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Abstract: Generative priors have been shown to provide improved results over sparsity priors in linear inverse prob-
lems. However, current state of the art methods suffer from one or more of the following drawbacks: (a)
speed of recovery is slow; (b) reconstruction quality is deficient; (c) reconstruction quality is contingent on a
computationally expensive process of tuning hyperparameters. In this work, we address these issues by utiliz-
ing Denoising Auto Encoders (DAEs) as priors and a projected gradient descent algorithm for recovering the
original signal. We provide rigorous theoretical guarantees for our method and experimentally demonstrate
its superiority over existing state of the art methods in compressive sensing, inpainting, and super-resolution.
We find that our algorithm speeds up recovery by two orders of magnitude (over 100x), improves quality of
reconstruction by an order of magnitude (over 10x), and does not require tuning hyperparameters.

1 INTRODUCTION

Linear inverse problems can be formulated mathemat-
ically as y=Ax+e where y∈R m is the observed vec-
tor, A ∈R m×N is the measurement process, e ∈R m is
a noise vector, and x ∈ R N is the original signal. The
problem is to recover the signal x, given the obser-
vation y and the measurement matrix A. Such prob-
lems arise naturally in a wide variety of fields includ-
ing image processing, seismic and medical tomogra-
phy, geophysics, and magnetic resonance imaging. In
this paper, we focus on three linear inverse problems
encountered in image processing: compressive sens-
ing, inpainting, and super-resolution. We motivate
our method using the compressive sensing problem.

Sparsity Prior. The problem of compressive sensing
assumes the matrix A∈R m×N is fat, i.e. m<N. Even
when no noise is present (y = Ax), the system is under
determined and the recovery problem is intractable.
However, it has been shown that if the matrix A satis-
fies certain conditions such as the Restricted Isometry
Property (RIP) and if x is known to be approximately
sparse in some fixed basis, then x can typically be re-
covered even when m�N (Tibshirani, 1996; Donoho
et al., 2006; Candes et al., 2006).

Sparsity (or approximate sparsity) is a very
restrictive condition to impose on the signal as it
limits the applicability of recovery methods to a small

subset of input domains. There has been considerable
effort in using other forms of structured priors such
as structured sparsity (Baraniuk et al., 2010), sparsity
in tree-structured dictionaries (Peyre, 2010), and
low-rank mixture of Gaussians (Chen et al., 2010).
Although these efforts improve on the sparsity prior,
they do not cater to signals that are not naturally
sparse or structured-sparse.

Generative Prior. Bora et al. (Bora et al., 2017) ad-
dress this issue by replacing the sparsity prior on x
with a generative prior. In particular, the authors first
train a generative model f : R k 7→R N with k <N that
maps a lower dimensional latent space to the higher
dimensional ambient space. This model is referred
to as the generator. Next, they impose the prior that
the original signal x lies in (or near) the range of f .
Hence, the recovery problem reduces to finding the
best approximation to x in f (R k).

The quality of the generative prior depends on
how well the training set captures the data dis-
tribution. Bora et al.(Bora et al., 2017) used a
Generative Adversarial Network (GAN) as the gen-
erator, G : R k 7→ R N , where k < N, to model
the distribution of the training data and posed the
following non-convex optimization problem ẑ =
arg min

z∈R k

(
‖AG(z)− y‖2 +λ‖z‖2

)
1. such that G(ẑ) is

1We use ‖.‖ to denote the `2-norm throughout the paper
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Figure 1: CS on CelebA without noise for m= 1000 (left), CS on CelebA with noise for m= 1000 (middle), CS on CelebA for
various m using DAE-PGD (right). The left and middle images qualitatively capture the 10x improvement in reconstruction
error. The right image shows how DAE-PGD reconstructions capture finer grained details as m increases.

treated as the approximation to x. The authors pro-
vided recovery guarantees for their methods and vali-
dated the efficacy of using generative priors by show-
ing that their method required 5-10x fewer measure-
ments than Lasso (with a sparsity constraint) (Tibshi-
rani, 1996) while yielding the same accuracy in re-
covery. However, since the problem is non-convex
and requires a search over R k, it is computationally
expensive and the reconstruction quality depends on
the initialization vector z ∈ R k.

Since then, there have been significant efforts to
improve recovery results using neural networks as
generative priors (Adler and Öktem, 2017; Fan et al.,
2017; Gupta et al., 2018; Liu et al., 2017; Mardani
et al., 2018; Metzler et al., 2017; Mousavi et al.,
2017; Rick Chang et al., 2017a; Shah and Hegde,
2018; Yeh et al., 2017; Raj et al., 2019; Heckel and
Hand, 2018). Shah et al. (Shah and Hegde, 2018)
extended the work of (Bora et al., 2017) by train-
ing a generator G and using a projected gradient de-
scent algorithm that consists of a gradient descent step
wt = xt −ηAT (Axt − y) followed by a projection step
xt+1 = G(arg min

z∈R k
‖G(z)−wt‖2)The core idea being

that the estimate wt is improved by projecting it onto
the range of G. However, since their method requires
solving a non-convex optimization problem at every
update step, it also leads to slow recovery.

Raj et al. (Raj et al., 2019) enhanced the results
of (Shah and Hegde, 2018) by eliminating the expen-
sive non-convex optimization based projection step
with one that is an order of magnitude cheaper. In
particular, they trained a GAN G to model the data
distribution and also trained a pseudo-inverse GAN
G‡ that learned a mapping from the ambient space to
the latent space. Next, they used the projection step:
xt+1 = G(G‡(wt)). By eliminating the need to solve a
non-convex optimization problem to update xt+1, they
were able to attain a significant speed up in the run-
ning time of the recovery algorithm.

However, the recovery algorithm of (Raj et al.,
2019) has two main drawbacks. First, training two
networks: G and G‡ makes the training process and
the projection step unnecessarily convoluted. Second,
their recovery guarantees only hold when the learning
rate η = 1

β
, where β is a RIP-style constant of the

matrix A. Since it is NP-hard to estimate the constant
β (Bandeira et al., 2013), it follows that setting η = 1

β

is NP-hard as well. 2.

DAE Prior. In an effort to address the aforemen-
tioned issues, we propose to use a DAE (Vincent
et al., 2008) prior in lieu of the generative prior in-
troduced by Bora et al. (Bora et al., 2017). It
has previously been shown that DAEs not only cap-
ture useful structure of the data distribution (Vincent
et al., 2010) but also implicitly capture properties of
the data-generating density (Alain and Bengio, 2014;
Bengio et al., 2013). Moreover, as DAEs are trained
to remove noise from vectors sampled from the input
distribution, they integrate naturally with gradient de-
scent algorithms that lead to noisy approximations at
each time step.

We replace the generator G used in Bora et al.
(Bora et al., 2017) with a DAE F : R N 7→ R N such
that the range of F contains the vectors from the orig-
inal data generating distribution. We then impose the
prior that the original signal x lies in the range of F
and utilize Algorithm 1 to recover an approximation
to x. We provide theoretical recovery guarantees and
find that our framework speeds up recovery by two
orders of magnitude (over 100x), improves quality of
reconstruction by an order of magnitude (over 10x),
and does not require tuning hyperparameters. We note
that Peng et al. (Peng et al., 2020) have recently uti-
lized Auto Encoders (AE) instead of DAEs as in our

2We observed this problem when trying to reproduce the
experimental results of (Raj et al., 2019). Specifically, we
tried an exhaustive grid-search for η but each value led to
poor reconstruction quality.
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approach. However, unlike our work, their theoretical
results rely on the measurement matrix being Gaus-
sian and we find their experimental results are inferior
to those of Algorithm 1 (Section 3.2).

2 ALGORITHM AND RESULTS

2.1 Denoising Auto Encoder

A DAE is a non-linear mapping F : R N 7→ R N that
can be written as a composition of two non-linear
mappings - an encoder E : R N 7→ R k where k < N
and a decoder D : R k 7→ R N . Therefore, F(x) =
(D ◦E)(x). Given a set of n samples from a domain
of interest {xi}n

i=1, the training set X is created by
adding Gaussian noise to the original samples. That
is, X = {x′i}n

i=1, where x′i = xi+ei and ei ∼N (µi, σ2
i ).

The loss function for training F is the Mean
Squared Error (MSE) loss defined as : LF(X) =
1
n ∑

n
i=1 ‖F(x′i)− xi‖2. The training procedure uses

gradient descent to minimize LF(X) with back-
propagation.

2.2 Algorithm

Recall that in the linear inverse problem y = Ax+ e,
our goal is to recover an approximation x̂ to x such
that x̂ lies in the range of F . Thus we aim to find
x̂ such that x̂ = arg min

z∈F(R N)

‖Az− y‖2 As in (Shah and

Hegde, 2018; Raj et al., 2019), we use a projected
gradient descent algorithm. Given an estimate xt at it-
eration t, we compute a gradient descent step for solv-
ing the unrestricted problem: minimize

z∈R N
‖Az− y‖2 as:

wt ← xt −ηAT (Axt − y) Next we project wt onto the
range of F to satisfy our prior: xt+1 = F(wt) Note
that, compared to (Shah and Hegde, 2018; Raj et al.,
2019), the projection step does not require solving a
non-convex optimization problem.

Now suppose that the domain of interest is rep-
resented by the set D ⊆ R N . Then, given a vector
x′ = x+ e, where x ∈ D, and e ∈ R N is an unknown
noise vector, the success of our method depends on
how small the error ‖F(x′)−x‖ is. If the training set X
captures the domain of interest well and if the training
procedure utilizes a diverse enough set of noise vec-
tors {ei}N

i=1, then we expect ‖F(x′)− x‖ to be small.
Consequently, we expect the projection step of Algo-
rithm 1 to yield vectors in or close to D. We provide
the complete algorithm below.

Algorithm 1: DAE-PGD.

Input: y ∈ R m,A ∈ R m×N , f : R N → R N ,
T ∈ Z+,η ∈ R>0
Output: xT

1: t← 0,x0← 0
2: while t < T do
3: wt ← xt −ηAT (Axt − y)
4: xt+1← f (wt)

5: return xT

2.3 Theoretical Results

We begin by introducing two standard definitions re-
quired to provide recovery guarantees.

Definition 1 (RIP(S,δ)). Given S⊆ R N and δ > 0, a
matrix A ∈ R m×N satisfies the RIP(S,δ) property if

(1−δ)‖x1− x2‖2≤‖A(x1− x2)‖2≤ (1+δ)‖x1− x2‖2

for all x1,x2 ∈ S.

A variation of the RIP(S,δ) property for sparse
vectors was first introduced by Candes et al. in (Can-
des and Tao, 2005) and has been shown to be a suf-
ficient condition in proving recovery guarantees us-
ing `1-minimization methods (Foucart and Rauhut,
2017). Next, we define an Approximate Projection
(AP) property and provide an interpretation that elu-
cidates its role in the results of Theorem 6. 3.

Definition 2 (AP(S, α)). Let α ≥ 0. A mapping
f : R N → S⊆ R N satisfies AP(S,α) if

‖w− f (w)‖2 ≤ ‖w− x‖2 +α‖ f (w)− x‖

for every w ∈ R N and x ∈ S.

We now explain the significance of Def. 5. Let
x∗ = arg min

z∈S
‖w− z‖ and observe

‖w− f (w)‖2 ≤ (‖w− x∗‖+‖ f (w)− x∗‖)2 (1)

Hence, α≤‖ f (w)− x∗‖+2‖w− x∗‖ is needed to en-
sure the RHS of Def. 5 is bounded by the RHS of
(1). In other words, for α to be small, the projec-
tion error ‖ f (w)− x∗‖ as well as distance of w to S
need to be small. Since the DAE F learns to mini-
mize ‖F(w)− x∗‖2 (Section 2.1), we expect a small
projection error.

Theorem 3. Let f : R N → S ⊆ R N satisfy AP(S, α)
and let A ∈ R m×N be a matrix with ‖A‖2 ≤ M that

3Various flavors of the AP(S,α) property have been used
in previous works, such as Shah et al. (Shah and Hegde,
2018) and Raj et al. (Raj et al., 2019).
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satisfies RIP(S,δ). If y = Ax with x ∈ S, the recovery
error of Algorithm 1 is bounded as:

‖xT − x‖ ≤ (2γ)T ‖x0− x‖+α

(
1− (2γ)T

1− (2γ)

)
(2)

where γ =
√

η2M(1+δ)+2η(δ−1)+1.

Theorem 6 tells us that, if γ < 1
2 , then for large T ,

the recovery error is essentially α/(1−2γ). Note that
the requirement γ < 1

2 is satisfied for a large range of
values of η as long as δ is sufficiently small 4. Hence,
as long as the value of α is small, we expect to see a
small recovery error.

We now compare the above results to Theorem 1
of (Raj et al., 2019), Theorem 2.2 of (Shah and Hegde,
2018) and Theorem 1 of (Peng et al., 2020). As men-
tioned in Section 1, convergence in Theorem 1 of (Raj
et al., 2019) is only guaranteed when η = 1

β
, which is

a much more restrictive condition on η than Theorem
6 provides. In fact, β is a RIP-style constant that is
NP-hard to find (Bandeira et al., 2013) which makes
setting the value of η = 1

β
NP-hard as well. The re-

sults of Theorem 2.2 from (Shah and Hegde, 2018)
require a less restrictive constraint on η but do re-
quire a stricter constraint on ‖A‖2 ≤ ω, where ω is
a RIP-style constant for A. In contrast, the results of
Theorem 6 do not impose a strict condition on ‖A‖2.
Finally, the proof of Theorem 1 of (Peng et al., 2020)
relies on the matrix A being Gaussian. We do not im-
pose such a constraint.

3 EXPERIMENTS

We provide experimental results for the problems
of compressive sensing, inpainting, and super-
resolution. We refer to the results of Algorithm 1 as
DAE-PGD and compare its results to the methods of
Bora et al. (Bora et al., 2017) ( CSGM), and Shah et
al. (Shah and Hegde, 2018), ( PGD-GAN), and Peng
et al (Peng et al., 2020) (P-AE). Although the work
of Raj et al. (Raj et al., 2019) is the closest to our
method, we do not include comparisons to their work
as we were unable to reproduce their results 5.

4For instance, random Gaussian matrices yield small
values for δ with high probability (Foucart and Rauhut,
2017)

5We used their code, their trained models, their recovery
algorithm, and a grid search for η but the reconstructed im-
ages were of very poor quality. We also reached out to the
authors but they did not have the exact values of η that were
used in their experiments.

3.1 Setup

Datasets. Our experiments are conducted on the
MNIST (LeCun, ) and CelebA (Liu et al., 2015)
datasets. The MNIST dataset consists of 28× 28
greyscale images of digits with 50,000 training
and 10,000 test samples. We report results for a
random subset of the test set. The CelebA dataset
consists of more than 200,000 celebrity images. We
pre-processes each image to a size of 64×64×3 and
use the first 160, 000 images as the training set and a
random subset of the remaining 40,000+ images as
the test set.

Network Architecture. The network architectures
for our DAEs are inspired by the Variational Auto
Encoder architecture from Fig 2. of (Hou et al., 2017)
with a few key changes. We replace the Leaky Relu
activation with Relu, we add the two outputs of the
encoder to get the latent representation z, and we alter
the kernel sizes as well as the convolution strides of
the network as described in the Appendix.

Training. We use the Adam optimizer (Kingma and
Ba, 2014) to minimize the MSE loss function with
learning rate 0.01 and a batch size of 128. We train
the CelebA network for 400 epochs and the MNIST
network for 100 epochs.

In an effort to ensure that ‖A(x′)− x‖ defined in
Section 2.2 is small, we split the training set into
5 equal sized subsets. For each distinct subset, we
sample the noise vectors from a Gaussian distribution
N (µ, σ2) with a distinct value for σ for each sub-
set. The five different values for σ that we use are
{0.25,0.5,0.75,1.0,1.25}.

All of our experiments were conducted on a Tesla
M40 GPU with 12 GB of memory using Keras (Chol-
let, 2015) and Tensorflow (Abadi et al., 2015) li-
braries. The code to reproduce our results is available
here.

3.2 Compressive Sensing

We consider the problem of compressive sensing
without noise: y = Ax and with noise: y = Ax + e,
with e ∼ N (0,0.25). We use m to denote the num-
ber of observed measurements in our results (i.e. y ∈
R m). As done in previous works (Bora et al., 2017;
Shah and Hegde, 2018; Raj et al., 2019), the matrix
A ∈ R m×N is chosen to be a random Gaussian ma-
trix with Ai j ∼ N (0, 1

m ). Finally, we set the learning
rate of Algorithm 1 as η = 1. Note that in both (with
and w/out noise) cases, we also include recovery re-
sults for the Lasso algorithm (Tibshirani, 1996) with
a DCT basis (L-DCT) and with a wavelet basis (L-

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

100



Figure 2: Compressive Sensing recovery error: ‖x− x̂‖2. Left: CelebA without noise - DAE-PGD shows over 10x improve-
ment. Middle: CelebA with noise - DAE-PGD shows over 10x improvement. Right: MNIST without noise - DAE-PGD beats
CSGM for m > 100.

Wavelet).
We begin with CelebA. Figure 1 provides a qual-

itative comparison of reconstruction results for m =
1000. We observe that DAE-PGD provides the best
quality reconstructions and is able to reproduce even
fine grained details of the original images such as
eyes, nose, lips, hair, texture, etc. Indeed the high
quality reconstructions support the case that the DAE
has a small α as per Def. 5. For a quantitative com-
parison, we turn to Figure 2 which plots the average
squared reconstruction error ‖x− x̂‖2 for each algo-
rithm at different values of m. Note that DAE-PGD
provides more than 10x improvement in the squared
reconstruction error.

In order to capture how the quality of reconstruc-
tion degrades as the number of measurements de-
crease, we refer to Figure 1, which shows reconstruc-
tions for different values of m. We observe that even
though reconstructions with a small number of mea-
surements capture the essence of the original images,
the fine grained details are captured only as the num-
ber of measurements increase.

We show a similar comparison for MNIST in Fig-
ure 3

Table 1: Average running times (in seconds) for the Com-
pressive Sensing problem (w/out noise) on the CelebA
dataset.

m CGSM PGD-
GAN

DAE-
PGD Speedup

250 53.78 48.40 0.07 692x
500 59.81 48.46 0.09 538x
1000 81.08 48.46 0.11 440x
1500 92.68 48.50 0.14 346x
2000 107.41 48.56 0.21 230x

We now turn to the speed of reconstruction. Table
1 shows that our method provides speedups of over
100x as compared to PGD-GAN and CSGM 6.

6CSGM is executed for 500 max iterations with 2
restarts and PGD-GAN is executed for 100 max iterations
and 1 restart.

3.3 Inpainting

Inpainting is the problem of recovering the original
image, given an occluded version of it. Specifically,
the observed image y consists of occluded (or masked
) regions created by applying a pixel-wise mask A to
the original image x. We use m to refer to the size
of mask that occludes a m×m region of the original
image x.

We present recovery results for CelebA with m =
10 in Figure 4 and observe that DAE-PGD is able to
recovery a high quality approximation to the original
image and outperforms CSGM in all cases. Figure
4 also captures how recovery is affected by different
mask sizes. As in the compressive sensing problem,
we find that DAE-PGD reconstructions capture the
fine-grained details of each image. Figure 4 also re-
ports the result for the MNIST dataset. Even though
DAE-PGD outperforms CSGM, we see that the re-
covery quality of DAE-PGD degrades considerably
when m = 15. We hypothesize this is due to the struc-
ture of MNIST images. In particular, since MNIST
images are grayscale with most of the pixels being
black, putting a 15×15 black patch on the small area
displaying the number makes the reconstruction prob-
lem considerably more difficult. This causes consid-
erable degradation in reconstruction quality for larger
mask sizes.

3.4 Super-resolution

Super-resolution is the problem of recovering the
original image from a smaller and lower-resolution
version. We create this smaller and lower-resolution
image by taking the spatial averages of f × f pixel
values where f is the ratio of downsampling. This re-
sults in blurring a f × f region followed by downsam-
pling the image. We test our algorithm with f = 2,3,4
corresponding to 4×,9×, and 16× smaller image
sizes, respectively.
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Figure 3: CS on MNIST without noise for m = 100 (left), CS on MNIST with noise for m = 100 (middle), CS on CelebA for
various m using DAE-PGD (right). The left and middle images qualitatively capture the 100x improvement in reconstruction
error. The right image shows how DAE-PGD reconstructions capture finer grained details as m increases.

Figure 4: Inpainting. Left: CelebA reconstructions for m = 10. Middle-Left: DAE-PGD CelebA reconstructions for different
m. Middle-Right: MNIST reconstructions for m = 5. Right: DAE-PGD MNIST reconstructions for different m.

The reconstruction results are provided in 5. We
see that DAE-PGD provides higher quality recon-
struction for f = 2 for both CelebA and MNIST.
Moreover, reconstruction quality degrades gracefully
for CelebA for increasing values of f . However, in the
case of MNIST, reconstruction quality degrades con-
siderably when f = 4. Noting that f = 4 only gives
16 measurements (i.e. y ∈ R 16), we hypothesize that
16 measurements may not contain enough signal 7 to
accurately reconstruct the original images.

4 RELATED WORK

Compressive Sensing. The field of compressive
sensing was initiated with the work of (Candès et al.,
2006) and (Donoho et al., 2006) where provided
recovery results for sparse signals with a random
measurement matrix. Some of the earlier work in
extending compressive sensing to perform stable
recovery with deterministic matrices was done
by (Candes and Tao, 2005) and (Candes et al.,
2006), where a sufficient condition for recovery
was satisfaction of a restricted isometry hypothesis.
(Blumensath and Davies, 2009) introduced IHT as
an algorithm to recover sparse signals which was

7Consider compressive sensing with sparsity constraints
where recovery guarantees hold when m ≥ Cs ln(N

s ) (Fou-
cart and Rauhut, 2017).

later modified in (Baraniuk et al., 2010) to reduce
the search space as long as the sparsity was structured.

Generative Priors. Following the lead of (Bora
et al., 2017), there have been significant efforts to
improve on previous recovery results using neural
networks as generative models (Adler and Öktem,
2017; Fan et al., 2017; Gupta et al., 2018; Liu et al.,
2017; Mardani et al., 2018; Metzler et al., 2017;
Mousavi et al., 2017; Rick Chang et al., 2017a;
Shah and Hegde, 2018; Yeh et al., 2017; Raj et al.,
2019; Heckel and Hand, 2018). One line of work
(Jagatap and Hegde, 2019; Heckel and Hand, 2018)
extends the efforts of Bora et al. (Bora et al., 2017)
by fixing a seed z and finding the weights ŵ of
an untrained neural network G in the optimization
problem ŵ = arg min

w∈R l
‖AG(w,z) − y‖2. However,

the optimization problem is highly non-convex and
requires a large number of iterations with multiple
restarts. Another line of work, (Mousavi et al., 2017;
Mousavi and Baraniuk, 2017) trains a neural network
to model the transformation f (y) = x̂ where x̂ is the
approximation to the original input x. This approach
is limited as a) the inverse mapping is non-trivial to
learn and b) will only work for a fixed measurement
mechanism.

Denoisers in Linear Inverse Problems. Given
the success of denoisers in image processing tasks
such as image denoising (Wang et al., 2018; Guo

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

102



Figure 5: Super-resolution. Left: CelebA reconstructions for f = 2. Middle-Left: DAE-PGD CelebA reconstructions for
different f . Middle-Right: MNIST reconstructions for f = 2. Right: DAE-PGD MNIST reconstructions for different f .

et al., 2019; Rick Chang et al., 2017b) and im-
age super-resolution (Sønderby et al., 2016) to yield
good results, (Venkatakrishnan et al., 2013) intro-
duced denoisiers as plug-and-play (PnP) proximal op-
erators in solving linear inverse problems via alternat-
ing directions method of multipliers (ADMM). (Ryu
et al., 2019) extended this work by investigating con-
vergence properties of ADMM methods asked and
showed that if the denoiser was close to the identity
map, then PnP methods are contractive iterations that
converge with bounded error.

(Rick Chang et al., 2017b) showed that neural net-
work based denoisers (such as DAEs) with ADMM
could achieve state of the art results for a wide ar-
ray of linear inverse problems. They also showed
that if the gradient of the proximal operator (de-
noiser) is Lipschitz continuous, ADMM has a fixed
point. (Xu et al., 2020) analyzed convergence results
for minimum mean squared error (MMSE) denois-
ers used in iterative shrinkage/thresholding algorithm
(ISTA). They showed that the iterates produced by
ISTA with an MMSE denoiser converge to a station-
ary point of some global cost function. (Meinhardt
et al., 2017) demonstrated that using a fixed denoising
network as a proximal operator in the primal-dual hy-
brid gradient (PDHG) method yields state-of-the-art
results. (González et al., 2021) used variational auto
encoders (VAEs) as priors defined an optimization
method JPMAP that performs Joint Posterior Maxi-
mization using an the VAE prior. They showed the-
oretical and experimental evidence that the proposed
objective function satisfies a weak bi-convexity prop-
erty which is sufficient to guarantee that the optimiza-
tion scheme converges to a stationary point.

5 CONCLUSION

We introduced DAEs as priors for general linear in-
verse problems and provided experimental results for
the problems of compressive sensing, inpainting, and
super-resolution on the CelebA and MNIST datasets.
Utilizing a projected gradient descent algorithm for

recovery, we provided rigorous theoretical guarantees
for our framework and showed that our recovery algo-
rithm does not impose strict constraints on the learn-
ing rate and hence eliminates the need to tune hy-
perparameters. We compared our framework to state
of the art methods experimentally and found that our
recovery algorithm provided a speed up of over two
orders of magnitude and an order of magnitude im-
provement in reconstruction quality.
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APPENDIX

We begin by introducing two standard definitions re-
quired to provide recovery guarantees.
Definition 4 (RIP(S,δ)). Given S⊆ R N and δ > 0, a
matrix A ∈ R m×N satisfies the RIP(S,δ) property if

(1−δ)‖x1− x2‖2≤‖A(x1− x2)‖2≤ (1+δ)‖x1− x2‖2

for all x1,x2 ∈ S.
A variation of the RIP(S,δ) property for sparse

vectors was first introduced by Candes et al. in (Can-
des and Tao, 2005) and has been shown to be a suf-
ficient condition in proving recovery guarantees us-
ing `1-minimization methods (Foucart and Rauhut,
2017). Next, we define an Approximate Projection
(AP) property and provide an interpretation that elu-
cidates its role in the results of Theorem 6. 8.
Definition 5 (AP(S, α)). Let α ≥ 0. A mapping
f : R N → S⊆ R N satisfies AP(S,α) if

‖w− f (w)‖2 ≤ ‖w− x‖2 +α‖ f (w)− x‖
for every w ∈ R N and x ∈ S.

8Various flavors of the AP(S,α) property have been used
in previous works, such as Shah et al. (Shah and Hegde,
2018) and Raj et al. (Raj et al., 2019).

Table 2: Network Architectures for CelebA and MNIST. C-
K, C-S, M-K, and M-S report CelebA Kernel Sizes, CelebA
Strides, MNIST Kernel Sizes, and MNIST strides respec-
tively.

Layer C-K C-S M-K M-S
Conv2D 1 9 × 9 2 5 × 5 2
Conv2D 2 7 × 7 2 5 × 5 2
Conv2D 3 5× 5 2 3× 3 2
Conv2D 4 5 × 5 1 3× 3 1

TransConv2d 1 5 × 5 2 3× 3 1
TransConv2d 2 5 × 5 2 3× 3 2
TransConv2d 3 7× 7 2 5 × 5 2
TransConv2d 4 9 × 9 1 5 × 5 2

Theorem 6. Let f : R N → S ⊆ R N satisfy AP(S, α)
and let A ∈ R m×N be a matrix with ‖A‖2 ≤ M that
satisfies RIP(S,δ). If y = Ax with x ∈ S, the recovery
error of Algorithm 1 is bounded as:

‖xT − x‖ ≤ (2γ)T ‖x0− x‖+α

(
1− (2γ)T

1− (2γ)

)
(3)

where γ =
√

η2M(1+δ)+2η(δ−1)+1.

Proof of Theorem 6. Using the notation of Algo-
rithm 1 and the fact that f satisfies AP(S,α) we have

‖(wt − x)− (xt+1− x)‖2 ≤ ‖wt − x‖2 +α‖xt+1− x‖ .

Noting ‖a−b‖2 = ‖a‖2 + ‖b‖2 − 2〈a,b〉 and re-
arranging terms we get

‖xt+1− x‖2 ≤ 2〈(wt − x),(xt+1− x)〉+α‖xt+1− x‖ .
Now we expand the inner product using wt = xt −
ηAT (Axt − y) and y = Ax to get

‖xt+1− x‖2 ≤ 2〈(I−ηAT A)(xt − x),(xt+1− x)〉
+α‖xt+1− x‖ . (4)

Using the Cauchy–Schwarz inequality we have

|〈(I−ηAT A)(xt − x),(xt+1− x)〉|
≤
∥∥(I−ηAT A)(xt − x)

∥∥‖(xt+1− x)‖ (5)

By setting u = xt − x, expanding, and using the
RIP(S,α) property of A, we see that∥∥(I−ηAT A)u

∥∥2
=‖u‖2−2η‖Au‖2 +η

2∥∥AT (Au)
∥∥2

≤‖u‖2−2η(1−δ)‖u‖2

+η
2(1+δ)M‖u‖2

=γ
2 ‖u‖2 (6)

We substitute the results of (5) and (6) into (4) and
divide both sides by ‖xt+1− x‖ to get

‖xt+1− x‖ ≤ 2γ‖xt − x‖+α (7)

Using induction on (7) gives (3).
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