Verifiable Executable Models for Decomposable Real-time Systems

Callum McColl1 a, Vladimir Estivill-Castro2 b, Morgan McColl1 c and René Hexel1 d

1 School of Information and Communication Technology, Griffith University, Brisbane, Australia
2 Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08018, Spain

Keywords: Safety-critical Real-time Systems, Model-driven Development, Executable Models, Formal Verification.

Abstract: Formally verifiable, executable models allow the high-level design, implementation, execution, and validation of reliable systems. But, unbounded complexity, semantic gaps, and combinatorial state explosion have drastically reduced the use of model-driven software engineering for even moderately complex real-time systems. We introduce a new solution that enables high level, executable models of decomposable real-time systems. Our novel approach allows verification in both the time domain and the value domain. We show that through 1) the use of a static, worst-case execution time, and 2) our time-triggered deterministic scheduling of arrangements of logic-labelled finite-state machines (LLFSMs), we can create succinct Kripke structures that are fit for formal verification, including verification of timing properties. We leap further and enable parallel, non-preemptive scheduling of LLFSMs where verification is feasible as the faithful Kripke structure has bounded size. We evaluate our approach through a case study where we fully apply a model-driven approach to a hard time-critical system of parallel sonar sensors.

1 INTRODUCTION

Model-driven software engineering (MDSE) has progressed remarkably (Buchiarone et al., 2020; Buchiarone et al., 2021) in creating executable models that define behaviour at a high level. However, with the same ease as generating high level behaviours, it is possible for these to have semantic variants and thus, formal verification of the model results in cases where correctness properties hold for some scenarios, but not others (Besnard et al., 2018). This happens even for a current version of UML (Guermazi et al., 2015). Another anomaly with executable models of UML (UML) is that race conditions, or execution paths may diverge, depending on the order of construction, even if the same model editor is used to construct the executable model, since there still are some constructs with ambiguous semantics (Pham et al., 2017; Estivill-Castro 2021).

Despite the advances in testing approaches, such as test-driven development (Mäkinen and Münch, 2014) and continuous integration (Hilton et al., 2016), testing only proves the existence of defects, not their nonexistence, whereas formal methods (in particular model checking) can ensure the correctness of the software. Thus, it would seem natural that executable models constructed under MDSE should be suitable for model checking. In Section 2 we provide a new perspective into the challenges for verification in the time domain. This analysis not only reviews the state of the art, but in Section 3 we show why time-domain verification with an arbitrary scheduler results in large sets of possible time-points and further state space explosion. State space explosion is a major inhibitor to more widely adopted model-checking to verify executable models. Although event-driven programming has been extremely productive for many types of systems, it is fundamentally a best-effort approach and it cannot ensure it meets hard deadlines (Lamport, 1984). Formal verification is significantly more feasible for time-triggered systems than for event-driven systems (Furrer, 2019).

In Section 4 we analyse the advantages of logic-labelled finite-state machines (LLFSMs) to reduce state space explosion in the time-domain. For now, consider LLFSMs as UML state-charts where events can no longer label transitions but only guards can. While this seems to be a restriction, LLFSMs remain Turing-complete and there is no loss of expressive power. Moreover, we indicate how the machines
can be statically analysed and scheduled in a time-triggered fashion. As a result, rather than a machine waiting in a state for an event to trigger a transition (which leads to all the issues and complications of the Run-To-Completion (RTC) semantics (Eriksson et al., 2003; OMG, 2019; Samek, 2008; Drusinsky, 2006; Selic et al., 1994)), machines are running the activities in their states when their turn arrives. This subtle change results in a massive reduction of the state-space for the model checker. Moreover, because we can perform static analysis and scheduling, we can not only verify correctness properties in the value-domain, but also in the time domain. It may seem surprising that one is willing to trade the ease of development of an event-driven approach for the more elaborate planning of a schedule in the time-triggered approach. We argue that for embedded systems, the event-driven approach (akin to the notion of an interrupt, where the handler suspends the current code) may not be suitable. Take, for example, the communication channels between the programmable real-time units (PRUs) and the ARM processors of TI’s BeagleBone-Black (Molloy, 2014). Here, all synchronisation is through polling the status of Boolean flags. There often are no operating systems for bare-metal microcontrollers such as the PRUs, not even a real-time OS. In Section 5 we present a novel time-triggered alternative to schedule an arrangement so that the behaviours execute under controlled concurrency. Moreover, we show that modelling with LLF-SMs facilitates the construction of a schedule. A core contribution is that we show how we formally verify that this schedule results in a system that meets properties in the time domain as well as in the value domain. Section 6 describes the design of parallel, non-preemptive scheduling that is also verifiable. Section 7 illustrates the approach with a timing-critical system of parallel sonar sensors before we conclude in Section 8.

2 VERIFYING TIME

2.1 Verification of Executable Models

Formal verification is paramount when designing complex systems, particularly in the domain of safety-critical real-time systems. MDSE has long been promising (Selic, 2003) to overcome the limitations of traditional programming languages while rigorously expressing executable concepts (Mellor, 2003). Executable models strive to remove the danger of human translation error and ensure that the execution semantics corresponds to the target system. However, formal verification of executable models is not ideal: as system complexity grows, current approaches quickly reach their limits, as the composition of a complex system from multiple subsystems results in a combinatorial state explosion (Seshia et al., 2018). Model checking verifies abstractions as a workaround to this problem, but the verified model is only indicative of what actually runs, introducing a semantic gap.

Formal verification of a model that does not correspond to its implementation is informative, but potentially worthless. The challenge within real-time systems is that, in addition to correctness in the value domain, correctness in time is vital. A value-domain failure means that an incorrect value is produced while a temporal failure means that a value is computed outside the intended interval of real-time (Kopetz, 2011, Page 139). Temporal verification is hard, as it must consider all timing combinations of all possible tasks across all potential schedules. Such combinations result in an unviable state space explosion, requiring simplifying assumptions in existing approaches for formal verification, dangerously widening the semantic gap.

Time must be treated as a first-order quantity that can be reasoned upon to verify that a system will be able to meet its deadlines (Stankovic, 1988). While UML profiles such as MARTE (Andre et al., 2007), and specific languages and tools such as AADL (Feiler et al., 2005) enable requirements engineering of real-time systems, the event-driven nature and the adoption of the RTC semantics prevails around UML; thus we still have to see executable (Pham et al., 2017) and formally verifiable models without semantic gaps (Besnard et al., 2018) or serious restrictions to specific subsets (Zhang et al., 2017; Berthomieu et al., 2015). Alternatively the RTC semantics must be simplified significantly (Jin and Levy, 2002; Kabous and Nebel, 1999). Till August 2020, Papyrus™ (Guermazi et al., 2015) (the most UML 2 compliant tool), only had an incomplete Moka prototype for executing UML state charts. Papyrus Real Time (Papyrus-RT) UML models show discrepancies with their nuXmv simulation (Sahu et al., 2020), even in the value domain (let alone the time domain) and the (non real-time) C/C++ code of Papyrus-RT requires a runtime system (RTS) and a C/C++ Development Toolkit (CDT) that use non-real time Linux concurrency features. Thus, MDSE fails to guarantee time-related correctness properties.
2.2 Models of Time

When performing model checking, the system is represented as a formal model \(M \) that corresponds, without semantic gaps, to a transition system known as a Kripke structure. A model checker verifies whether the model \(M \) meets some specification \(\phi \) (D'Silva et al., 2008) by examining the Kripke structure. The specification is created through the use of specific languages, usually some form of temporal logic (Alur et al., 1993). However, a prevalent concern for the extended impact of MDSE is whether the technical difficulties of translating models into code result in errors due to subtleties in meaning (Selic, 2003) and dangerous semantic gaps (Besnard et al., 2018). The modelling tool must be able to guarantee that the semantics defined by the model is the same when the model is implemented (Mellor, 2003).

Finite-state machines are ubiquitous in modelling the behaviour of software systems, appearing in prominent systems modelling tools and languages such as the UML (OMG, 2012), SysML (Friedenthal et al., 2009), or timed automata (Alur and Dill, 1994). In these modelling tools, transitions are usually labelled with an event \(e \) that triggers the transition. Model checking approaches that follow these event-triggered semantics typically use an idealised view of events that puts aside some of the realities of cyber-physical systems (Lee, 2008). Often, model checking tools take the view that events occur on a sparse (or discrete) time base and that no event can occur while the system is already processing another event (Alur and Dill, 1994). Most real-time systems are cyber-physical systems where events can originate from the environment (which is not in the sphere of control of the computer system), meaning that events originate on a dense (or continuous) time base and may originate while the computer system is processing other events (Kopetz, 1992). Importantly, the computer system must decide on what happens to events that occur while the computer system is processing other events. Are they to be placed on a queue to be processed later? What priority criteria shall be used to order events on the queue? Is the queue bounded or unbounded? How does the computer system process simultaneous events? In rare circumstances such as an event shower, does the computer system drop events? And if so, does the computer system choose which events to drop? Even training materials for certification on UML are ambiguous.

"Events that are not processed off the pool are generally dropped. They will need to be resent to the state machines for them to be considered. The order the events are examined from the pool is not specified, though the pool is usually considered an event queue" (Chonoles, 2017).

Model checking approaches using event-triggered finite-state semantics often leave these issues undefined. This can cause the resulting system to significantly deviate from the semantics of the model (von der Beeck, 1994).

The only way to discern the timing of event-triggered systems is to consider all combinations of temporal effects of all possible events and event handlers (Kopetz, 1993). The nature of the non-deterministic scheduling of the system based around when events arrive requires considering all possible combinations. That is, the uncontrollability of the order and frequency of environment events results in uncontrollable concurrency of event handlers, challenging the capability to reason about timely behaviour for event-triggered systems particularly when designing temporally accurate real-time systems (Lee et al., 2017; Furrer, 2019).

3 STATE EXPLOSION

A model checker must inspect all possible execution paths through a program relevant to the properties tested. For event-triggered systems, accurate verification should include configuration of all event queues. However, most verification tools ignore this issue (Bhaduri and Ramesh, 2004).

When time verification is required, this must also take into consideration the execution time of tasks. A \textit{worst-case execution time (WCET)} analysis is mandatory to ensure deadlines will be met under all circumstances. However, the WCET can be prohibitively complex to analyse when composing a complex system from a diversity of subsystems. The execution time of tasks falls within a range \([BCT, WCET]\) where \(BCET \) is equal to the \textit{best-case execution time}. Non-deterministic scheduling based on event occurrence and ordering introduces a further state explosion, as any event-triggered task may be executed at any point in time and in any order. Verification must therefore ensure that timing deadlines will be met for any chain of events, where each task responding to an event takes an execution time somewhere between the \(BCET \) and \(WCET \). To verify such a system, each time point within this range must be considered, as the system behaviour may change, depending on the ordering of events. When subsystems communicate using events, the ordering of events becomes important.

Moreover, a subsystem may generate more events, which must be handled, causing greater delays. Since the timing of the system may change depending on
the ordering of when events happen, all possible event combinations must be verified they meet all deadlines. Timed automata attempt to deal with this issue by using region automata (Alur et al., 1993, p. 18). This breaks up the range of possible execution times into sub-ranges which are used to verify properties under different combinations of time limits. While timed automata ameliorate this issue, the technique cannot remove it altogether. Since state space explosion still remains, the more complex a system becomes, the more combinations must be verified. Consider a sequence of events $e_0 \rightarrow e_1 \rightarrow \ldots \rightarrow e_n$. Even when we know that the processing of an individual event e_i takes some time t_{e_i} such that $BCET_{e_i} \leq t_{e_i} \leq WCET_{e_i}$ and thus the sequence would be handled no later than $\sum_{i=0}^{n} WCET_{e_i}$, what guarantees can we offer regarding handling event e_i, for each i? The following lemma can be verified by induction.

Lemma 1. For all i,

$$\sum_{j=0}^{i} WCET_{e_j} - \sum_{j=0}^{i+1} BCET_{e_j} \leq \sum_{j=0}^{i+1} WCET_{e_j} - \sum_{j=0}^{i+1} BCET_{e_j}. $$

That is, the range of possible time points increases monotonically with more events. Moreover, the overall amount of t processing time for the sequence of events is therefore $t = t_{e_0}$ when processing only one event e_0. However, if the order of events is arbitrary, and event e_j arrives somewhere during the handling of the previous $i-1$ events, event e_i waits on a first-in-first-out queue anywhere between $\sum_{j=0}^{i} BCET_{e_j}$ and $\sum_{j=0}^{i} WCET_{e_j}$ with numerous partitions possible for the handling of earlier events. From this discussion, we can see that the amount of clock values that must be considered by the verification to ensure bounds on the lag for handling an event increases with the length of the event sequence. Moreover, even under the optimistic assumption that the overhead of event queuing does not prevent determination of the specific $BCET$ and $WCET$ bounds for each task, the possibility to trigger subsequent events causes an overall multiplicative effect (and thus, combinatorial state explosion) that quickly will make time verification infeasible for most systems.

4 Determinism with LLFSMs

In our approach, we will take advantage of the deterministic schedule for Logic-Labelled Finite-State Machines (LLFSMs) (Estivill-Castro et al., 2012). LLFSMs constitute executable models, enabling model-driven development. Even with a minimal action language (with assignment and integers), LLFSMs are Turing complete. Thus, there are programs for which some properties are not verifiable. However, we accept this is analogous to verifying any system that is implemented using a Turing-complete language. We leave open the particular language used for state actions. However, if a detailed semantics is to be considered, we can choose IMP (Winskel, 1993) for the action language compatible with model checkers such as NuSMV and nuXmv. The important aspect is that LLFSMs have a deterministic semantics, because they do not label transitions with events.

Rather than an uncontrolled concurrency at the mercy of events popping out in the environment or the system itself, LLFSMs offers controlled concurrency and a deterministic schedule. An arrangement of LLFSMs is ordered and represents a system. Each LLFSM consists of a finite set S of states and starts with an initial state s_0. The system starts with the initial state of the first LLFSM in the arrangement. Each transition is labelled with some Boolean logic expression instead of an event. This fundamentally changes the model of state execution. Each current state is not sleeping (as is the case with the event-triggered flavoured versions of finite-state machines) and is instead, periodically scheduled. Each transition is a member of an ordered sequence of transitions. For the current state, the logical conditions on each transition are therefore evaluated sequentially, in a deterministic order, from the first transition to the last.

All states have sections that may contain source code. The sections that execute when the current state is scheduled constitute a *ringlet*, and are determined as follows. The OnEntry section of a state is executed when the LLFSM first transitions to that state. Conversely, OnExit is executed when a transition fires, i.e. the Boolean expression of some outgoing transition evaluates to true. Alternatively, if no transition fires, the code in the Internal section gets executed.

A common schedule is to assign the token of execution in a round-robin fashion (Estivill-Castro et al., 2012). However, since a LLFSM ringlet may execute differently for the same current state, ringlets have variable duration and are executed one after another resulting again in a large number of time boundary values to consider by model-checkers. It would appear that LLFSMs do not resolve the state explosion alluded before. However, in Section 5 we will show how to we can utilise the deterministic order of LLFSMs execution to obtain timing guarantees.

McCull et al. showed (McCull et al., 2017) that actual practical implementations of executable LLFSMs can be obtained using the Swift programming language. These implementations have demonstrated the generation of efficient Kripke structures from executable LLFSMs, which can be used for formal ver-
ification in the value domain. The size of these Kripke structures is minimised through a combination of strict type-checking rules in combination with functional programming concepts such as referential transparency and how communication is modelled between LLFSMs (McColl et al., 2017). Recall that a ringlet represents a single execution of a single state within a single LLFSM. The execution of a single ringlet can be made atomic (McColl et al., 2018) through the use of context snapshots of the external variables. The external variables represent variables that are in the sphere of control of the environment, e.g., representing the value of sensors. Before the ringlet is executed, a snapshot of the external variables is taken. The state that is executed (along with all transition checks) acts on this snapshot. The state reads and manipulates variables of the snapshot and then, when the state has finished executing, writes the snapshot back out to the environment. This overcomes inconsistencies where the external variables may change during the execution of a state, as the state is only ever acting on the snapshot. This also simplifies the Kripke structure as the execution of the state becomes atomic. Since the only way that the LLFSM can communicate with the sensors/actuators is through the use of the external variables, the only Kripke States that matter are those that represent the configuration of the LLFSM before and after (but not during) the execution of the state.

We take this idea of an atomic ringlet further, by introducing the notion of decomposing Kripke structures into smaller individual structures. LLFSMs that do not communicate are thus able to be verified independently within the value domain. However, variations in the timing of a schedule for LLFSMs must be resolved if we are to achieve the same effect for time-domain verification.

5 TIME VERIFICATION

We define the WCET of an LLFSM (denoted $WCET_{LLFSM}$) as the largest WCET of the set of all possible ringlets of the LLFSM. Conversely, the $BCET$ of the LLFSM (denoted $BCET_{LLFSM}$) is equal to the smallest $BCET$ of the set of all possible ringlets of the LLFSM. Note that since state sections in LLFSMs do not have control structures, these values can be obtained by static analysis.

The time-triggered model of computation partitions and separates large systems into subsystems through small, stable interfaces (Kopetz, 1998). Important here is the concept of a temporal firewall (Kopetz and Nossal, 1997) that allows arrest-
ify time-domain properties on the corresponding TTS.

5.1 An Illustrative Example

Considering the LLFSMs shown in Fig. 1 as an example. The Sum LLFSM can be reduced to adding two numbers a and b together and store the sum in result. However, only after 20 milliseconds, will the initial state add the numbers together. Since the computation of the sum is in the OnExit action of the state, the result value will only be computed just as the system LLFSM transitions to the Terminal state. The after_ms(20) statement returns a Boolean value indicating whether 20 milliseconds have elapsed since the LLFSM first started executing the Initial state. The OnEntry action of the Initial state of the Sleeping LLFSM takes 30 milliseconds to execute. Once it finishes executing the OnEntry section, it checks its transitions, finds that the transition marked with true is valid, and will transition to its Terminal state.

When executing these LLFSMs, we must first evaluate the WCET of each LLFSM. This will be used to determine the amount of time allocated to the time slot for each LLFSM. Let us assume we have analysed the WCET of the Sum LLFSM to be 5 milliseconds. This value would represent the ringlet where the after_ms(20) transition evaluates to true and the LLFSM transitions and executes the OnExit action. For the Sleeping LLFSM, assuming the WCET is 35 milliseconds for instance, captures the ringlet where the OnEntry action is executed and the system transitions to the Terminal state.

To handle the after_ms transitions, each LLFSM within the TTS is also allocated a clock. The clock for the LLFSM is used to represent the amount of time that the LLFSM remains within the current state. The Sum LLFSMs clock c_{Sum} here is used to stipulate when the LLFSM moves from the Initial state to the Terminal state. The c_{Sum} clock only resets when the LLFSM transitions to a new state. This means that as long as the LLFSM remains in the same state, the c_{Sum} clock will continue to increase. The after_ms(20) transition which limits the LLFSM to
transition only after 20 milliseconds can be expressed in the TTS by creating a guard on the edge leading to the \(K \) node corresponding to the first ringlet when the LLFSM moves to the Terminal state. The guard is expressed by an evaluation on the \(\epsilon_{sum} \) clock with the usual \(\text{sync} \) and \(c \) guards: \(\epsilon_{sum} > 20000 \land c = \text{sync} \).

Since the LLFSM is not part of a hierarchy and does therefore not communique, we can apply the optimisation discussed earlier and further minimise this Kripke structure by creating isolated Kripke structures. These isolated Kripke structures have 5 and 7 nodes respectively. When creating the isolated Kripke structures, it is important to maintain the timing of the schedule. Therefore, although the isolated Kripke structures are able to eliminate nodes of unrelated LLFSMs, thus avoiding a combinatorial state explosion, they must include the time of the schedule cycle. This is to account for the timing of all the other LLFSMs that are executing, without requiring them to be included in the Kripke structure.

6 PARALLEL EXECUTION

We now extend our ideas to enable parallel execution. By utilising a combination of a static schedule and module isolation, we can significantly reduce and minimise Kripke structures so that scheduling becomes deterministic and timing verification becomes possible. Here we use the same techniques to allow LLFSMs to execute in parallel.

LLFSMs may exert control over other LLFSMs within an LLFSM-hierarchy (Estivill-Castro and Hexel, 2013a). LLFSMs may also share access to external variables without concurrency issues. Both of these features constitute communication lines between LLFSMs. We leverage the use of an algorithm that identifies subsystems that can be verified independently, and has been utilised for efficient model checking and failure mode effects analysis (FMEA) of safety-critical systems (Estivill-Castro and Hexel, 2013b). Here we build on that algorithm to allow partitioning of a system into subsystems that can run in parallel while maintaining verifiability of the system as a whole in both the time and value domain.

In our earlier example, the \(\text{Sum} \) and the \(\text{Sleeping} \) LLFSMs are not part of a hierarchy and do not use external variables, thus enabling the creation of isolated Kripke structures. Since these conditions enable parallel execution, these two LLFSMs, can execute simultaneously on at least two cores. The corresponding isolated Kripke structures would reduce the amount of time between \(\# \) and \(\# \) nodes to 0, since the other LLFSM is executing on a separate core, there is no wait time. When the dependencies between all LLFSMs are known, we create a static schedule.
for each core. We follow (Estivill-Castro and Hexel, 2013b) and create a dependency graph that details the dependencies that each LLFSM uses to communicate. Fig. 4 illustrates this.

We use a dependency graph following Holt’s notation (Holt, 1972). Nodes A, B, C, D and E each represent an LLFSM. The nodes E_0 and E_1 represent external variables. The edges of the nodes represent communication lines. The lines between the LLFSMs represent the hierarchical owner/slave relationship between them. Therefore, in Fig. 4, A controls B and C. The lines connecting the LLFSMs to the external variables represent LLFSMs that have access to this particular set of external variables. Importantly, we extend the semantics of external variables to provide read-only and write-only semantics. The lines marked with <read> only read the external variables (sensors). Any lines marked with <write> (though none appear in this example) only write to the external variables (actuators). Those lines that remain unmarked (the line between A and E_1 for example) follow the original semantics where the LLFSMs can both read and write to the external variables.

This extended semantics facilitates a more fine-tuned scheduling strategy. In Fig. 4, nodes A and D can execute at the same time. This is achieved through a shared snapshot of external variables E_0. Since the LLFSMs do not write to the snapshot but simply read it, they are able to execute their ringlets simultaneously, which reads from a shared snapshot of external variables E_0. If one of the LLFSMs were to write to the snapshot, then this would constitute a race condition. This is why A and E cannot share a snapshot of external variable E_1. Furthermore, we cannot schedule A, B and C simultaneously as A may exert control over B and C during the execution. We can, however, schedule B and C simultaneously since they are not communicating, and neither are C, D, and E. Thus, many equivalent schedules are possible.

It is vital that we maintain the use of a static schedule, which allows solving of the NP-hard scheduling problem (Xu and Parnas, 1990) pre-runtime. We can then verify that the schedule satisfies all constraints depicted by the dependency graph before run-time. Importantly, it has been shown that such non-preemptive real-time scheduling can be done efficiently across multi-core processors with shared caches (Xiao et al., 2017). Fig. 5 shows a possible configuration of a schedule for a dual-core system.

As depicted in the figure, we can see that the schedule may contain synchronisation points where multiple LLFSMs communicate. Recall that A reads from E_0 but also reads from and writes to E_1. A also controls B and C. A is a particularly contentious LLFSM to schedule as it communicates with many nodes within the dependency graph. However, we need to be able to schedule LLFSMs in parallel with A is executing as to take advantage of the dual-core system. We can, therefore, execute A and D together. Once A has finished executing on the first thread, we can immediately start executing C. Note, that C is triggered while D is still running on the second thread. Once D has finished executing, we can also immediately start executing E on the second thread since E has no dependencies shared with C. When C has finished executing, we can then immediately start executing B. This may seem to introduce a race condition. However, since B is writing to the external variables E_1 after the snapshot is taken by E, it cannot influence the execution of E. Note that after executing E, the second thread must wait some time to finish at the same time as the first thread and thus complete the scheduled cycle. This resulting laxity is indicated by the black box after E.

We follow the earlier procedure to create a Kripke structure. We create 3 isolated Kripke structures:

1. one containing LLFSMs A, B and C.
2. one containing LLFSM D, and
3. one containing LLFSM E.

The cycle time equals the maximum of the cumulative WCETs across cores, and the timed Kripke structure must account for any laxity on the other cores. The time between C and B would thus be included in the transition from the \forall node of C to the \exists node of B. Similarly, for the other Kripke structures, the leftover time of the schedule cycle labels the transitions from the \forall node to the next \exists node for the D Kripke structure. For E, the Kripke structure would contain the execution time of D as well as the laxity at the end of the schedule.
7 THE SONAR CASE STUDY

We will now illustrate, in a realistic case study, the advantages of our MDSE approach of time-domain verification of executable models. To this end, we implement an embedded sonar sensor system that is a vital, often safety-critical, real-time component in systems ranging from automotive driver-assist systems to autonomous vehicles and robots.

The model represents a vehicle with several sonar sensors that measure the distance to potential obstacles. Each sonar sensor covers a section in space around the vehicle and the sonars are displaced to prevent propagating signals from interfering. In our implementation, we use the sonars on a differential robot to determine the distance to an object. Still, the notions discussed here are applicable to comparable sensors that contain emitters and receivers and measure distance through time-of-flight, e.g. in systems such as self-driving cars.

The sonar’s operation must record the time it takes for the signal to travel from the emitter to the object, and then from the object back to the receiver. The distance reported is directly proportional to the time, and its precision and reliance/obsolescence relates to strict execution timing requirements. Notably, the timing can vary by orders of magnitude and is in the sphere of control of the environment (e.g. the changing distance to an approaching obstacle), rather than the real-time computer system.

We now show that we can meet strict timing requirements while designing a modular, decomposable system, i.e. can be composed of individual modules for each sensor. Moreover, our resulting model will be scalable, i.e. be able to utilise the module isolation algorithm from the previous section to avoid combinatorial state explosion when generating the corresponding Kripke structure.

While such a state explosion could be avoided if we implemented this model through a non-preemptive schedule of measuring tasks, in reality, this is not feasible. Such a solution would cycle through the sonar sensors by sending out a pulse, waiting for that pulse to return, calculating the distance, and then executing a similar task for the subsequent sensor. This is infeasible because the act of reading from a sonar sensor involves emitting a pulse and then waiting for that pulse to return. The further an object is from the sensor, the longer it takes for the pulse to return. Unfortunately, this has dire consequences. This is because it takes an indeterminate amount of time before the sonar pulse returns (infinity, if there is no obstacle). Even if we bound the time by a maximum distance, the upper bound for each measurement is orders of magnitude higher than the lower bound when an obstacle is close. Now imagine a scenario where task 1 is associated with a clear sensor (i.e. taking its maximum amount of time). Task 1 is scheduled prior to task 2 that measures the distance to a rapidly approaching obstacle. It is easy to envision that the no-obstacle WCET for Task 1 would cause Task 2 to miss its deadline resulting in a late sighting.

Switching to a pre-emptive schedule is not scalable, as the corresponding models suffer from the aforementioned combinatorial state explosion. Thus, we employ our time-triggered approach, which allows us to create a simple model that will give accurate readings with deterministic timing and bounded errors. To this end, we have created a system of replicated LLFSMs. Consider the LLFSM depicted in Fig. 6, operating on a single sonar sensor to produce a distance calculation. An arrangement of three of these machines constitutes an executable model that in our case was then deployed on an Atmel ATmega32U4 Microcontroller, operating at 16MHz, that interfaces with three external sonar sensors.

In the Setup state, a machine sets up the appropriate pins for reading and writing. Writing to the output pin in the Skip_Garbage state creates the sonar signal. The next states are called Wait_For_Pulse_Start, ClearTrigger and Wait_For_Pulse_End and use the numloops variable to count the number of ringlets the machine executes while waiting for the sonar wave to reflect and register at the input pin. The next states calculate the distance and transition back to the Setup states to take a new reading.

Our static schedule calculates the distance by relating the time to the number of ringlets executed in our machine. Since our schedule executes one ringlet in each machine in turn, the time that the signal travels is related to the length of the schedule cycle. Since we have replicated our machines, the WCETs, and thus the time slots, are of the same length and our schedule cycle is simply $3 \times WCET$.

In our experiments, the $WCET$, including dispatch overhead, was 244μs for each of these machines. Therefore, the machines time slots are taken from the following table.

<table>
<thead>
<tr>
<th>Start Time (µs)</th>
<th>Length (µs)</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>244</td>
<td>I</td>
</tr>
<tr>
<td>244</td>
<td>244</td>
<td>II</td>
</tr>
<tr>
<td>488</td>
<td>244</td>
<td>III</td>
</tr>
</tbody>
</table>

Our overall cycle time is 732μs, which produces a constant, upper error bound of approximately 13cm.

While this demonstrates that we can achieve a constant error bound while retaining the ability of...
model checking in both the value and time domains, we can further improve this by leveraging our approach to schedule these LLFSMs in parallel. This is trivially achievable through module isolation, as the LLFSMs do not share any dependencies. To this end, we have created an implementation in the Swift language for LLFSMs. This shows that our approach allows not only to utilise a language such as C/C++, but that it may leverage modern programming languages such as Swift. Creating an implementation in Swift provides high-level concepts such as functional programming, protocol-oriented design, as well as additional type safety. Our approach is capable of executing not only on just embedded devices, but other platforms such as desktop or mobile devices.

We use a whiteboard middleware (Estivill-Castro et al., 2014) to represent sensor input in simulation. The schedule for the 3 parallel LLFSMs uses a similar dispatch table, but, the start time of each time slot is 0. This is because we can leverage a system with at least three cores, allowing us to schedule these LLFSMs at the same time. The result of this approach is that the WCET of the schedule cycle decreases, thus decreasing the amount of error associated with the amount of time an LLFSM would have to wait before it would be able to execute its next ringlet. This reduces the error by a third, since each LLFSM would not have to wait for other LLFSMs to finish executing their ringlet.

We have generated Kripke structures for both the sequential and the parallel schedule for the three sonar machines utilising the swift version of the Sonar LLFSM. For each variant, 3 separate isolated Kripke structures were generated each representing a single sonar LLFSM. In the repository https://github.com/mipalgu/SonarKripkeStructures one can find nuXmv source files containing the Kripke structures as well as graphviz versions which enable the visualisation of the Kripke structures. Each of the nuXmv files contains the timed transition systems for the evaluation of LTL proofs in both the value and time domains. For example, consider the proof of Fig. 7, which stipulates that the sonar machine will always calculate a distance (or fail to detect any obstacles) within 35 ms.

Let $	ext{LTLSPEC}$ be a third, since each LLFSM would not have to wait for other LLFSMs to finish executing their ringlet.

We have generated Kripke structures for both the sequential and the parallel schedule for the three sonar machines utilising the swift version of the Sonar LLFSM. For each variant, 3 separate isolated Kripke structures were generated each representing a single sonar LLFSM. In the repository https://github.com/mipalgu/SonarKripkeStructures one can find nuXmv source files containing the Kripke structures as well as graphviz versions which enable the visualisation of the Kripke structures. Each of the nuXmv files contains the timed transition systems for the evaluation of LTL proofs in both the value and time domains. For example, consider the proof of Fig. 7, which stipulates that the sonar machine will always calculate a distance (or fail to detect any obstacles) within 35 ms.

Let LTLSPEC be a third, since each LLFSM would not have to wait for other LLFSMs to finish executing their ringlet.

We have generated Kripke structures for both the sequential and the parallel schedule for the three sonar machines utilising the swift version of the Sonar LLFSM. For each variant, 3 separate isolated Kripke structures were generated each representing a single sonar LLFSM. In the repository https://github.com/mipalgu/SonarKripkeStructures one can find nuXmv source files containing the Kripke structures as well as graphviz versions which enable the visualisation of the Kripke structures. Each of the nuXmv files contains the timed transition systems for the evaluation of LTL proofs in both the value and time domains. For example, consider the proof of Fig. 7, which stipulates that the sonar machine will always calculate a distance (or fail to detect any obstacles) within 35 ms.

Let LTLSPEC be a third, since each LLFSM would not have to wait for other LLFSMs to finish executing their ringlet.

We have generated Kripke structures for both the sequential and the parallel schedule for the three sonar machines utilising the swift version of the Sonar LLFSM. For each variant, 3 separate isolated Kripke structures were generated each representing a single sonar LLFSM. In the repository https://github.com/mipalgu/SonarKripkeStructures one can find nuXmv source files containing the Kripke structures as well as graphviz versions which enable the visualisation of the Kripke structures. Each of the nuXmv files contains the timed transition systems for the evaluation of LTL proofs in both the value and time domains. For example, consider the proof of Fig. 7, which stipulates that the sonar machine will always calculate a distance (or fail to detect any obstacles) within 35 ms.

Let LTLSPEC be a third, since each LLFSM would not have to wait for other LLFSMs to finish executing their ringlet.

We have generated Kripke structures for both the sequential and the parallel schedule for the three sonar machines utilising the swift version of the Sonar LLFSM. For each variant, 3 separate isolated Kripke structures were generated each representing a single sonar LLFSM. In the repository https://github.com/mipalgu/SonarKripkeStructures one can find nuXmv source files containing the Kripke structures as well as graphviz versions which enable the visualisation of the Kripke structures. Each of the nuXmv files contains the timed transition systems for the evaluation of LTL proofs in both the value and time domains. For example, consider the proof of Fig. 7, which stipulates that the sonar machine will always calculate a distance (or fail to detect any obstacles) within 35 ms.
8 CONCLUSION

We have demonstrated a MDSE approach for verifiable and executable models of decomposable real-time systems. We have shown that a time-triggered model can overcome the combinatorial state explosion and unbounded delays often associated with event-triggered systems. We can isolate subsystems to formally verify system execution time bounds, with the associated ability to handle events within a given deadline. This has been achieved by creating temporal firewalls between the subsystems involved, using a static time slot based scheduler. We have further demonstrated that this approach can be extended to parallel, non-preemptive schedules across multiple processor cores. By identifying dependencies between subsystems, we are able to identify communication dependencies between the subsystems and create fine-tuned schedules.

Our techniques have successfully been applied in a real-time system case study of vehicular sonar sensors. Through the introduction of the time-triggered scheduler, we have mitigated the issues that forced the timing of critical tasks from being tightly coupled to what is occurring in the environment, i.e. outside their sphere of control. In doing so, we have shown how the design of a system can be achieved at a high level, through an executable model that can be decomposed into isolated modules, which enables verification through much smaller Kripke structures, even when utilising a parallel schedule.

REFERENCES

Estivill-Castro, V., Hexel, R., and Rosenblueth, D. A. (2012). Failure mode and effects analysis (FMEA) and model-checking of software for embedded systems by sequential scheduling of vectors of logic-labelled finite-state machines. 7th IET Int. Conf. on System Safety.

co-located with ACM/IEEE 18th Int. Conf. on Model Driven Engineering Languages and Systems (MODELS 2015), vol. 1560, p. 3–8. CEUR-WS.org.

