
Cluster Crash: Learning from Recent Vulnerabilities in Communication
Stacks

Anne Borcherding1,3 a, Philipp Takacs1 and Jürgen Beyerer1,2,3

1Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany
2Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

3KASTEL Security Research Labs, Karlsruhe, Germany

Keywords: Industrial Control Systems, Anti-Patterns, Vulnerability Testing, Ripple20, Amnesia:33, Urgent/11.

Abstract: To ensure functionality and security of network stacks in industrial device, thorough testing is necessary. This
includes blackbox network fuzzing, where fields in network packets are filled with unexpected values to test
the device’s behavior in edge cases. Due to resource constraints, the tests need to be efficient and such the
input values need to be chosen intelligently. Previous solutions use heuristics based on vague knowledge from
previous projects to make these decisions. We aim to structure existing knowledge by defining Vulnerabil-
ity Anti-Patterns for network communication stacks based on an analysis of the recent vulnerability groups
Ripple20, Amnesia:33, and Urgent/11. For our evaluation, we implement fuzzing test scripts based on the
Vulnerability Anti-Patterns and run them against 8 industrial device from 5 different device classes. We show
(I) that similar vulnerabilities occur in implementations of the same protocol as well as in different protocols,
(II) that similar vulnerabilities also spread over different device classes, and (III) that test scripts based on the
Vulnerability Anti-Patterns help to identify these vulnerabilities.

1 INTRODUCTION

Industrial Control Systems (ICSs) are elementary to
provide a fast, reliable and flexible production. The
term ICS comprises different types of control sys-
tems, including the necessary industrial device, sys-
tems and networks. Due to high requirements regard-
ing digitalisation and complexity, modern industrial
device consist of a plethora of components. In order
to provide reliable and secure services, thorough tests
of the components need to be conducted. One impor-
tant part of a thorough test of an industrial device is
to conduct blackbox tests, which do not consider any
internal details of the Device under Test (DUT), but
test the DUT from the outside. In the domain of in-
dustrial device, blackbox tests are usually performed
via the Ethernet interface. Amongst other, these tests
can reveal vulnerabilities in the communication with
other devices and especially vulnerabilities regarding
the handling of malformed communication packets.
Errors in communication stacks can lead to a crash of
the affected device and such to a potential outage of
the whole industrial facility (Pfrang et al., 2018).

a https://orcid.org/0000-0002-8144-2382

Many of these vulnerabilities are caused by soft-
ware errors that have been created during the design
or development of the industrial device. One way
to describe the design or development decisions that
lead to these errors are Anti-Patterns or Vulnerability
Anti-Patterns (VAPs) (Nafees et al., 2018). VAPs help
to communicate design and coding practices that po-
tentially lead to vulnerable code. Although VAPs are
intended to prevent errors and vulnerabilities during
design and development, we propose to use them to
build targeted blackbox tests.

One possible technique for blackbox tests of in-
dustrial device is blackbox fuzzing. Even though clas-
sic fuzzing has been introduced in the 1980s, it is
still relevant and helps to find vulnerabilities (Miller
et al., 2020). For blackbox network fuzzing, one usu-
ally tests several expected or unexpected values for
the different fields of a network packet. Due to time
and resource restrictions, it is usually not possible to
test all fields with all possible values. We propose to
use the information derived from previous vulnerabil-
ity groups represented as VAPs to guide the prioriti-
zation of fields and values.

Our aim is to understand which VAPs form the ba-
sis of recently published vulnerabilities in communi-

334
Borcherding, A., Takacs, P. and Beyerer, J.
Cluster Crash: Learning from Recent Vulnerabilities in Communication Stacks.
DOI: 10.5220/0010806300003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 334-344
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



cation stacks of industrial device, and how this infor-
mation can be used to test industrial device more effi-
ciently. In order to achieve this, we analyze three vul-
nerability groups that have been published recently:
Ripple20 (Kohl and Oberman, 2020; Kohl et al.,
2020), Amnesia:33 (dos Santos et al., 2021), and Ur-
gent/11 (Seri et al., 2019). All of these vulnerabili-
ties concern communication stacks for standard Inter-
net protocols such as TCP, DNS, and IPv4, which are
also used in industrial device. Based on our analy-
sis, we develop VAPs for the communication stacks.
Subsequently, we use these VAPs to develop blackbox
fuzzing test scripts that aim to test a given blackbox
industrial device for the implementation errors result-
ing from these VAPs.

For the evaluation of our test scripts, we use 8
industrial device from 5 device classes. We run the
test scripts against the devices and observe their be-
havior. As a result, we observed three crashes and
9 anomalies in the behavior of the industrial device.
Our evaluation shows that similar vulnerabilities oc-
cur in implementations of the same protocol as well as
in different protocols. In addition, we show that sim-
ilar vulnerabilities also spread over different device
classes and that the test scripts we developed based
on the VAPs help to identify these vulnerabilities.

In summary, our main contributions are:

• We analyse the vulnerabilities of Ripple20, Am-
nesia:33, and Urgent/11, and identify VAPs for
the development of communication stacks.

• We implement fuzzing test scripts to search for
implementations of the VAPs in a blackbox set-
ting, and evaluate the test scripts using 8 industrial
devices.

The rest of this paper is structured as follows. Sec-
tion 2 presents related work in the domains of black-
box fuzzing for industrial device, vulnerability scan-
ning, and Anti-Patterns. Our analysis of the recent
vulnerability groups Ripple20, Urgent/11, and Am-
nesia:33 is described in Section 3. The test scripts we
implemented based on these VAPs are described in
Section 4. In Section 5, we evaluate the VAPs and
test scripts. This section also describes our method-
ology, presents the results and discusses them. Sec-
tion 6 concludes our work.

2 RELATED WORK

Our work is located in the domain of blackbox
fuzzing for industrial device and also touches the do-
mains of vulnerability scanning, and Anti-Patterns.

Blackbox Fuzzing for Industrial Devices. The
framework for blackbox network fuzzing for in-
dustrial device ISuTest is presented by Pfrang et
al. (Pfrang et al., 2017). The included fuzzer gener-
ates new test cases based on heuristics which are used
to determine which values should be used for a packet
field with a certain data type. As a basis for these
heuristics, the authors use knowledge from previous
projects. Our work chooses a more general approach
by identifying VAPs and then deriving promising field
types and values based on these VAPs.

Vulnerability Scanning. In contrast to fuzzing,
vulnerability scanning generally is less intrusive. The
aim of vulnerability scanning is to check whether the
DUT contains vulnerable software by identifying the
software running on the DUT. For the vulnerability
groups considered in this work, vulnerability scan-
ners have been developed. These scanners aim to
detect whether the considered DUT includes one of
the vulnerable communication stacks. For Ripple20,
a scanner was developed by JSOF which can be re-
ceived upon request. Forescout published their scan-
ner for Amnesia:33 on GitHub1. Likewise, ArmisSe-
curity published a scanner for Urgent/112. In general,
all three scanners use active fingerprinting to deter-
mine whether the DUT includes one of the vulnerable
stacks. Due to the high impact that one single small
corrupted component can have on a wide range of do-
mains, it is especially challenging to find all vulnera-
ble communication stacks. In addition, fingerprinting
for ICSs has some special challenges (Caselli et al.,
2013). In contrast, our work aims to actively test for
the implementations of VAPs. With this, it has poten-
tially a higher impact on the availability of the DUT
since it might crash during the testing. However, with
the active tests, one can be sure that a DUT is indeed
vulnerable if the tests report a crash.

Anti-Patterns. Anti-Patterns are usually used to de-
scribe common errors during the design or develop-
ment of software (Tuma et al., 2019; Hecht et al.,
2015), for management (Julisch, 2013), and for vul-
nerabilities in design or development (Nafees et al.,
2018). Examples for such Anti-Patterns are the use
of deprecated software or missing authentication. In
addition, performance Anti-Patterns have been pre-
sented for communication (Wert et al., 2014; Tru-
biani et al., 2018), for cyber physical systems (Smith,
2020), and for simulated models (Arrieta et al., 2018).

1https://github.com/Forescout/project-memoria-
detector

2https://github.com/armissecurity/urgent11-detector

Cluster Crash: Learning from Recent Vulnerabilities in Communication Stacks

335



Table 1: Stacks affected by the vulnerabilities published by
Ripple20, Amnesia:33, and Urgent/11.

Stack Language Availability

Ripple20

Treck TCP/IP C closed source

Amnesia:33

lwIP C open source
uIP C open source
Nut/Net C open source
FNET C open source
picoTCP C open source
CycloneTCP C open source
uC/TCP-IP C open source

Urgent/11

Interpeak IPNet C closed source

None of the Anti-Patterns in literature concern the se-
curity or vulnerabilities of network protocols, indus-
trial device, or cyber physical systems. Nevertheless,
the various applications of Anti-Patterns show that
they are an accepted method to approach the preven-
tion of errors. In our work, we aim to find implemen-
tations of errors that have not been prevented during
design or development.

We base the representation and description of our
Anti-Patterns on the VAPs Template presented by
Nafees et al. (Nafees et al., 2018).

3 ANTI-PATTERN ANALYSIS

The aim of our analysis is to understand which sim-
ilarities occur in the recently published vulnerability
groups and to develop corresponding VAPs. The au-
thors of Amnesia:33 state that their analysis shows
that “implementing the same protocols under simi-
lar constraints tends to produce similar bugs in sim-
ilar places” (dos Santos et al., 2021, page 22). With
our analysis, we want to additionally analyze whether
similar issues and VAPs also occur in implementa-
tions of different protocols.

In order to do so, we analyze the vulnerabilities
published under the names of Ripple20, Urgent/11,
and Amnesia:33. The nine stacks in which the vul-
nerabilities have been found are presented in Ta-
ble 1. Amnesia:33 analyzed seven open source stacks
whereas Ripple20 and Urgent/11 analyzed one closed
source stack respectively. All in all, the three vulnera-
bility groups consist of 63 vulnerabilities. One of the
vulnerabilities (CVE-2020-11904) is not concerned

0 5 10 15

ARP
DHCPv4
DHCPv6

DNS
Ethernet
ICMPv4
ICMPv6

IGMP
IPv4

IPv4 in IPv4
IPv6

LLMNR
mDNS
RARP

TCP
UDP

1
3

1
3

1
2

2
2

1
6

1
1

7

1
1

1

4

2

1
2

8

11
1

number of reported vulnerabilities

length / offset domain name other

Figure 1: Number and type of vulnerabilities present in Rip-
ple20, Urgent/11, and Amnesia:33, sorted by protocol.

with a specific protocol but is a protocol-independent
issue of the Treck stack. This is why we exclude the
vulnerability from our analysis. Another vulnerabil-
ity (CVE-2020-13987) is concerned with TCP as well
as with UDP which we consider as two different vul-
nerabilities for our analysis.

First, we classify the vulnerabilities based on the
packet field the vulnerability occurs in. Second, we
cluster the fields and vulnerabilities of the different
protocols in order to find similarities. Third, we
choose the most common fields and vulnerabilities to
develop corresponding VAPs and test scripts.

Our analysis shows that more than half of the vul-
nerabilities are caused by a length / offset field, or
the domain name. For both fields, the checks and the
parsing is complex and error prone (see Sections 3.1
and 3.2 for more details). Figure 1 shows how the
vulnerabilities are spread over the different protocols.
The vulnerabilities that have been reported in the vul-
nerability groups are represented by one bar for each
protocol. Within one bar, the vulnerabilities are again
classified by the field the vulnerability occurs in. The
two most common fields (length / offset fields and do-
main name) are highlighted respectively. We catego-
rize length and offset fields together, since the under-
lying handling and resulting errors are similar. Out
of the 63 vulnerabilities, 29 (46.03%) are concerned
with a length / offset field and 9 (14.29%) are con-
cerned with the domain name. The next most occur-
ring field, id, only occurred 2 times (3.17%).

Figure 1 shows that the vulnerabilities concern-
ing a length / offset field spread over almost all proto-
cols. This already points towards a spreading of simi-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

336



lar issues over different protocols. In contrast, vulner-
abilities concerning the domain name only occurred
in DNS and LLMNR even though domain names are
also used in DHCP, DHCPv6 and ICMPv6.

Since the length / offset and domain name are re-
sponsible for more than 50% of the reported vulnera-
bilities, we will use these field types for the formula-
tion of VAPs. We will then use these Anti-Patterns to
design and develop test scripts in order to find imple-
mentations of these VAPs.

3.1 Lengths and Offsets

Our analysis shows that 46.03% of the reported vul-
nerabilities are concerned with invalid or unexpected
values in length / offset fields. From our point of
view, there are two main reasons for the high num-
ber of these vulnerabilities. The first reason is that
all the investigated TCP/IP stacks are implemented in
C. In C, many robustness issues are caused by missing
boundary checks (Fetzer and Xiao, 2002) which often
are triggered by unexpected or misfit lengths and off-
sets. The second reason is that there are many lengths
and offsets in the investigated protocols. For exam-
ple, TCP includes six length or offset fields. Each of
these six fields poses a parser the challenge to verify
and parse them correctly.

In addition, protocol standards usually focus on
the parsing of packets that are compliant to the stan-
dard and not all requirements for the lengths and off-
sets are defined explicitly in the standard (dos Santos
et al., 2021). Necessary checks for validity are even
harder because some lengths interact with each other
and depend on the current data. This is why parsing
the lengths and offsets is error prone, especially re-
garding possible edge cases.

As an example, we want to have a closer look to
the option length field of TCP. A necessary insight
is that a valid option length value cannot be higher
than the length of the remaining data of the header.
The option that is described by the option length
is itself contained in the header and such a value
longer than the remainder of the header would surely
be invalid. In order to check whether the option
length of a given packet is compliant with this re-
quirement, several calculations need to be conducted.
For the necessary comparison, one needs to calcu-
late how much data is left in the header. This in-
cludes the steps to (I) multiply the data offset by
four to receive the full length of the data in Bytes,
and to (II) subtract the length of the already parsed
data. Then, the validity check of the option length
can be conducted by comparing the calculated possi-
ble length and the given option length. Additional

necessary checks are for example that (I) the already
parsed data is at least 20 bytes long, since this is the
length of a header without options, and (II) that the
data offset multiplied by four is not greater than
the available data from the IP layer. This small exam-
ple makes apparent that different checks are necessary
that partly depend on different fields of the current
packet.

3.2 Domain Names

Of the vulnerabilities reported by Ripple20, Amne-
sia:33, and Urgent/11, 14.29% are concerned with
domain names. Technically, the issues with domain
names are also concerned with length, offsets and ter-
mination. Nevertheless, we handle these issues sepa-
rately. The first reason for this is that DNS is a widely
used protocol and in many cases, DUTs will just parse
any crafted DNS packet. Second, domain names com-
bine many ways to use length and offsets such that it
poses even more challenges to a parser.

The specification of DNS can be found in
RFC 1034 and RFC 1035 (Mockapetris, 1987a;
Mockapetris, 1987b). Domain names are usually
represented as a list of labels separated by dots (e.g.
my.domain.xy). To encode them, the length of
each label is prepended to the labels respectively.
The example domain would be encoded as follows:

chars 2 m y 6 d o m a i n 2 x y 0
bytes 02 6D 79 06 64 6F 6D 61 69 6E 02 78 79 00

A valid domain name encoding is always terminated
with a length byte of zero, which is the length of the
root domain.

In order to reduce redundancy, DNS supports a
feature called compression. This feature acts like a
pointer and allows to reference a prior list of labels.
With this, it is not necessary to encode the same list
of labels twice.

A full DNS packet contains different sections,
where each has its own lengths, offsets and other spe-
cialities, making parsing a DNS packet error prone.
These sections include the header, the question sec-
tion, and three resource records sections. The ques-
tion section defines the question that is being asked
by the specific request. Each resource record section
includes a variable number of resource records. A re-
source record specifies the domain name, the type, the
class, and the time to live for a resource. This com-
plexity is reflected by the vulnerabilities found, which
concern out-of-bounds read and write, remote code
execution and denial of service amongst others.

Cluster Crash: Learning from Recent Vulnerabilities in Communication Stacks

337



3.3 Analysis Conclusions

Our analysis indicates that the vulnerabilities reported
by Ripple20, Amnesia:33, and Urgent/11, show sim-
ilarities over different implementations but also over
different protocols. For example, CVE-2020-11912
allows an out-of-bounds read caused by improper in-
put validation based on a missing sanity check regard-
ing the TCP option length and the actual length of
the TCP options. This vulnerability was reported
as part of Ripple20. Similarly, CVE-2020-17441 also
leads to an out-of-bounds read caused by improper in-
put validation and is based on a missing sanity check
regarding the IPv6 payload length and the actual
length of the payload. It was reported as part of Am-
nesia:33. Both vulnerabilities are caused by a missing
sanity check regarding the given length and the actual
length of the data. They occur in different protocols
and at different places.

The six VAPs resulting from our analysis are pub-
lished on GitHub3. We use these VAPs and the de-
tailed results of our analysis to construct test scripts
which test for the VAPs and vulnerability types.

4 TEST SCRIPTS

Based on our analysis, we implement 15 fuzzing test
scripts. As has been stated, we implement our test
scripts from a blackbox point of view. That means on
the one hand that we do not have any insight into the
source code during the development and on the other
hand that the test scripts interact with the DUT only
via the Ethernet interface. In general, the aim of the
test scripts is to provoke anomalies or crashes in the
tested devices.

In order to make our test scripts usable for contin-
uous testing, we designed the test scripts in a way that
they can easily be integrated into the security testing
framework ISuTest (Pfrang et al., 2017). To show the
integratability, we developed proof-of-concept imple-
mentations of our test scripts for ISuTest. In the stan-
dalone implementations of the test scripts, a security
analyst needs to analyze the behavior of the industrial
device during the tests. With the integration of the test
scripts into the security testing framework ISuTest, an
automated monitoring of the industrial device would
be possible.

Since the scripts can provoke crashes of industrial
device via routable protocols, but we still want to sup-
port scientific reproducibility, the standalone imple-

3https://github.com/anneborcherding/
vulnerability-anti-patterns

mentations of the test scripts are provided upon re-
quest.

For the implementation of the test scripts, we con-
sider DHCPv4, DNS, IPv4, TCP, and UDP. We chose
these protocols based on the protocols that showed the
most vulnerabilities during our analysis, and based on
practical considerations. As a fist selection criterion,
we select the protocols that show most vulnerabilities.
This includes DNS and IPv6 (14 vulnerabilities each),
TCP (12 vulnerabilities), DHCPv4 (4 vulnerabilities),
IPv4 and IPv4 in IPv4 (3 vulnerabilities each), and
ICMPv4, ICMPv6 and IGMP (2 vulnerabilities each).
Since the UDP protocol has shown a vulnerability
based on a length field and is widespread, we addi-
tionally consider it. From this set of protocols, we
select the protocols that are present in current indus-
trial device, since our research is located in this do-
main. This leads to a selection of DHCPv4, DNS,
IPv4, TCP, ICMP, and UDP. Each of these protocols
except ICMP includes testable length / offset fields
and domain names. This is why our final set of pro-
tocols to be considered for our test scripts contains
DHCPv4, DNS, IPv4, TCP, and UDP.

Table 2 shows the packet fields we consider for
our test scripts based on our analysis of the affected
fields in Ripple20, Urgent/11, and Amnesia:33. For
DHCP, we include two additional test scripts which
also concern lengths of packet fields. First, we imple-
ment a test script to test for string termination issues
in the DHCP options payload. In C, a string is usu-
ally terminated by a byte with a value of zero. For
our test, we include a string that includes the zero
byte in its middle (e.g. example\0string). With
this, we can check if the DUT handles this unexpected
string termination well. Second, we implement a test
script to test how the DUT reacts to a DHCP options
payload with a length of zero. Again, we want to
test if the DUT can handle this unexpected payload
length. Another speciality is the use of DHCP with
the domain search option (option 119) (Aboba and
Cheshire, 2002). With this option set, one can con-
figure the domain search list. Caused by this direct
connection to DNS, it includes similar fields, and we
can implement similar test scripts.

The test scripts can be categorized in three groups:
stateless, request response and stateful. In the fol-
lowing subsections, we present details on our imple-
mentation, for which we use Scapy4 as a basis. Since
Scapy is designed to be a high level API for packet
generation, some packet fields are not intended to be
set programmatically. This is why we need to use
workarounds at some places, which are also described
in the following.

4https://scapy.net

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

338



Table 2: Packet fields considered in the test scripts, and their
types (length/offset (l/o) or domain name (dn)).

Protocol Type Field

IPv4 l/o length
l/o internal header length (ihl)
l/o option length

TCP l/o data offset
l/o option length
l/o urgent pointer

UDP l/o length

DHCP l/o option length
dn search option
l/o option payload termination
l/o zero length option payload

DNS dn compression pointer
dn label length
l/o qdcount
l/o rdlength

4.1 Stateless Protocols

Stateless protocols do not contain a state and such are
easier to test since there is no need to, for example,
establish a connection before sending a packet. For
our evaluation, this includes IPv4 and UDP. The ba-
sic approach of the stateless test scripts is to create a
packet, send it to the DUT, and check the response.

It is important to add a meaningful payload to the
packet. With this, the probability that the DUT drops
the packet at an early stage is decreased. For IPv4,
we are using ICMPv4 as payload. Regarding UDP,
the used payload depends on the DUTs. Some indus-
trial device accept LLDP or DNS resolver payloads,
or it might be the case that the DHCP implementation
accepts packets. If there is no service on the DUT
that accepts UDP-based packets, a request-response
protocol needs to be used on top of the UDP packet.

Most of the test scripts regarding IPv4 and UDP
can be implemented with Scapy in a straight forward
way. We use Scapy to generate a packet, change the
corresponding field and send the packet to the DUT.
Since most of the fields only contain a few bytes, we
are able to test the full input space for these fields.

However, for the implementation of test scripts re-
garding the IP options, some additional work needs to
be done since Scapy’s interface doesn’t allow to set
the length of an option. In general, this is a helpful in-
terface, but for our test scripts, we intentionally want
to set the length in a wrong way. As a workaround,
we generate the options manually and append them
as a payload to the IP layer. In addition, the IP header
length and the checksum must be set properly.

4.2 Request-response Protocols

From the protocols considered for the test scripts,
DHCP and DNS can be categorized as request-
response protocols. That means that no complex state
machine is required to test these protocols. Neverthe-
less, implementing the test scripts for DHCP and DNS
is more challenging than the test scripts for stateless
protocols. Since most industrial device implement the
client of the protocol, the test script needs to repre-
sent the server. An additional challenge is that the
first paket of the communication has to be sent by
the DUT, and the communication cannot be initiated
by the test script. For each field and each value that
should be tested, the DUT needs to send one request.
The answer to this request is then crafted according to
the test script and sent to the DUT.

For the implementation, we encapsulate the mu-
tation of the packet defined by the test script from
the implementation of the protocol server. As a basis
for the implementation of the protocol server, we use
Scapy’s AnsweringMachine. This part implements
the general protocol behavior and is the same for each
test script. The other part, the mutation of the packet,
depends on the test script and interacts with the server
implementation via an interface. For DHCP, we im-
plement an interface to control the DHCP options
which are handled by Scapy similar to the IP options,
and such are not fully controllable via the Scapy in-
terface. Our interface allows to set the options and the
option lengths independent of the actual content. For
DNS, we implement an interface to build the DNS
packets. With the interface, we are able to control
each part of the DNS packet. For example, it is possi-
ble to change the length of a label or to set a compres-
sion pointer to an arbitrary value. With this design
and implementation, we can build the test scripts for
the different fields (see Table 2).

Depending on the protocol, there are several ways
to trigger the DUT to generate a request. Regarding
DHCP, one can choose between two reasonable ways.
On the one hand, the DUT usually will generate a
DHCP request after booting. On the other hand, a
DUT will send a new DHCP request after a timeout
which can be set by the DHCP server (Droms, 1993).
For our test scripts, we choose the option based on the
timeout since a reboot of a industrial device can take
even longer than the time needed to wait for the time-
out. We set the renewal timeout to 10 seconds, and
the lease time to 20 seconds. As a result, the DUT
will send a new request after a time between 10 or 20
seconds, depending on the implementation. This still
is a long time and such the tests need some time to
finish (see Section 5.3.2 for an evaluation).

Cluster Crash: Learning from Recent Vulnerabilities in Communication Stacks

339



Regarding DNS, the possibilities to trigger a re-
quest highly depend on the concrete industrial device,
its device type and implemented features. For exam-
ple, one of the DUTs used in our evaluation provides
a dDNS implementation which can be used to trigger
a DNS request on a configurable frequency. A dif-
ferent DUT can be configured to send mails based on
different events. This will trigger a DNS request as
well. Note that these configurations do not break the
blackbox assumption since they can be conducted by
using the Ethernet interface. In general, the DNS test
scripts require a individual configuration of the DUT
for it so send DNS request as often as possible.

4.3 Stateful Protocols

We also consider TCP, which is a highly stateful pro-
tocol. That means that out implementation needs to
generate, keep and cleanup the current state. Fuzzing
stateful protocols has been identified as a challenge by
Böhme et al. (Böhme et al., 2021). In order to reach a
vulnerability in a deeper state of the protocol, one first
needs to execute the steps that are necessary to reach
said state. One specific challenge is to maintain the
state during the tests since the tests may interact with
the state. Each test script needs to establish a spe-
cific state, run the tests and reset the state afterwards.
Some test scripts additionally need to interact with the
general state machine. Depending on the payload of
the TCP packet, the test script also needs to be aware
of the payload’s protocol. For example, it might be
necessary to make a valid HTTP request on top of the
tested TCP packet. Only with this valid payload the
packet will be accepted und further processed by the
DUT. Similar to the implementations of the stateless
and request-response protocols, we implement an in-
terface to set the options, and we need to recalculate
the checksum.

5 EVALUATION

The aim of our work is to understand whether simi-
lar vulnerabilities occur in implementations of differ-
ent protocols, and whether blackbox test scripts can
be used to identify these vulnerabilities. Additionally,
this can be used to guide blackbox fuzzers, making
them more efficient. For the evaluation of these ques-
tions and of the implemented test scripts, we choose
8 industrial device from 5 device classes as a basis.
We set up and configure the industrial device, run our
scripts and analyse the resulting behavior of the in-
dustrial device. The following section describes our
methodology, presents the results and discusses them.

Since our aim is to generally explore the spreading
of vulnerabilities and not to explicitly point out single
vendors, the used industrial device are identified by
pseudonyms. The vulnerabilities we find during our
work are disclosed responsibly and in collaboration
with the vendors.

5.1 Methodology

Before the presentation of the results, we present
our methodology. This includes the formulation of
our hypotheses and the presentation of our evaluation
strategy.

5.1.1 Hypotheses

Our evaluation is driven by the following hypotheses:

H.1 Similar vulnerabilities do not only occur in im-
plementations of the same protocol but also in
different protocols.

H.2 Black-box test scripts derived from previously
defined VAPs help to identify vulnerabilities.

H.3 Implementations of the VAPs are present in
different device classes.

5.1.2 Strategy

Depending on the protocols each industrial de-
vice supports, we use our implemented test scripts to
test the devices for vulnerabilities. During the whole
process, the industrial device are blackboxes. This
represents the view of an attacker who aims to find
vulnerabilities in industrial device, but also the view
of a test late in the development life cycle. With
this, we are able to evaluate realistically how our ap-
proaches and test scripts work in a blackbox setting.
The devices we choose are not known to be vulner-
able with regard to the analysed vulnerability groups
Ripple20, Urgent/11, and Amnesia:33. This supports
our aim to evaluate whether the identified VAPs can
be transferred to other stacks and devices.

5.2 Devices under Test

We include 8 industrial device from 5 different de-
vice classes in our evaluation. The two leftmost
columns of Table 3 list the DUTs as well as their
device classes. It can be seen that the industrial de-
vice cover a wide range of device classes. A finger-
printing showed that each of the DUTs uses a unique
stack. This increases the variance, and the coverage
of the DUTs even more. In the following, we give a
short overview on the functions and specialities of the
device classes considered in this evaluation (firewall,

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

340



controller, gateway, I/O device, and sensor). In order
to follow a responsible disclosure strategy, we will not
include details on the manufacturers of the devices.
We reported the vulnerabilities to the concerned man-
ufacturers, and we will publish the vulnerabilities af-
ter the disclosure process is finished.

Firewall. A firewall connects two or more network
segments and restricts the traffic between the network
segments. FW1 is a firewall that provides an HTTPS
Webserver for configuration purposes.

Controller. Controllers have the task to control and
monitor the ICS. Additionally, they can collect and
analyse data from the industrial device. For our eval-
uation, we choose two controllers: Ctl1 and Ctl2.
Ctl1 is a safety controller which means that it is espe-
cially suited for applications with high safety require-
ments. This includes higher requirements regarding
redundancy and reliability.

Gateway. The two gateways, GW1 and GW2, are
OPC UA Gateways. That means that they connect
different communication protocols to OPC UA, which
is a machine-to-machine communication protocol for
industrial automation. With this, data from different
sources can be combined and analyzed.

I/O Device. In general, industrial I/O devices con-
nect analog and digital actuators and sensors to the
controllers. I/O2 is an I/O device that couples
PROFINET communication from the controllers to
digital or analog signals. I/O1 translates the commu-
nication between PROFINET and I/O Link, and digi-
tal and analog signals.

Sensor. Sens1 is a temperature sensor that provides
its measurements using different communication pro-
tocols such as FTP, SNMP, and MQTT. In addition,
Sens1 provides a web application which also shows
the current measurements but can additionally be used
for configuration purposes.

5.3 Results

We present the results of our evaluation in this section,
whereas Section 5.4 discusses the presented results.
The test scripts lead to crashes of the DUTs as well
as to anomalies in their behavior. We chose the term
finding as an umbrella term for crashes and anomalies.

D
H

C
Pv

4

D
N

S

IP
v4

T
C

P

U
D

P0

1

2

3

4

5

1

1
2

4
3

#fi
nd

in
gs

length / offset
domain name

Figure 2: Findings (crashes and anomalies) identified by the
test scripts, sorted by the protocol they concern.

5.3.1 Findings

During our evaluation, we observed 11 findings. Fig-
ure 2 presents the findings sorted by the affected pro-
tocol, and the type of the finding (length/offset or do-
main name). The test scripts provoked findings in
each of the considered protocols except UDP. Most
findings are concerned with IPv4.

The more detailed overview of the results pre-
sented in Table 3 shows that we observed anomalies in
IPv4 and TCP, and crashes in DHCPv4 and DNS. In
the table, anomalies are represented by A and crashes
by C. Checkmarks (X) represent runs that did not lead
to a finding, and dashes (-) represent combinations
which were not run since the DUT did not support the
protocol. Three DUTs did not show any finding, for
the remaining five DUTs, findings can be reported.

Two crashes we observed regarding DNS (see Ta-
ble 3) are resulting from an rdlength value bigger
than the available data. In our cases, the value of
rdlength was expected to be 4. For Sens1 as well
as for GW2, an unexpected value for rdlength leads
to the behavior that the DUT no longer sends DNS
requests. We conclude that the DNS resolver crashes
because of this unexpected value. Interestingly, the
concrete value differs. The resolver of Sens1 crashes
if rdlength is set to 0x084a, and the resolver of
GW2 crashes for the value 0xfd8c.

The third crash regarding DNS is concerned with
the compression pointer. GW2 stops sending DNS re-
quests after two responses with compression pointers
(0x05 and 0x06). However, the DUT is still running,
and with the webinterface a DNS request can still be
triggered. Based on our observations, we assume that
the NTPd process, which generates regular DNS re-

Cluster Crash: Learning from Recent Vulnerabilities in Communication Stacks

341



Table 3: Crashes (C) and anomalies (A) of the DUTs pro-
voked by the test scripts. Checkmarks (X) represent runs
that did not provoke an anomaly or a crash, and dashes
(-) represent combinations where the DUT does not support
the corresponding protocol.

ID
D

ev
ic

e
C

la
ss

IP
v4

T
C

P
U

D
P

D
H

C
Pv

4
D

N
S

le
n

ih
l

op
tle

n
le

n
op

tle
n

ur
ge

nt
le

n
op

tle
n

se
ar

ch
te

rm
ze

ro
co

m
pr

pt
r

la
be

lle
n

qd
co

un
t

rd
le

n

Se
ns

1
Se

ns
or

X
X

A
X

X
X

X
C

-
X

X
-

-
-

C
F

W
1

Fi
re

w
al

l
X

X
A

X
X

X
X

X
X

X
X

X
X

X
X

C
tl1

C
on

tr
ol

le
r

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
C

tl2
C

on
tr

ol
le

r
X

X
A

X
X

A
X

X
X

X
X

X
X

X
X

I/
O

1
I/

O
D

ev
ic

e
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

I/
O

2
I/

O
D

ev
ic

e
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

G
W

1
G

at
ew

ay
X

X
X

X
X

A
X

X
X

X
X

-
-

-
-

G
W

2
G

at
ew

ay
X

X
A

X
X

A
X

X
X

X
X

C
-

X
C

quests, has crashed. After a reboot, the NTPd works
again as expected.

The test script concerning the option length of
DHCPv4 provoked a full crash of Sens1. If the DHCP
ACK packet does not contain the values expected by
the DUT, the DHCP client as well as the other ser-
vices crash. After a reboot, the DUT and all of its
services are up and running again.

The test script regarding the urgent pointer
leads to anomalies in three industrial device. If the
urgent pointer is set to zero, the industrial de-
vice return different HTTP response codes. This is
an unexpected behavior since the urgent data re-
quires at least one byte (Seri et al., 2019). Expected
would be the same response as for requests without
the urgent flag set, closing the connection or ig-
noring the packet. With the urgent pointer point-
ing inside the available data, GW2 and GW1 response
sometimes with a 400 Bad Requests and sometimes
with a 200 Ok. However, GW2 also sometimes re-
sponses with 401 Unauthorized which is the ex-
pected behavior since GW2 uses HTTP Authentica-
tion. From a blackbox perspective, we interpret this
behavior as an anomalie in the HTTP implementa-
tion since the urget pointer influences the HTTP
response code.

Regarding IP, the test script regarding the option
length lead to similar anomalies in four industrial
device. Even in cases in which the option length is
too short or too long, the DUTs reflects the content
of the options to the sender. This also includes cases
in which the content of the options is not parseable.
Our analyses suggest that this anomaly can not be ex-
ploited. Still, the finding is communicated to the ven-
dors of the effected DUTs.

5.3.2 Duration

Our evaluation of the timing performance shows high
differences between the protocols, as expected. The
results of our evaluation are shown in Figure 3, where
each bar represents the mean duration of a run of all
the test scripts concerned with the corresponding pro-
tocol. With this, we want to give a sense of how long
the tests for one protocol need. As can be seen in the
figure, the test scripts for DNS need much longer than
the other test scripts. The reason for this is that the
DUT needs to send the first packet of the connection
and this needs its time (see also Section 4.2).

5.4 Discussion

Our evaluation gives valuable results regarding the
hypotheses formulated in Section 5.1.1. In the fol-
lowing, we discuss the implications of our results in

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

342



0 1 2 3 4
·105

DHCPv4

DNS

IPv4

TCP

UDP

12h 2d 4d

1.24 ·105

3.36 ·105

1.36 ·105

1.88 ·105

77,108

Mean duration of test in seconds

Te
st

sc
ri

pt
s

Figure 3: Mean duration of tests including 95%-quantile.

regard to the hypotheses and further discuss expla-
nations for interesting observations as well as limi-
tations.

First, our evaluation supports H1 since the re-
sults show that similar vulnerabilities do not only oc-
cur in the same protocol but also in different proto-
cols. For example, this is the case for length val-
ues which are greater than the available data. On the
one hand, in DNS we observed a crash caused by a
rdlength value bigger then the available data. On
the other hand, the anomalies found in IP are based
on an option length value bigger then the available
data. Additionally, our results also support the hy-
potheses that similar vulnerabilities can be found in
different implementations of the same stack, which
has been formulated by dos Santos el al. (dos Santos
et al., 2021). This is for example shown by the similar
behavior of Sens1, FW1, Ctl2, and GW2 regarding the
IPv4 option length.

Second, our implementation and evaluation sup-
port H2. The blackbox test scripts we developed
based on the VAPs are indeed able to identify anoma-
lies and crashes related to the VAPs. For exam-
ple, this is shown by the findings regarding the
urgent pointer which represent an implementation
of VAP1: Assume validity of length / offset field. A de-
tailed description of the VAPs has been published on
GitHub.

Third, out evaluation supports H3 since the results
include findings of the same VAPs in different device
classes. For example, this is the case for the find-
ing regarding the IPv4 option length. In this case,
four devices from four different device classes (sen-
sor, firewall, controller and gateway) show the same
anomaly in their behavior. The controller and the
gateway additionally share the anomaly in behavior
regarding the TCP urgent pointer.

Our experiments show no findings regarding
UDP. The reason for this could be that UDP is the
least complex protocol we tested and such vulnera-

bilities are less likely. This is also supported by the
previous reported vulnerabilities where only one vul-
nerability was reported in UDP.

One of our assumptions is the realistic setting that
we see the DUTs as true blackboxes. On the one hand,
this allows us to truly understand how the tests and
evaluations need to be conducted to be realistic for
blackbox testers. On the other hand, this setting al-
lows to take the attacker’s point of view which helps
to understand possible approaches and attacks. How-
ever, this assumption also restricts our possibilities to
evaluate the vulnerabilities in some sense. The first
restriction is that we are not able to tell which stacks
are used by the DUTs. As has been stated earlier,
we compensate for this missing information by using
fingerprinting techniques. By using nmap, we finger-
print the different stacks and were able to tell that all
used DUTs include different stacks. With this, we
are able to show that similar vulnerabilities occur in
different stacks. The second restriction concerns the
analysis of the found vulnerabilities. To be sure which
finding correlates to which VAP, one would need to
see the source code and analyse the reason for the
anomaly or crash. Nevertheless, the behavior that is
visible from the outside already gives hints to which
VAP an anomaly or crash is related. For a deep anal-
ysis of the findings in relation to the VAPs, one needs
to break the blackbox assumption. We are working in
this direction by disclosing the vulnerabilities to the
vendors and by cooperating with the vendors. This
helps to understand the vulnerabilities better and also
helps to make the industrial device more secure.

6 CONCLUSIONS

In this work, we analyzed the vulnerability groups
Ripple20, Amnesia:33, and Urgent/11, developed
VAPs, and implemented test scripts based on these
VAPs. Our evaluation shows that these test scripts
help to identify vulnerabilities based on the VAPs. In
addition, it shows that similar vulnerabilities occur in
implementations of the same protocol as well as in
different protocols, and that these similar vulnerabil-
ities also spread over different device classes. With
this, we build a base for more efficient fuzzing strate-
gies based on a structured way to organize knowledge
regarding usual vulnerabilities.

The test scripts we developed include specific in-
formation that can be used to crash industrial de-
vice. Nevertheless, in order to support scientific re-
producibility, our standalone test scripts can be re-
ceived upon request.

Cluster Crash: Learning from Recent Vulnerabilities in Communication Stacks

343



Future work comprises the extension of our ap-
proach to other domains and vulnerability groups. It
would be interesting to analyze whether our Vulner-
ability Anti-Patterns and test scripts are also appli-
cable to IoT and IIoT protocols and devices. From
our point of view, our Vulnerability Anti-Patterns and
test scripts are written in a generic way so that this
should be possible. In addition, one could include
other vulnerability groups (e.g. INFRA:HALT) into
the analysis and develop new test scripts if neces-
sary. To advance the automation of our test scripts,
the stateful answering machines that we developed for
our test scripts could be integrated to the security test-
ing framework ISuTest as well.

ACKNOWLEDGEMENTS

This work was supported by funding from the topic
Engineering Secure Systems of the Helmholtz As-
sociation (HGF) and by KASTEL Security Research
Labs.

REFERENCES

Aboba, B. and Cheshire, S. (2002). Dynamic host configu-
ration protocol (dhcp) domain search option. Techni-
cal report, Apple Computer, Inc.

Arrieta, A., Wang, S., Arruabarrena, A., Markiegi, U.,
Sagardui, G., and Etxeberria, L. (2018). Multi-
objective black-box test case selection for cost-
effectively testing simulation models. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence, pages 1411–1418.

Böhme, M., Cadar, C., and Roychoudhury, A. (2021).
Fuzzing: Challenges and reflections. IEEE Softw.,
38(3):79–86.

Caselli, M., Hadžiosmanović, D., Zambon, E., and Kargl,
F. (2013). On the feasibility of device fingerprinting
in industrial control systems. In International Work-
shop on Critical Information Infrastructures Security,
pages 155–166. Springer.

dos Santos, D., Dashevskyi, S., Wetzels, J., and Amri, A.
(2021). Amnesia:33 - how tcp/ip stacks breed criti-
cal vulnerabilities in iot, ot and it devices. Technical
report, Forescout Research Labs.

Droms, R. (1993). Dynamic host configuration protocol.
RFC 1541, RFC Editor. http://www.rfc-editor.org/rfc/
rfc1541.txt.

Fetzer, C. and Xiao, Z. (2002). An automated approach
to increasing the robustness of c libraries. In Proceed-
ings International Conference on Dependable Systems
and Networks, pages 155–164. IEEE.

Hecht, G., Rouvoy, R., Moha, N., and Duchien, L. (2015).
Detecting antipatterns in android apps. In 2015 2nd

ACM international conference on mobile software en-
gineering and systems, pages 148–149. IEEE.

Julisch, K. (2013). Understanding and overcoming cy-
ber security anti-patterns. Computer Networks,
57(10):2206–2211.

Kohl, M. and Oberman, S. (2020). Ripple 20 - CVE-2020-
11896 RCE CVE-2020-11898 Info Leak. Technical
report, JSOF Research Lab.

Kohl, M., Schön, A., and Oberman, S. (2020). Ripple 20
- CVE-2020-11901. Technical report, JSOF Research
Lab.

Miller, B., Zhang, M., and Heymann, E. (2020). The rele-
vance of classic fuzz testing: Have we solved this one?
IEEE Transactions on Software Engineering.

Mockapetris, P. (1987a). Domain names - concepts and fa-
cilities. STD 13, RFC Editor. http://www.rfc-editor.
org/rfc/rfc1034.txt.

Mockapetris, P. (1987b). Domain names - implementation
and specification. STD 13, RFC Editor. http://www.
rfc-editor.org/rfc/rfc1035.txt.

Nafees, T., Coull, N., Ferguson, I., and Sampson, A. (2018).
Vulnerability anti-patterns: a timeless way to capture
poor software practices (vulnerabilities). In 24th Con-
ference on Pattern Languages of Programs, page 23.
The Hillside Group.

Pfrang, S., Meier, D., Friedrich, M., and Beyerer, J. (2018).
Advancing protocol fuzzing for industrial automation
and control systems. In ICISSP, pages 570–580.

Pfrang, S., Meier, D., and Kautz, V. (2017). Towards a mod-
ular security testing framework for industrial automa-
tion and control systems: Isutest. In 2017 22nd IEEE
International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–5. IEEE.

Seri, B., Vishnepolsky, G., and Zusman, D. (2019). Ur-
gent/11 - critical vulnerabilities to remotely compro-
mise vxworks, the most popular rtos. Technical report,
ARMIS.

Smith, C. U. (2020). Software performance antipat-
terns in cyber-physical systems. In Proceedings of
the ACM/SPEC International Conference on Perfor-
mance Engineering, pages 173–180.

Trubiani, C., Bran, A., van Hoorn, A., Avritzer, A., and
Knoche, H. (2018). Exploiting load testing and profil-
ing for performance antipattern detection. Information
and Software Technology, 95:329–345.

Tuma, K., Hosseini, D., Malamas, K., and Scandariato,
R. (2019). Inspection guidelines to identify security
design flaws. In Proceedings of the 13th European
Conference on Software Architecture-Volume 2, pages
116–122.

Wert, A., Oehler, M., Heger, C., and Farahbod, R. (2014).
Automatic detection of performance anti-patterns in
inter-component communications. In Proceedings
of the 10th international ACM Sigsoft conference on
Quality of software architectures, pages 3–12.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

344


