ax+t1≥b,t≥0
initialized from (x2, t2). Such

greedy improvement can be performed by project-
ing (x, t) on {(x, t), Ax+ t1 ≥ b} while minimiz-
ing t. One such greedy step can simply be done
by looking for χ,τ such that AS χ+ t1S = 0 and
τ = −1 with S the saturated rows in Ax+ t1 ≥ b.
If no such χ,τ exists, the greedy improvement
has terminated otherwise one could do (x, t) ←
(x+µχ, t+µτ) with µ such that Ax+ t1≥ b, t ≥ 0.
There will be no more than M such greedy purifi-
cation because one row enter the saturated ones at
each step.
When this greedy process terminates, this leads to
x̂, t̂ with Ax̂+ t̂1 ≥ b, 0 ≤ t̂ ≤ t2 < 1

Ω(A) but x̂, t̂ is
a vertex of A. So Cramer rule applies, and so t̂ =
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Det(St )
Det(S) with S a sub matrix of A and St the Cramer

partial submatrix related to t. But t̂ ≤ t2 ≤ 1
Ω(A) ,

so t̂ = 0, and thus, Ax̂ ≥ b. So, this projection of
x2, t2 gives x3 = algo3(A,b).
Importantly, the binary size of A2,b2 is just twice
the binary size of A,b because log(Ω(A))≤ L(A),
so L(A2) = L(A)+ log(Ω(A)) ≤ 2L(A) and only
a constant number of variables constraints are
added. so complexity of algo3(A,b) is the same
than algo2(A,b).

• Let any A,b - without assumption - solving Ax≥
b (or producing a certificate that no solution ex-
ists) is equivalent to solve min

z /Az+t1≥b,t≥0
t (there is

a solution if the minimum is 0). Yet, this last lin-
ear program is structurally feasible (x = 0 and a
sufficiently large t provided a feasible point) and
bounded because t ≥ 0. Thus, primal dual theory
gives a system Aprimal−dual(x y) ≥ bprimal−dual
whose solution contains solution of the linear pro-
gram min

z /Az+t1≥b,t≥0
t.

Applying algo3(Aprimal−dual ,bprimal−dual) pro-
vides thus such xprimal−dual , yprimal−dual from
which one could restore x3, t3 with either t3 = 0
and so Ax3 ≥ b or t3 6= 0 (this is a certificate).
This leads to an algorithm algo4 which is able to
find x such that Ax≥ b (or to produce a certificate
that no solution exists) without assumption on A,b
about the existence or not of such x.
Importantly, the number of variables-constraints
is only scaled two folds when computing the pri-
mal dual, so from theoretical point of view, it
does not change the complexity between algo4
and algo3.

• Finally, for any A,b,c without any assumption
solving min

x /Ax≥b
cT x can be done with 2 algo4 calls

and one algo3 call:

– one to know if the problem is feasible i.e.
algo4(A,b)

– one on the dual to known if it is bounded
algo4(Adual ,bdual)

– and one call to algo3 on the primal dual to get
the optimal solution (if previous two compu-
tations certify that the problem is feasible and
bounded).

Again, from theoretical point of view, the com-
plexity does not change: it only does 3 calls on
instances only scaled 2 times. At the end, it re-
turns the optimal solution or a certificate that the
problem is not feasible or not bounded.

Thus, an algorithm algo0 which returns v such that
AAT v > 0 on input A if there exists such v (undefined
behaviour otherwise) allows to build with same com-
plexity algo5(A,b,c) which solves general linear pro-
gramming.

The opposite way is trivial algo5(AAT ,1,0) is a
correct implementation of algo1(A) for any A.
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Table 4: The sequences of pre/post processing connecting
linear feasibility and linear programming.

Assume algo1(A) takes A and returns one x such that
Ax > 0 if one exists, then:
algo2(A,b)

xt← algo1

((
A −b
0 1

))
return xt[:−1]/xt[−1] //python convention

takes A,b and returns one x with Ax > b if one exists.

algo3(A,b)
Γ← Hadamard bound on A

xt = algo2

 A 1
0 t
0 −Γ

 ,

 b
0
−1


x2, t2← xt[:−1],xt[−1]
S←{m,Amx2 + t2 = bm}
while ∃χ,ASχ = 1 do

x2← x2 +λχ , t2← x2−λ

with λ maximal such that Ax2 + t21≥ b
S←{m,Amx2 + t2 = bm}

end while
return x2

takes A,b and returns one x with Ax≥ b if one exists.

algo4(A,b)

Ap←
(

A 1
0 1

)
, bp←

(
b
0

)
, cp← (0 1)

compute Adual ,bdual ,cdual with duality theory

χ← algo3


 Ap 0

0 Adual
cp −cdual
−cp cdual

 ,

 bp
bdual

0
0




x← χ[: M], t← χ[M]
return x, t

takes A,b returns one x, t such that t > 0 means that
there is no Ax≥ b, and, t = 0 means that Ax≥ b.

algo5(A,b,c)
compute Adual ,bdual ,cdual with duality theory
x, t← algo4(A,b)
y,τ← algo4(Adual ,bdual)
if t > 0 or τ > 0 then

return infeasible (t > 0) or unbounded (τ > 0)
else

χ← algo3


 A 0

0 Adual
c −cdual
−c cdual

 ,

 b
bdual

0
0




return χ[: M]
end if

is a standard linear programming solver.
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