
Evolving Evaluation Functions for Collectible Card Game AI

Radosław Miernik and Jakub Kowalski
University of Wrocław, Faculty of Mathematics and Computer Science, Poland

Keywords: Evolutionary Algorithms, Evaluation Functions, Collectible Card Games, Genetic Programming, Strategy
Card Game AI Competition, Legends of Code and Magic.

Abstract: In this work, we presented a study regarding two important aspects of evolving feature-based game evaluation
functions: the choice of genome representation and the choice of opponent used to test the model. We com-
pared three representations. One simple and limited, based on a vector of weights, and two more complex,
based on binary and n-ary trees. On top of this test, we also investigated the influence of fitness defined as
a simulation-based function that: plays against a fixed weak opponent, a fixed strong opponent, and the best
individual from the previous population. We encoded our experiments in a programming game, Legends of
Code and Magic, used in Strategy Card Game AI Competition. However, as the problems stated are of general
nature we are convinced that our observations are applicable in the other domains as well.

1 INTRODUCTION

The vast majority of game playing algorithms require
some form of game state evaluation – usually in the
form of a heuristic function that estimates the value
or goodness of a position in a game tree. This applies
not only to classic min-max based methods, as used
for early Chess champions (Campbell et al., 2002),
but also in modern approaches, based on deep neural
networks combined with reinforcement learning (Sil-
ver et al., 2018). The idea of estimating the quality
of a game state using a linear combination of human-
defined features was proven effective a long time ago
(Samuel, 1959), and is still popular, even when ap-
plied to modern video games (García-Sánchez et al.,
2020; Justesen et al., 2016).

One of the recently popular game-related AI
testbeds are Collectible Card Games (e.g., Hearth-
stone (Blizzard Entertainment, 2004), The Elder
Scrolls: Legends (Dire Wolf Digital and Sparkypants
Studios, 2017)). Because they combine imperfect in-
formation, randomness, long-term planning, and mas-
sive action space, they impose many interesting chal-
lenges (Hoover et al., 2019). Also, the specific form
of game state (combining global board features with
features of individual cards) makes such games partic-
ularly suited for various forms of feature-based state
evaluation utilizing human player knowledge.

The motivation for our research was to compare
two models for evolving game state evaluation func-
tions: a simpler and more limited, based on a vector of

weights that are used in a linear combination of prede-
fined game features; a more complex and non-linear,
based on a tree representation with feature values in
leaves and mathematical operations in nodes.

As a testbed, we have chosen a domain of dig-
ital collectible card games. We encoded our mod-
els in a programming game, Legends of Code and
Magic, used in various competitions played on the
CodinGame.com platform and IEEE CEC and IEEE
COG conferences.

During the initial experiments, we observed some
interesting behaviors of both representations regard-
ing “forgetting” previously learned knowledge. As
these observations were related to the chosen goal of
evolution, we performed additional tests comparing
three fitness functions: playing against a fixed weak
opponent, a fixed strong opponent, and the best indi-
vidual from the previous population.

This paper is structured as follows. In the next sec-
tion, we present the related work describing usages of
evolution for game state evaluation and the domain of
AI for collectible card games. In Section 3, we pro-
vide the details of our model describing the represen-
tations and fitness functions. The following two sec-
tions present our experiments and discuss the results
in the above-mentioned topics: comparing vector ver-
sus tree representations, and a fixed opponent versus
progressive fitness calculation. In the last section, we
conclude our research and give perspectives for future
work.

Miernik, R. and Kowalski, J.
Evolving Evaluation Functions for Collectible Card Game AI.
DOI: 10.5220/0010806900003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 253-260
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

253



2 BACKGROUND

2.1 Evolving Evaluation Functions

Evolutionary algorithms are used for game playing
mainly in two contexts. One, based on the Rolling
Horizon algorithm (RHEA) (Perez et al., 2013), uti-
lizes evolution as an open-loop game tree search al-
gorithm. The other, more classic approach, employs
evolution offline, to learn parameters of some model,
usually a game state evaluation function. Such a func-
tion can be further used as a heuristic in alpha-beta,
RHEA, some variants of MCTS (Browne et al., 2012),
or other algorithms; its quality translates directly to
the agent’s power.

The common approach is to define a list of
game state features and evolve a vector of associated
weights, so that they closely approximate the proba-
bility of winning the game from the given state. This
type of parameter-learning evolution has been applied
to numerous games, like Chess (David et al., 2013),
Checkers (Kusiak et al., 2007), TORCS (Salem et al.,
2018), and Hearthstone (Santos et al., 2017).

Although treating parameters as vectors and
evolving their values using genetic algorithms is more
straightforward, some research uses tree structures
and genetic programming instead for this purpose.

The majority of genetic programming applications
in games are an evolution of standalone agents. It
was successfully applied in various board games, e.g.,
Chess (Groß et al., 2002; Hauptman and Sipper, 2005)
and Reversi (Benbassat and Sipper, 2012).

It is also possible to combine genetic program-
ming with other algorithms and techniques. One ex-
ample is to combine it with neural networks to evolve
Checkers agents (Khan et al., 2008). Another is to
evolve the evaluation function alone and combine it
with an existing algorithm, e.g., MCTS, instead of
evolving fully-featured agents. Such an evolution was
successfully applied in games of varying complex-
ity, e.g., Checkers (Benbassat and Sipper, 2011) and
Chess (Ferrer and Martin, 1995).

Another aspect is measuring the quality of an
evaluation function. Because it has to compare the
strength of the agents, usually a simulation-based ap-
proach is used, utilizing a large number of repetitions
to ensure the stability of obtained results. Thus, such
an evolution scheme is computationally expensive.

2.2 AI for Collectible Card Games

Collectible Card Game (CCG) is a broad genre of
both board and digital games. Although the mechan-
ics differ between games, basic rules are usually sim-

ilar. First, two players with their decks draw an initial
set of cards into their hands.

Then, the main game starts in a turn-based man-
ner. A single turn consists of a few actions, like play-
ing a card from the hand or using an onboard card.
The game ends as soon as one of the players wins,
most often by getting his opponent’s health to zero.

Recently the domain has become popular as an
AI testbed, resulting in a number of competitions
(Dockhorn and Mostaghim, 2018; Janusz et al., 2017;
Kowalski and Miernik, 2018), and publications focus-
ing on agent development and deckbuilding.

Usually, agents are based on the Monte Carlo Tree
Search algorithm (Browne et al., 2012) (as it is known
to perform well in noisy environments with imperfect
information), combined with some form of state eval-
uation either based on expert knowledge and heuris-
tics (Santos et al., 2017), or neural networks (Zhang
and Buro, 2017). An interesting approach combining
MCTS with supervised learning of neural networks
to learn the game state representation based on the
word embeddings (Mikolov et al., 2013) of the actual
card descriptions is described in (Świechowski et al.,
2018).

The deckbuilding task for the constructed game
mode (in which players can prepare their decks of-
fline, selecting cards from a wide range of possibil-
ities) has been tackled in several works. The most
common approach is to use evolution (e.g., (Bjørke
and Fludal, 2017) for Magic: The Gathering, (García-
Sánchez et al., 2016; Bhatt et al., 2018) for Hearth-
stone), combined with testing against a small number
of predefined human-made opponent decks. Alterna-
tively, a neural network-based approach for Hearth-
stone has been presented in (Chen et al., 2018).

2.3 Legends of Code and Magic

Legends of Code and Magic (LoCM) (Kowalski and
Miernik, 2018) is a small CCG, designed especially to
perform AI research, as it is much simpler to handle
by the agents, and thus allows testing more sophis-
ticated algorithms and quickly implement theoretical
ideas.

The game contains 160 cards, and all cards’ ef-
fects are deterministic, thus the nondeterminism is
introduced only via the ordering of cards and un-
known opponent’s deck. The game is played in the
fair arena mode, i.e., before every game, both play-
ers create their 30-card decks decks secretly from the
symmetrical yet limited card choices (so-called draft
phase). After the draft phase, the main part of the
game (called the battle phase) begins, in which the
cards are played according to the rules, and the goal is

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

254



to defeat the opponent. LoCM is also used in Strategy
Card Game AI Competition co-organized with CEC
and COG conferences since 2019.

As for today, there is not much research for
the arena game mode. The problem of deckbuild-
ing has been approached in (Kowalski and Miernik,
2020) using an active genes evolutionary algorithm
that in each generation learns only a specific part of
its genome. An approach using deep reinforcement
learning is presented in (Vieira et al., 2020). Usually,
the deckbuilding phase is solved via predefined card
ordering or some heuristic evaluation of the card’s
strength. The winner of the 2020 COG competition
has been described in (Witkowski et al., 2020). The
authors used static card weights computed using har-
mony search for the draft phase and MCTS with var-
ious enhancements, including an opponent prediction
for the battle game phase. The authors of (Mon-
toliu et al., 2020) perform study on application of On-
line Evolution Planning (Justesen et al., 2016) using
heuristic tuned via N-Tuple Bandit Evolutionary algo-
rithm (Lucas et al., 2018). Other playing approaches
include minimax, best-first-search, MCTS, and rule-
based decision making.

3 EVALUATING CARD GAMES

3.1 Representation

We have developed three distinct representations:
Linear, BinaryTree, and Tree. Each one imple-
ments two operations: evalCard (used for the draft
phase and as a part of the state evaluation) and
evalState (used for the battle phase).

To limit the vast space of possible evaluation func-
tions, the final state evaluation is a sum of evalState
(based on features related with the global board state)
and evalCard (depending on card-related features)
for each own card on the board, minus evalCard for
each opponent card. It is a common simplification,
used in e.g., (Santos et al., 2017).

Note that the expressiveness of the tree-based rep-
resentations is greater, thus it is possible to map indi-
viduals encoded as vectors to trees, but not vice versa.

• Linear, is a constant-size vector of doubles. Each
gene (from 1 to 20) encodes a weight of the cor-
responding feature. The first 12 are game state
features (used for evalState), 6 for each of two
players: current mana, deck size, health, max
mana, number of cards to draw next turn, and
next rune (an indicator for an additional draw as
in (Dire Wolf Digital and Sparkypants Studios,

2017)). The other 8 are card features (used for
evalCard): attack, defense, and a flag for each
of the keywords, encoded as 1.0 when set and 0.0
when not. The final value is a sum of features
multiplied by their corresponding weights.

• BinaryTree, is a pair of binary trees, encoding
state and card evaluation respectively. The leaf
nodes are either constants (singular double) or
features, same as in Linear. Both trees have
the same set of binary operators (nodes): addition
(l+r, where l and r are the values of left and right
subtree respectively), multiplication (l ∗ r), sub-
traction (l − r), maximum (max(l,r)), and mini-
mum (min(l,r)). The final value is calculated re-
cursively accumulating the tree.

• Tree, is a pair of n-ary trees, encoding state and
card evaluation respectively. The leaf nodes are
identical to the ones in BinaryTree. Operators
are now n-ary, storing a vector of subtrees each.
Available operators are addition (∑), multiplica-
tion (∏), maximum (max), and minimum (min).
Additionally, to ensure that every operation stays
well defined, all subtree vectors are guaranteed to
be nonempty. To make subtraction possible, there
is one additional, unary operator: negation (−x,
where x is the value of its subtree). The final value
is calculated recursively accumulating the tree.

3.2 Opponent Estimation

Every evolution scheme evaluates individuals either
by comparing how well they deal with a specified
task, without a normalized score, or by using an exter-
nal, predefined goal. Both approaches have natural in-
terpretations for CCGs – a win rate against each other
and a win rate against a fixed opponent respectively.

As the course of evolution using a predefined op-
ponent will be heavily impacted by the opponent it-
self, two nontrivial questions arise. What is the differ-
ence between using only the in-population evaluation
from the one using a predefined opponent? And what
is the difference between using a weak and a strong
opponent? We have conducted two experiments to an-
swer both of these questions in terms of the evolution
process and resulting player’s strength.

As both experiments required different evolution
schemes, in total, three groups of individuals were
evolved. First one, called progressive, using the
in-population evaluation (see Sec. 4.1). Second,
called weak-op, using the existing Baseline2 agent
(WeakOp), one of the baseline LoCM agents. Dur-
ing the draft phase, the agent chooses the creature
card with the highest attack (if this is not possible it

Evolving Evaluation Functions for Collectible Card Game AI

255



chooses the leftmost one). During battle, it attacks ev-
erything on board starting with the cards with highest
attack, aiming for the opponent first, and then oppo-
nent guard creatures starting from the highest health
ones. And third, called strong-op, using one of the
pre-evolved Tree-from-Linear agents (StrongOp).

we
ak
-o
p

st
ro
ng
-o
p

pr
og
re
ss
iv
e

Linear BinaryTree Tree

Figure 1: Example self-play win rate heatmaps (other runs
show similar properties). Each cell represents how well the
best individual of generation on the y-axis plays against the
best individual of generation on the x-axis. Visible diago-
nals present self-score (50%). A light section on the bottom
left, present in all three progressive agents, proves that
as the evolution progresses, so all individuals are increas-
ingly better at self-play. Other heatmaps seem to be more
random, indicating no clear progression in self-play.

4 REPRESENTATION STUDY:
TREES VERSUS VECTORS

To measure the impact of different representations on
the evolution, we ran the same experiment multiple
times, each time substituting the underlying genome
structure to one of described in Sec. 3.1. The metrics
we find crucial are how well the agent performs in a
real-life scenario, that is, in a proper tournament with
other agents, and whether it progresses, i.e., plays bet-
ter against own previous generations.

4.1 Experiment Setup

We have evolved twelve copies of the progressive
agents, four for each representation. Every run used
the same parameters, that is 50 generations with a
population of size 50 (N parameter), elitism of 5 in-

dividuals, and the mutation rate of 5%. During the
evaluation each two individuals played rounds times
on each of drafts drafts on each side, which makes
2× (N − 1)× drafts× rounds games in total. In our
experiments, drafts = 10, and rounds = 10.

In order to compare the agents in a standardized
real-life scenario, we ran a tournament. In addition to
our evolved agents, we used two LoCM baselines and
four contestants of 2020 IEEE COG LoCM contest1.

4.2 Learning Comparison

As visible at the bottom row of Fig. 1, all representa-
tions successfully converged into a light section at the
bottom left. Such shape means that the following gen-
erations were not only preserving the already gained
knowledge but also improving on each step.

Therefore, every representation can be evolved,
playing against own previous generations. Moreover,
the progress of the Linear representation seems to be
more stable, almost constant, while tree-based repre-
sentations tend to improve by making sporadic leaps.

This is not the case for the top and middle rows,
representing evolution with a predefined opponent.
While the Linear representation manages to preserve
hardly visible progress, both tree representations are
more random, indicating no clear improvements in
self-play. Furthermore, the top row contains a few
dark stripes, indicating an exceptionally weak agent.
It is possible, as the evolution goal does not take self-
play into consideration at all.

To measure how significant the learning progress
is, we compare the win rate of the best individual of
the first and the last generation against the best indi-
viduals of all generations.

With such a metric in mind, the Linear repre-
sentation stands out again. As presented in Fig. 2,
both BinaryTree and Tree result in a smaller differ-
ence of about 20% whereas the Linear representation
achieves over 31% difference on average, across all
the evolution schemes.

4.3 Tournament Comparison

When evolved using a fixed, weak opponent
(weak-op), the difference between the representations
is significant. There is a huge, almost 10% wide,
gap between Linear (42.9% average win rate) and
BinaryTree (33.8%). The Tree representation is in
between, performing slightly better than its binary
counterpart and achieving 36.2%.

Results are similar when evolved using self-
play evaluation and a randomly initialized population

1https://legendsofcodeandmagic.com/COG20/

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

256



40

50

60

70
we
ak
-o
p

40

50

60

70

st
ro
ng
-o
p

0 10 20 30 40 50

40

50

60

70

Generation

pr
og
re
ss
iv
e

Linear
BinaryTree

Tree

W
in

ra
te

(%
)

Figure 2: Evolution progress of all the agents. Best indi-
viduals from a generation (x-axis) fought against the top
individuals of all own generations, yielding an average win
rate (y-axis).

45

50

55

60

65

|

Linear-from-Linear
Tree-from-Linear

W
in

ra
te

(%
)

Figure 3: Evolution progress of the from-Linear agents.
Best individuals from a generation (x-axis) fought against
the top individuals of all own generations, yielding an aver-
age win rate (y-axis). Each of the four Linear agents was
used as a base for the initial population twice. The two bold
lines average the thin, semi-transparent lines that are the av-
eraged results of agents with the same base.

(progressive). The Linear representation again
yields strictly better results in the tournament (54.8%)
than both BinaryTree and Tree (45.6% and 45.7%).

However, using a better opponent (strong-op)
yields completely different results. In this sce-
nario, the differences between agents’ performance
are less significant, around 4%. To be precise,
Linear achieved almost 49%, BinaryTree slightly
over 45%, and Tree nearly 45% average win rate.

This matches the results of playing against own
previous generations, described in the previous sub-
section. We conclude that it is an implication of the
capacity of the representation.

While a more limited Linear representation finds
a decent solution sooner and gradually improves

it, more capable tree-based representations regularly
leap towards the goal. More detailed tournament re-
sults are presented in Tables 1, 2, and 3.

4.4 Tuning Good Solutions

Knowing that the tree-based model is more general
but also harder to learn, the natural question is if we
can use it to improve the solutions, instead of start-
ing from scratch. The ideal scenario will be to reach
a limit of optimization based on the linear represen-
tation, encode obtained solutions into the tree format,
and continue evolution using this stronger model.

To verify this hypothesis, we have evolved
two more agents: Linear-from-Linear and
Tree-from-Linear. Each of the four previously
evolved Linear-progressive agents was used as a
base for a second evolution process. Here, instead of
randomly, the population was initialized with copies
of the base agent, each one mutated n = 5 times;
hence the from-Linear suffix in their name.

However, translation of a Linear representation
into a Tree representation is ambiguous. We have
used what we believe is the most straightforward one
– an Add operator in the root with a list of Mul +
Literal + Feature subtrees, one for each of the
available features.

As expected, the tournament results for such pre-
evolved agents are entirely different. For the first
time, the Linear representation is not the top one.
The Tree agent performs better, ending up with an
average win rate of over 60%, whereas the Linear
agent finished with 58%. This is a relatively minor
but consistent improvement that may further improve
with a longer evolution. A similar difference is visi-
ble in the process of evolution. Both representations
perform similarly, but Tree is on average above the
Linear almost constantly. Comparison of the best in-
dividuals across the generations is presented in Fig. 3.

Our conclusion is that both results are implica-
tions of the representation. While the more restricted
Linear is not able to progress after a certain point,
more expressive Tree benefits from the bootstrap and
keeps improving. Once again, more detailed results
are presented in Table 3.

5 OPPONENT ESTIMATION
STUDY: PROGRESSIVE
VERSUS FIXED

On the one hand, a decent agent – better than a fully
random one – usually emerges from the task definition

Evolving Evaluation Functions for Collectible Card Game AI

257



itself. It is often heuristic, filled with expert knowl-
edge about the problem. On the other, a standard in-
population evaluation is proved to yield a good solu-
tion, e.g., using a linear combination of some expert-
based features and a basic evolution scheme. Our
question is whether one of these approaches is supe-
rior to the other in terms of real-world evaluation.

Additionally, we are interested in what the differ-
ence is between using a weak and a strong opponent
as a measure. This is an interesting dilemma, as both
approaches may be potentially vulnerable to fast stag-
nation. A weak opponent may be too easy to beat, so
the win rate quickly approaches large values, while
against a strong opponent, we may struggle to achieve
any victories thus, there may be no progress at all.

5.1 Experiment Setup

To properly compare the two evolution schemes, one
needs to compare not only their outcomes but also the
costs. In our case, the overhead of a given scheme
is negligible in comparison to the cost of simulations.
Thus, we use the number of simulated games as a met-
ric of evolution cost.

In progressive scenario, each two individuals
played rounds games on each of drafts drafts. In
weak-op and strong-op scenarios, every individual
played N × rounds games on each of drafts drafts for

each side. Overall, all three evaluation schemes use
the same number of games for each individual. In our
experiments, drafts = 10, N = 50, and rounds = 10.

5.2 Learning Comparison

To verify whether the evolution progresses, we com-
pare the best individuals of all generations after the
evolution finishes. Such progress, visualized in Fig. 1,
is definite in all of the progressive individuals and
less significant for the opponent-based ones. It is clear
that the progressive scheme is better at this task.
The elitism in combination with the in-population
evaluation directly implies it.

Additionally, all three heatmaps of weak-op
agents have some bold dark stripes. Every dark stripe
represents a few consecutive agents that were signifi-
cantly weaker than the local average. The same hap-
pens in other evolution schemes, but it is rather excep-
tional. It is understandable, as only the progressive
evolution takes in-population evaluation into account.
But also, it shows that learning against the stronger
opponent is more resilient to the forgetting issue.

5.3 Tournament Comparison

The lack of progress visible in heatmaps does not im-
ply a lack of general improvement. As seen in Ta-

Table 1: Subset of the tournament results, presenting all weak-op agents and their evolution target, WeakOp, itself. Every
score is an average win rate (along with its standard deviation) of the agent on the left against the agent on top. Given average
win rate is calculated based on the full tournament results.

Linear BinaryTree Tree WeakOp Global avg.
Linear – 56.9±10.2% 47.5±12.6% 65.9±10.0% 42.9±15.7%

BinaryTree 43.0±10.2% – 49.2±12.0% 82.9±2.67% 33.8±14.2%
Tree 52.4±12.6% 50.7±12.0% – 56.0±8.25% 36.2±15.7%

WeakOp 34.0±10.0% 17.0±2.67% 43.9±8.25% – 42.8±17.3%

Table 2: Subset of the tournament results, presenting all strong-op agents and their evolution target, StrongOp, itself. Every
score is an average win rate (along with its standard deviation) of the agent on the left against the agent on top. Given average
win rate is calculated based on the full tournament results.

Linear BinaryTree Tree StrongOp Global avg.
Linear – 52.1±13.3% 52.9±9.15% 38.8±11.5% 48.9±16.6%

BinaryTree 47.8±13.3% – 49.9±11.7% 34.1±9.90% 45.1±16.9%
Tree 47.1±9.15% 50.0±11.7% – 36.7±9.51% 44.8±15.7%

StrongOp 61.1±11.5% 65.8±9.90% 63.2±9.51% – 62.8±14.6%

Table 3: Subset of the tournament results, presenting all progressive and from-Linear agents. Every score is an average
win rate (along with its standard deviation) of the agent on the left against the agent on top. Given average win rate is
calculated based on the full tournament results.

Linear BinaryTree Tree Linear-from-Linear Tree-from-Linear Global avg.
Linear – 59.7±14.2% 61.2±14.1% 43.5±8.40% 41.0±13.7% 54.8±18.0%

BinaryTree 40.2±14.2% – 50.1±13.1% 40.0±11.5% 37.6±10.3% 45.5±16.8%
Tree 38.7±14.1% 49.8±13.1% – 39.5±15.7% 35.2±13.5% 45.6±18.7%

Linear-from-Linear 56.4±8.40% 60.0±11.5% 60.4±15.7% – 44.3±11.1% 58.0±17.1%
Tree-from-Linear 58.9±13.7% 62.3±10.3% 64.7±13.5% 55.6±11.1% – 60.2±17.4%

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

258



30

35

40

45

50

55

60

65

Round

W
in

ra
te

(%
)

Linear-weak-op

BinaryTree-weak-op

Tree-weak-op

Linear-strong-op

BinaryTree-strong-op

Tree-strong-op

Linear-progressive

BinaryTree-progressive

Tree-progressive

Linear-from-Linear

Tree-from-Linear

Figure 4: A subset of the tournament results. All scores (y-axis) stabilize as the number of rounds (x-axis) increases.

ble 2 and Table 3, the two tree-based representations
achieve comparable results for both progressive
and strong-op – around 45%.

However, this does not hold for the most straight-
forward Linear representation. The differences be-
tween weak-op, strong-op, and progressive are
large, around 6% each.

When we compare how well both fixed-opponent
agents play against their evolution goals, we see that
their scores do not correlate with the representa-
tion. The BinaryTree representation performs best
in the weak-op variant and achieved 82.9% wins
against the WeakOp, while the other representations
were much weaker – 65.9% and 56% for Linear and
Tree respectively. At the same time, BinaryTree is
the worst in the strong-op variant, achieving only
34.1% wins against StrongOp, whereas Linear and
Tree achieved 38.8% and 36.7% wins respectively.

As presented in Fig. 4, all weak-op agents are
strictly worse than the strong-op since almost the
beginning of the tournament. It is not the case for the
progressive and strong-op – every representation
except Linear is stronger in the former variant.

To summarize, evolution via self-play yields bet-
ter agents than evolution towards a fixed oppo-
nent. However, it is not true if the representation
is not fixed, e.g., Tree-progressive is inferior to
Linear-strong-op.

Additionally, evolution using a fixed opponent has
a slightly different cost characteristic. While evolu-
tion using self-play simulates longer games gradu-
ally, using a fixed opponent starts with much shorter
ones but ends with longer ones – already trained agent
quickly deals with initial, almost random agents and
holds better against the evolved ones. As expected,
the weak-op evolution is faster than the strong-op.

6 CONCLUSION

In this work, we presented a study regarding two im-
portant aspects of evolving feature-based game evalu-
ation functions: the choice of genome representation
(implying the algorithm used) and the choice of op-
ponent used to test the model.

Although our research was focused on the domain
of collectible card games, the problems stated are of
general nature, and we are convinced that our obser-
vations are applicable in the other domains as well.

The key takeaway is that having limited computa-
tional resources, it is probably better to stick with a
simpler linear genome representation. Based on our
research they are more reliable to produce good solu-
tions fast. However, with a large computational bud-
get, we recommend applying a two-step approach of
bootstrapping a stronger model with a limited one.

Another important observation is that self-
improvement is potentially a better strategy than a
predefined opponent when used as a goal of evolution.
Definitely, there is no point in learning against a weak
opponent. Learning against a strong opponent may be
profitable but does not guarantee good performance in
a broader context like a tournament. And while pro-
gressive learning may also stagnate into some niche
meta, it still seems to be more flexible in this aspect.

For future work, we plan to investigate a gener-
alized bootstrapping-like scheme, that would switch
between the representations automatically, as soon as
the evolution rate drops below a certain threshold.
Separately, we would like to apply our approach to
other tasks as well as evaluate different models, e.g.,
additional expert-knowledge features or trees with
more operators. When it comes to the different evo-
lution schemes, some kind of ensemblement of both
in-population evaluation and an external goal would

Evolving Evaluation Functions for Collectible Card Game AI

259



be interesting. Also, we can consider the extension of
using a portfolio of agents as the opponents, with dy-
namic additions and removals based on the win rates.

REFERENCES

Benbassat, A. and Sipper, M. (2011). Evolving board-game
players with genetic programming. pages 739–742.

Benbassat, A. and Sipper, M. (2012). Evolving both search
and strategy for reversi players using genetic program-
ming. pages 47–54.

Bhatt, A., Lee, S., de Mesentier Silva, F., Watson, C. W.,
Togelius, J., and Hoover, A. K. (2018). Exploring the
Hearthstone deck space. In PFDG, pages 1–10.

Bjørke, S. J. and Fludal, K. A. (2017). Deckbuilding in
magic: The gathering using a genetic algorithm. Mas-
ter’s thesis, NTNU.

Blizzard Entertainment (2004). Hearthstone. Blizzard En-
tertainment.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. (2012). A Survey of
Monte Carlo Tree Search Methods. IEEE TCIAIG,
4(1):1–43.

Campbell, M., Hoane, A. J., and Hsu, F. (2002). Deep Blue.
Artificial intelligence, 134(1):57–83.

Chen, Z., Amato, C., Nguyen, T.-H. D., Cooper, S., Sun,
Y., and El-Nasr, M. S. (2018). Q-deckrec: A fast deck
recommendation system for collectible card games. In
IEEE CIG, pages 1–8. IEEE.

David, O. E., van den Herik, H. J., Koppel, M., and Ne-
tanyahu, N. S. (2013). Genetic algorithms for evolv-
ing computer chess programs. IEEE transactions on
evolutionary computation, 18(5):779–789.

Dire Wolf Digital and Sparkypants Studios (2017). The El-
der Scrolls: Legends. Bethesda Softworks.

Dockhorn, A. and Mostaghim, S. (2018). Hearthstone AI
Competition. https://dockhorn.antares.uberspace.de/
wordpress/.

Ferrer, G. and Martin, W. (1995). Using genetic program-
ming to evolve board evaluation functions.

García-Sánchez, P., Tonda, A., Fernández-Leiva, A. J., and
Cotta, C. (2020). Optimizing hearthstone agents us-
ing an evolutionary algorithm. Knowledge-Based Sys-
tems, 188:105032.

García-Sánchez, P., Tonda, A., Squillero, G., Mora, A., and
Merelo, J. J. (2016). Evolutionary deckbuilding in
Hearthstone. In IEEE CIG, pages 1–8.

Groß, R., Albrecht, K., Kantschik, W., and Banzhaf, W.
(2002). Evolving chess playing programs.

Hauptman, A. and Sipper, M. (2005). Gp-endchess: Using
genetic programming to evolve chess endgame play-
ers. volume 3447, pages 120–131.

Hoover, A. K., Togelius, J., Lee, S., and de Mesentier Silva,
F. (2019). The Many AI Challenges of Hearthstone.
KI-Künstliche Intelligenz, pages 1–11.

Janusz, A., Tajmajer, T., and Świechowski, M. (2017).
Helping AI to Play Hearthstone: AAIA’17 Data Min-
ing Challenge. In FedCSIS, pages 121–125. IEEE.

Justesen, N., Mahlmann, T., and Togelius, J. (2016). On-
line evolution for multi-action adversarial games. In
EvoCOP, pages 590–603. Springer.

Khan, G. M., Miller, J., and Halliday, D. (2008). Develop-
ing neural structure of two agents that play checkers
using cartesian genetic programming. pages 2169–
2174.

Kowalski, J. and Miernik, R. (2018). Legends of Code and
Magic. http://legendsofcodeandmagic.com.

Kowalski, J. and Miernik, R. (2020). Evolutionary Ap-
proach to Collectible Card Game Arena Deckbuilding
using Active Genes. In IEEE Congress on Evolution-
ary Computation.

Kusiak, M., Walędzik, K., and Mańdziuk, J. (2007). Evolu-
tionary approach to the game of checkers. In Interna-
tional Conference on Adaptive and Natural Comput-
ing Algorithms, pages 432–440. Springer.

Lucas, S. M., Liu, J., and Perez-Liebana, D. (2018). The
n-tuple bandit evolutionary algorithm for game agent
optimisation. In 2018 IEEE CEC, pages 1–9. IEEE.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–
3119.

Montoliu, R., Gaina, R. D., Pérez-Liebana, D., Delgado,
D., and Lucas, S. (2020). Efficient heuristic policy
optimisation for a challenging strategic card game. In
EvoAPPS, pages 403–418.

Perez, D., Samothrakis, S., Lucas, S., and Rohlfshagen, P.
(2013). Rolling horizon evolution versus tree search
for navigation in single-player real-time games. In
GECCO, pages 351–358.

Salem, M., Mora, A. M., Merelo, J. J., and García-Sánchez,
P. (2018). Evolving a torcs modular fuzzy driver using
genetic algorithms. In EvoAPPS, pages 342–357.

Samuel, A. L. (1959). Some studies in machine learning
using the game of checkers. IBM Journal of research
and development, 3(3):210–229.

Santos, A., Santos, P. A., and Melo, F. S. (2017). Monte
carlo tree search experiments in hearthstone. In IEEE
CIG, pages 272–279. IEEE.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., et al. (2018). A general reinforcement
learning algorithm that masters chess, shogi, and Go
through self-play. Science, 362(6419):1140–1144.

Świechowski, M., Tajmajer, T., and Janusz, A. (2018). Im-
proving Hearthstone AI by Combining MCTS and Su-
pervised Learning Algorithms. In IEEE CIG, pages
1–8. IEEE.

Vieira, R., Tavares, A. R., and Chaimowicz, L. (2020).
Drafting in collectible card games via reinforcement
learning. In IEEE SBGames, pages 54–61. IEEE.

Witkowski, M., Klasiński, Ł., and Meller, W. (2020). Imple-
mentation of collectible card Game AI with opponent
prediction. Engineer’s thesis, University of Wrocław.

Zhang, S. and Buro, M. (2017). Improving hearthstone ai
by learning high-level rollout policies and bucketing
chance node events. In IEEE CIG, pages 309–316.
IEEE.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

260


