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Abstract: 3D object tracking is a topic that has been widely studied for several years. Although there are already several 
robust solutions for tracking rigid objects, when it comes to deformable objects the problem increases in 
complexity. In recent years, there has been an increase in the use of Machine / Deep Learning techniques to 
solve problems in computer vision, including 3D object tracking. On the other hand, several low-cost devices 
(like Kinect) have appeared that allow obtaining RGB-D images, which, in addition to colour information, 
contain depth information. In this paper is proposed a 3D tracking approach for deformable objects that use 
Machine / Deep Learning techniques and have RGB-D images as input. Furthermore, our approach 
implements a tracking algorithm, increasing the object segmentation performance towards real time. Our tests 
were performed on a dataset acquired by ourselves and have obtained satisfactory results for the segmentation 
of the deformable object.  

1 INTRODUCTION 

The problems regarding 3D Tracking on deformable 
objects are challenging and only recently some 
research work has been done on the subject. 
Regarding tracking objects topic, the research work is 
quite extensive, but relatively to deformable objects 
there are only a few because its difficulty increases 
considerably(Hu et al., 2019). Recently, low-cost 
devices (like Kinect) have emerged that allow 
obtaining RGB-D images, which, in addition to color 
information, contain depth information. The 
possibility of obtaining depth information can be an 
added value in carrying out tracking of deformable 
objects because, unlike rigid objects, deformable 
objects change shape according to their manipulation, 
making it difficult to carry out. To deal with this 
problem, machine learning techniques may be used, 
specifically deep learning, which are more robust in 
conjunction with the object's depth information, 
increasing its precision(Song & Xiao, 2013). 
Furthermore, the 3D Tracking of deformable objects 
will necessarily have to be performed in real time, 
raising problems such as error tolerance or 
computational cost, since the speed of the process 
becomes essential for its development. 

The 3D Tracking increases the complexity of the 
tracking task because the level of information to be 

calculated is higher. Nevertheless, it has been studied 
recently by researchers for deformable objects 
because the depth information helps in the deform-
able object tracking. 

By using the depth information it is possible to 
obtain the object information in three dimensions and 
with this, the Artificial Intelligence model manages to 
obtain a better perception of the object, with superior 
results, compared to a system with only the color 
information (RGB)(Lai et al., 2011). 

Object segmentation using CNNs has been 
investigated in several studies and often segmentation 
and tracking are performed simultaneously. Wang et 
al. (2018) created a method named “SiamMask” that 
improves the offline training procedure of popular 
approaches to track objects. The ”SiamMask” 
algorithm is quite popular when we want to use the 
tracking and segmentation approach simultaneously. 
Furthermore, its greatest feature is its high velocity, 
where it obtained the highest velocity for objects 
segmentation in video, in the DAVIS-2016 (Perazzi 
et al., 2016) and DAVIS-2017 (Pont-Tuset et al., 
2018) competition. Its accuracy is also quite 
competitive compared to other tracking algorithms. 

Voigtlaender et al. (2019) created the algorithm 
"TrackR-CNN" which is able to track multiple 
objects, contrary to the previous algorithm” 
SiamMask”, which is exclusive for cases of tracking 
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only one object. Although it was created only as a 
basis for the Multi Object Tracking and Segmentation 
(MOTS) challenge (Voigtlaender et al., 2019), its 
performance proved to be really effective for the 
tracking and segmentation process. 

Ronneberger et al. (2015) created a Deep 
Learning architecture called "U-Net". U-Net has been 
studied a lot due to its success for image 
segmentation. The architecture receives a RGB image 
and returns the binary segmentation of the intended 
image. The U-NET model architecture consists of 
using a contracting path and an expansive path 
through CNN ś. The contracting path consists of a 
typical CNN ś architecture. In the expansive path, the 
reverse path is performed, where the output is the 
binary segmentation of the provided image. The U-
NET architecture has been widely used recently due 
to its low computational cost and the fact that  there 
is not needed to provide many examples for the model 
successfully identify the object. Thus, the U-NET 
architecture proved to be an excellent candidate for 
creating binary object segmentation. Furthermore, 
Ronneberger et al. (2015) won the ISBI cell tracking 
challenge 2015, one of the main competitions for 
evaluating segmentation and tracking models in 
medical images, thus showing the success of their 
architecture. 

Many studies have been carried out to 
demonstrate the importance of CNNs in object 
segmentation. Almost all studies use only RGB 
images, but recently, approaches have emerged where 
CNNs also receive depth information to segment the 
intended object. Liu et al. (2019) presented two 
approaches to train RGB-D data with CNNs: The first 
approach is to create two models where RGB data and 
depth data are trained separately, and the second 
approach is to create only one trained model with 
RGB images and depth data. In the first approach, the 
same importance is given to RGB data and depth data, 
in the second approach, greater importance is given to 
RGB data (Liu et al., 2019). 

This paper presents a new approach for 3D 
tracking of deformable objects that uses a deep 
learning model and RGB-D data as input. The 
approach was designed and planned aiming real time 
performance. The approach was tested and evaluated 
using a dataset built specifically for this purpose.  

The rest of the paper is structured as follows: In 
the second section, we describe our method. In the 
third section presents our results and discusses the 
main conclusions of this study. The fourth section 
concludes the article. 

2 PROPOSED APPROACH 

This section presents a solution for performing 
automatic tracking of deformable objects, using 
Computer Vision algorithms and methods developed 
specifically for this problem. The development of this 
solution involves the detection of the deformable 
object and monitoring its movement over time. Since 
they were used supervised machine learning/deep 
learning algorithms, the tracking process is done in 
two stages: Offline Process (data processing and 
model training) and Online Process (tracking of the 
deformable object in real time). 

2.1 Offline Process 

The offline process (Figure 1) contains the steps 
necessary to train the models to be used in the tracking 
algorithm. In an initial step it is necessary to process 
the data received. It is important to analyse the data 
provided and divide it into two groups: RGB Data and 
Depth Data. The two types of data are treated separ-
ately and the techniques used in the depth data do not 
necessarily have to be used in RGB data and vice versa.  

In the end, there will be only one model that 
receives two images (RGB and Depth) and returns an 
image with the binary segmentation of the intended 
object. With this architecture it is possible to use the 
information of Depth data and RGB data 
simultaneously. Liu et al. (2019) two-model approach 
was chosen because the depth information is 
important for the tracking algorithm to understand the 
shape of the object and, with this architecture, the 
depth information will have the same importance as 
the RGB information. 

 
Figure 1: Offline Process. 
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For the construction of the model, the U-NET 
(Ronneberger et al., 2015) architecture was used. It 
was necessary to perform some optimization of the 
hyperparameters such as the input size. The model 
receives two groups of data as input: RGB data and 
Depth data. For each of the groups, a U-Net 
architecture is built that outputs a layer with a 448 x 
448 x 3 format size. After that, it is necessary to 
perform a concatenate operation that transforms the 
two outputs into just one layer with a 448 x 448 x 6 
format size (with this operation it is possible to use 
the information from both groups to predict the 
deformable object). In the end, a Conv 1 x1 is applied 
that transforms the output into a 448 x 448 x 1 image, 
as shown in Figure 2.  

2.2 Online Process 

The Online Process (Figure 3) will contain the 
necessary steps to track the deformable object. In an 
initial phase it is necessary to apply some pre-
processing techniques to the frame received. RGB 
and depth data are processed separately and are 
applied the same pre-processing techniques that were 
used in the Offline Process. It is important that the 
frame format is identical to the images trained by the 
model, that is, the same input size and use the same 
data pre-processing techniques. In this way, the 
results will increase considerably. After pre-
processing the RGB-D frame, it is necessary to use 
the tracking algorithm and locate the deformable 
object. This process is repeated for all frames. 

The Tracking Algorithm aims to perform the 
target object segmentation in a fast and efficient way. 
In contrast to object detection that predicts on all 
frames and all frames are independent of each other. 
The developed Tracking Algorithm uses information 
from previous frames to perform the deformable 
object’s segmentation more quickly. As the objective 
is to use the system in real time, the processing 
velocity is a fundamental point, which is the main 
reason for using a tracking approach in detriment of 

object detection. The Tracking Algorithm receives as 
input the current RGB-D frame and outputs the 
segmented object and the coordinates of the 
corresponding Bounding Box. This way, the system 
will be able to perform the segmentation of the 
deformable object and follow the object's movement 
in the next frames.  

 
Figure 2: Online Process. 

For the construction of the Algorithm, it was 
necessary to create two prediction models: Model 
capable of segmenting the object in a full image 
and Model capable of segmenting the object only 
in the Bounding Box. The model capable of 
segmenting the object in a full image will have the 
same functionality as a Segmentation model in object 
detection. The model does not receive any 
information regarding the previous frames and 
performs the prediction in the complete frame. In the  
 

 
Figure 3: Model RGB-D. 
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end, the model will provide two pieces of 
information: The complete image with the segmented 
object and the Bounding Box corresponding to the 
object's location. This model will only be used in the 
first frame because it is not yet known where the 
object is in the image, and it is necessary to calculate 
its initial location. The coordinates of the Bounding 
Box, corresponding to the target object, are given to 
the next frame. The next frames always receive the 
coordinates of the Bounding Box of the previous 
frame and, thus, the model capable of segmenting the 
object only in the Bounding Box will always be used 
for those frames. In the end, this model will have to 
provide two pieces of information: Object 
segmentation coordinates having as reference the 
Bounding Box of the previous frame and update the 
coordinates of the Bounding Box for the current 
frame. 

 
Figure 4: Tracking Algorithm. 

Since the object’s speed is not too high, the 
object's location in the previous frame is practically 
the same as the object's location in the current frame. 
For this reason, it is possible to use the coordinates of 
the Bounding Box in the previous frame to locate the 
object in the current frame. The Tracking Algorithm 
segments the object only in the Bounding Box, which, 
computationally, is essential to reduce the frame size 
supplied to the predict model and, in this way, 
increase the system response time.  

In addition, it is also possible to perform the 
prediction, in the full image, for certain frames, 

balancing the tracking quality and processing 
velocity. This strategy can be used in situations in 
which the object moves very fast, preventing the 
object from getting lost. In Figure 4, the Tracking 
Algorithm schematic is presented. 

3 RESULTS AND DISCUSSION 

In all tests it was decided to use the U-NET 
architecture because it obtains better results and 
converges faster than the implementation of CNN's 
from scratch. All hyperparameters were similar in all 
tests to obtain the results with maximum precision. 
We used Adam as the optimizer (Kingma & Ba, 
2017), and a Learning Rate of 0.0004 on all tests. In 
the Full Image Model, all images were resized to 
448x448 pixels and in the Bounding Box Model all 
images were resized to 128x128 pixels. Furthermore, 
before the training process, all images were 
normalized. All results presented by the models are 
related to test datasets to verify the Model's 
performance against unfamiliar images. The 
algorithm was implemented using Python 
programming language and open-source libraries 
such as OpenCV, Tensorflow, Numpy, among others. 
To optimize the processing time, part of the 
implemented algorithms and methods were executed 
on a graphics card, using the parallel computing 
platform CUDA (Compute Unified Device 
Architecture) and an NVIDIA GeForce RTX 3060 
6GB GDDR6 graphics card was used for the training 
phase.  

3.1 Dataset 

 Data acquisition was obtained in the robotics 
laboratories at the University of Minho, using a 
Kinect 1.0 camera where, in addition to the RGB 
image, it is possible to obtain the depth matrix. The 
videos were recorded from 6 different points of view 
to increase the diversity of the dataset, thus 
transforming it into a more robust dataset. In addition, 
some videos were made with two different type of 
movements for detecting leather defects: Movements 
Type 1 Dataset and Movements Type 2 Dataset. In 
the Movements Type 1 Dataset, videos were recorded 
while more smooth movements are performed. In the 
Movements Type 2 Dataset, videos were recorded 
while the leather suffers an undulatory movement. In 
Table 1, it is shown the original size of the two 
Datasets. 
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Table 1: Size of Movements type 1 Dataset and Movements 
type 2 Dataset. 

Dataset RGB Data Depth Data Total 
Movements 

Type 1 
11549 11549 23098 

Movements 
Type 2 

6096 6096 12192 

For the training and evaluation of the model, 1765 
annotations were made, 1155 in the Movements Type 
1 Dataset and 610 in the Movements Type 2 Dataset. 

An image was chosen every 10 frames for both 
datasets to be annotated. To carry out the annotations, 
Labelme (Russell et al., 2008) was used, which is an 
open-source tool for graphical annotations of images. 

 Kinect, for each captured frame, provides three 
pieces of information: RGB image in 1920x1080 
pixels format, RGB image in 512x424 pixels format, 
Depth matrix in 512x424 format. As it is intended to 
use the depth information and synchronize it with the 
RGB image, it was decided to use the RGB images 
that are in the same format and discard the images in 
1920x1080 pixels format.  

Both training datasets were divided into 70% for 
training, 15% for validation and 15% for testing. In 
addition, all images have been resized to 448 x 448 
pixels and normalized to a 0-1 scale. The file 
extension of the RGB images is .jpg and the depth 
array is in the format .npy (numpy array). 

3.2 Testing Models with Data Shuffle 

This section presents the results of the Deep Learning 
Models in the Test Datasets, in which data shuffle 
was performed. In this way, the Models will be 
evaluated as usual. The purpose of performing these 
tests is to compare the results of using the model with 
the depth images to the ones with only RGB images, 
in different situations, to verify if the depth 
information is important for the leather segmentation 
or not. 

For the Full Image Model training, the number of 
epochs varied between 40 and 60 depending on the 
situation, the training was carried out with the GPU 
and the time needed was about half an hour for each 
test. All results can be seen in Table 2. 

Comparing the results of the models in the 
Movements Type 1 Dataset, the depth information 
does not improve the results, and the model with only 
the RGB information, presents better results. It is 
important to emphasize that both models segment the 
deformable object with a high IoU (Intersect over 
Union). Regarding the Movements Type2 Dataset, 
the depth data improved the Deep Learning Model 

although the difference between the results is not 
significant, where the Model with only RGB 
information has a Dice Loss of 0.1312 and the Model 
with RGB-D information has a Dice Loss of 0.1192. 

Table 2: Test Results with Full Image Model. 

Dataset Dice Loss IoU Recall Precision
RGB Movement 
Type 1 Dataset 0.0481 0.9117 0.9221 0.9849 

RGB-D Movement 
Type 1 Dataset 0.0727 0.8793 0.9011 0.9826 

RGB Movement 
Type 2 Dataset 0.1312 0.7810 0.8174 0.9712 

RGB-D Movement 
Type 2 Dataset 0.1192 0.7933 0.8435 0.9583 

RGB Both 
Datasets 0.1101 0.8128 0.9474 0.8961 

RGB-D Both 
Datasets 0.0717 0.8761 0.9289 0.9760 

When both Datasets are joined, the images with 
both movements are evaluated and the intention is to 
compare the results with a more robust dataset. With 
the increase of data, it is possible to verify that the 
depth information has a greater importance for the 
Deep Learning Model and the difference is 
significant. In Table 2, it is possible to see that the 
value of Dice Loss with only RGB data is 0.1101 and 
with RGB-D data is 0.0717. 

It is possible to conclude that, when the data 
shuffle is performed, the Full Image Model presents 
better results with the depth information according to 
the robustness of the Dataset. If the Dataset has few 
images, the depth information does not have a big 
impact on the deformable object segmentation. 

Table 3: Test Results with Bounding Box Model. 

Dataset Dice Loss IoU Recall Precision
RGB Movement 
Type 1 Dataset 0.1966 0.7286 0.8697 0.8621 

RGB-D Movement 
Type 1 Dataset 0.1553 0.8022 0.8531 0.9763 

RGB Movement 
Type 2 Dataset 0.3488 0.5378 0.6156 0.8905 

RGB-D Movement 
Type 2 Dataset 0.3576 0.5445 0.5891 0.9398 

RGB Both 
Datasets 0.2732 0.6023 0.7128 0.7930 

RGB-D Both 
Datasets 0.1991 0.7008 0.7761 0.9043 

For the Bounding Box Model, the same tests were 
performed but this time, using the necessary Model to 
perform the Tracking Algorithm. The results can be 
seen in Table 3.  
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Regarding Datasets Movements Type 1 and Type 
2, both models presented equivalent results, but in 
both situations the Models with only RGB 
information presented better results. In the Dataset 
Movements Type 2, the difference in results is 
practically null and it is not possible to verify their 
difference in the predict images. 

Regarding the results when both Datasets are 
merged, the depth information did not show any 
impact on the tracking of the deformable object, being 
that the value of Dice Loss when only RGB 
information is used is 0.0769 and the value of Dice 
Loss when it is RGB-D information used is 0.1656. 
The fact that the depth information does not show any 
impact on the Bounding Box Model in many 
situations show that, when images are small, the 
depth information is not important for Leather 
Tracking. 

3.3 Testing Models with a New Point of 
View 

In this section, are presented the results of the models 
when it is necessary to predict a new point of view 
that had never been presented in the training phase. 
The purpose of performing these tests is to verify the 
generalization level that the proposed Models can 
achieve. 

For the Full Image Model training, the number of 
epochs varied between 40 and 45 depending on the 
situation, the training was carried out with the GPU 
and the time needed was about half an hour for each 
test. All results can be seen in Table 4. 

In the first test, only the Movement Type 1 
Dataset was used and the results with RGB-D 
information are better compared to the model with 
only RGB images. The Model with RGB-D 
information has a Dice Loss of 0.1553 while the 
Model with only RGB information has a loss of 
0.1966. 

In general, the leather segmentation is more 
complicated in the Movement Type 2 Dataset because 
it presents more articulated movements of the leather, 
making leather segmentation results difficult. 
Regarding RGB and RGB-D data comparison, the 

best results are obtained by the model with only RGB 
information. The model with RGB information has a 
dice loss of 0.3488 and the model with RGB-D 
information has a dice loss of 0.3576. 

Table 4: Test Results with Full Image Model. 

Dataset Dice Loss IoU Recall Precision
RGB Movement 
Type 1 Dataset 0.0412 0.9216 0.8015 0.9877 

RGB-D Movement 
Type 1 Dataset 0.0546 0.9007 0.7656 0.9913 

RGB Movement 
Type 2 Dataset 0.1303 0.7859 0.5465 0.9837 

RGB-D Movement 
Type 2 Dataset 0.1308 0.7837 0.5438 0.9892 

RGB Both 
Datasets 0.0769 0.8645 0.7203 0.9898 

RGB-D Both 
Datasets 0.1656 0.7535 0.6411 0.9895 

In the end, it was decided to create a model with 
information from both datasets (Movement Type 1 
Dataset and Movement Type 2 Dataset). The Model 
are evaluated with the Movement Type 2 Dataset, 
presented in Table 4. Since the purpose of creating 
this model was to improve the Movement Type 2 
Dataset results, as it is the most complex Dataset for 
leather segmentation. As the model trained in the 
Movement Type 2 Dataset and the model in Both 
Dataset were tested with the same images, it is 
possible to compare the results between them.  

It is easy to verify that the model with both 
datasets presents better results indicating that if the 
model trains with different types of leather and 
different movements, it helps in its segmentation. 
Another important factor to highlight is that the 
model with RGB-D information has a much higher 
performance compared to the model with only RGB 
information. The reason for the Movement Type 2 
Dataset to have superior results with only RGB 
information may be related to the fact that the 
Movement Type 2 Dataset has less images, 610, and 
only 70% of them were used for training. When more 
images are used for training (as in the case of the Both 
Datasets Model) the results were superior with the 
depth information indicating that it is important for  
 

 
Figure 5: Example of a predict with Full Image Model. 

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

828



the leather segmentation, but more images are needed 
for the training process. In Figure 5 you can see an 
example of a forecast with the Full Image Model. 

In general, depth information is important for 
leather segmentation when using the Full Image 
Model. After the tests were carried out on the Full 
Image Model, the same tests were carried out but, this 
time, referring to the Bounding Box Model to verify 
or not the importance of depth information in small 
images, such as in the Bounding Box case.  

For the Bounding Box Model training, the number 
of epochs varied between 40 and 60 depending on the 
situation, the training was carried out with the GPU 
and the time needed was about half an hour for each 
test. All results can be seen in Table 5. 

In the first test with the Bounding Box Model, it is 
possible to verify that, in the Movement Type 1 
Dataset, the Model presents better results when RGB-
D information is used instead of RGB information, but 
the results are quite similar. The dice loss with RGB-D 
information is 0.1599 and only with RGB information 
is 0.1727. In relation to the Movement Type 2 Dataset, 
the depth information has no relevance for its 
prediction and, as in the Movement Type 1 Dataset, the 
results are quite similar between them. It is interesting 
to verify that, contrary to the Full Image Model which 
presented much better results in the Movement Type 1 
Dataset in relation to the Movement Type 2 Dataset, in 
the Model Bounding Box the results are better in the 
Movement Type 2 Dataset. This fact is since because 
as this is the Bounding box model, the images it 
predicts are approximations of Leather and, due to this 
fact, there is no difference in results between datasets 
because both are similar. 

Finally, the model that trains with both datasets 
also shows better results when it is only trained with 
RGB information. It is possible to see that the model 
with only RGB information has a Dice Loss of 0.1272 
and with RGB-D information it has a Dice Loss of 
0.1628. In Figure 6 it is presented an example of a 
prediction using the Full Image Model. It is possible 
to conclude that, when we have the complete image 
and a larger amount of data, the depth information is 
useful for leather segmentation, as is the case with the 
Full Image Model. When we have few images or the 

images are very small, the depth information is not 
useful, as in the case of Bounding Box Model. 

Table 5: Test Results with Bounding Box Model. 

Dataset Dice Loss IoU Recall Precision
RGB Movement 
Type 1 Dataset 0.1727 0.7681 0.6702 0.9859 

RGB-D Movement 
Type 1 Dataset 0.1599 0.7845 0.6864 0.9855 

RGB Movement 
Type 2 Dataset 0.1226 0.7876 0.6350 0.9640 

RGB-D Movement 
Type 2 Dataset 0.1411 0.7623 0.6167 0.9715 

RGB Both 
Datasets 0.1272 0.7813 0.6151 0.9694 

RGB-D Both 
Datasets 0.1628 0.7288 0.5499 0.9794 

Comparing the results of section 3.2 and this 
section, it is possible to verify that the results of the 
section 3.2 are better due to the fact that the models 
were trained with all points of view, but the purpose 
of this section is to demonstrate that the Model, even 
if it is never trained with a specific point of view, can 
obtain good results. 

3.4 Tracking Algorithm Speed  

The purpose of this section is to compare the 
performance of the proposed approach when the 
Tracking Algorithm is or not used and when the GPU 
is or not used.  

Table 6: Tracking Algorithm performance. 

Input Data 
Without 
Tracking 

Algorithm 

With 
Tracking 
Algorithm 

GPU 

RGB 4 FPS 10 FPS No 
RGB-D 3 FPS 8/9 FPS No

RGB 11/12 FPS 13 FPS Yes
RGB-D 10 FPS 13 FPS Yes

As can be seen in Table 6, when the CPU is used, 
the Tracking Algorithm has a big impact on the FPS 
value, without the Tracking Algorithm the FPS values 
are between 3/4 and with the Tracking Algorithm the 
FPS values are between 9/10 and the use of the  
 

 
Figure 6: Example of a predict with Bounding Box Model. 
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Tracking Algorithm is beneficial either with RGB-D 
information or just with RGB information. When 
using the GPU, the impact of the Tracking Algorithm 
is less, but in both situations, it is beneficial to use the 
Tracking Algorithm. 

It is important to emphasize that, using the 
Tracking Algorithm and the GPU, the depth 
information has no impact on the leather 
segmentation velocity. The FPS results were 
calculated with the models performing the prediction 
in all frames and, when it is necessary to increase the 
tracking velocity, the prediction does not need to be 
performed in all frames, increasing the FPS. 

4 CONCLUSIONS 

Using a U-NET architecture for the Deep Learning 
model helped us to get better results compared to 
creating an architecture from scratch. In addition to 
not having to train for many epochs, the results are 
also satisfactory.(Ronneberger et al., 2015) 

In general, the depth information is important for 
the Deep Learning Model when it is intended to 
segment a deformable object, but it is necessary to 
pay attention to the dataset size. With a larger dataset 
the depth information has more impact, but if the 
dataset is small or the images have low resolution, the 
depth information is not so useful for the Deep 
Learning Model. 

The Tracking Algorithm proved to be useful to 
increase the system's processing velocity, in this way, 
it is possible to increase the number of FPS and 
manage to track the Leather in the same way. 
However, it is necessary to pay attention to situations 
in which the Bounding Box Model loses the object. 
To prevent this situation, it is possible to create an 
architecture that, in some situations, uses the Full 
Image Model to guarantee the correct location of the 
Leather. 

For future work it is important to increase the 
dataset size and include different types of Leather. 
This way, the depth information will have a greater 
impact on the Models. In addition, it is possible to add 
more data processing steps, but it is necessary to pay 
attention to the impact of each technique on the 
system as it will have to work in real time. 
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