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Abstract: Textline detection and extraction is an integral part of any document analysis and recognition (DAR) system
bridging the signal2symbol gap in order to relate a raw digital document of whatever sort to the computational
analysis up to understanding of its semantic content. Key is the computational recovery of a rich representation
of the salient visual structure which we conceive texture composed of periodic and differently scaled textlines
in blocks with varying local spatial frequency and orientation. Our novel learning-free approach capitalizes on
i) a texture model based upon linear system theory and ii) the complex Gabor transform utilizing both real even
and imaginary odd kernels for the purpose of imposing a quadrilinear representation of textline characteristics
as in typography. The resulting representation of textlines, be they either linear, curvilinear or even circular,
then serves as input to subsequent computational processes. Via an experimental methodology allowing for
controlled experiments with a broad range of digital data of increasing complexity (e.g. from synthetic 1D data
to historical newspapers up to medieval manuscripts), we demonstrate the validity of our approach, discuss
success and failure, and propose ensuing research.

1 INTRODUCTION

Textline detection – and extraction as a related prob-
lem e.g. in the context of layout analysis – is a well-
researched DAR topic since decades. The known
methods span the range from bottom-up learning-free
to machine learning methods and the latemost ICDAR
competition (Diem et al., 2019) convincingly eluci-
dates the attained performance level. However, as
yet the DAR focus was mainly set on baseline de-
tection, whereas our novel approach goes well be-
yond since we detect four lines related to the typo-
graphical line system for quadrilinear scripts: base-
and top-lines as well as mid-lines of both the textline
itself and the space between textlines. Such lines
with a unique semantics are important for the mea-
surement of saliency of quadrilinear scripts: Whereas
the mid-line of the textline itself is self-explanatory,
the base- and top-lines are delimiters of minuscule
scripts while the mid-line of the interspace along with
the neighbouring base- and topline index the poten-
tial margin space for appearance of descenders, as-
cenders, majuscules and/or even diacritics. Note that
the distance between descender and ascender margins
in two consecutive textlines is coined lead(ing) or
slug though no standard definition exists. Moreover

the distance between mid-lines of textlines in a regu-
lar textblock is related to the local spatial frequency
while the distance between base-lines renders possi-
ble the typographical classification of normal, com-
press, and splendid. Hence the four lines, to be un-
derstood as a local semantically rich representation
system, serve as local search space for visually salient
textline features or, in other words, as a local signage
system for subsequent computational processes in a
task-oriented DAR system (see (Diem et al., 2013) for
an epitome of a potential real-world use case drawing
on word-signaling profile boxes).

As already mentioned, differently scaled textlines
with blockwise varying local spatial frequency and
orientation are conceived visual texture relating
textline detection to texture detection. Visual tex-
ture is a multi-facetted phenomenon tackled by find-
ings from visual neurosciences, visual psychophysics
of e.g. arbitrary gratings, cognitive reading sci-
ence, Gabor transform from linear system theory,
photogrammetry-based remote sensing and scene
analysis – you name it. Non-surprisingly past
DAR research exploited the treasure trove of bottom-
up approaches and – given the plethora (see (Bin-
makhashen and Mahmoud, 2019) for a recent survey)
– in particular the well-understood Gabor transform
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made it into the DAR toolbox (see Chpt. 2 for some
seminal work). However, to the best of our knowl-
edge, past work drew upon the energy and/or the ker-
nel orientation of the Gabor transform only thus ig-
noring the potential of the complex (real even and
imaginary odd) notation. While energy (with its ori-
entation) alone was proven to be successful in textline
detection and even layout analysis, it lacks the ca-
pability of computational measurement of the above
mentioned system of lines. Even more, the tacit as-
sumption was textline regularity in terms of both spa-
tial frequency within a horizontally aligned text block
(e.g. main text in an Arab manuscript) and orientation
(e.g. in the case of rotated commentaries). Regular-
ity evidently is the ideal case (e.g. historical newspa-
pers) while irregularities are prevalent due to varying
cultural epoch, script, writing school, hand, produc-
tion etc. thus posing challenges to DAR systems for
OCR up to hand identification. Typically regularity
is bound to height, contrast, distance, and orientation
of textlines in digital documents. In contrast, irregu-
larity is any deviation but also implies deviation from
the ideal linear case of textlines which may be bended
due to e.g. a hand’s purpose or by accident during
digitization (let alone the range of document degrada-
tions). As a consequence past research also focused
on computational methods being tolerant to local ir-
regularities (see seam carving as prominent example
(Arvanitopoulos and Süsstrunk, 2014)) but as yet no
all-in-one solution exists due to the variety of irregu-
larities in the document domain.

With the revival of machine (and particularly the
advent of deep) learning came along a paradigm shift
from bottom-up computational vision e.g. for vi-
sual feature detection – disparaged as hand-crafted
while ignoring the formal grounding – and represen-
tation to, say, empiricism-driven learning algorithms.
Whilst achievements and breakthroughs – particularly
in object classification for still images as for certain
DAR tasks – have to be acknowledged, the sober-
ing limits also came to surface, to name a few chal-
lenges (see e.g. (Yuille and Liu, 2021), (Drummond,
2006) and (Guidotti et al., 2018)): capability of adap-
tion to a grand variety of data and tasks in DAR,
sparseness and imbalance of training data, lack of
ground truth, experimental methodology beyond cur-
rent scalar-based metrics, dependency on tramontane
platform providers as well as the black-box issue –
let alone the evenly critical issue of complexity mas-
tering by developers or non-tech-savvy users with de-
mand for workflow support in their daily, e.g. schol-
arly or routine, work with DAR systems. As one
consequence, current research on interactive machine
learning aims at bringing the user with her/his intelli-

gence back in the loop and in control. Our learning-
free approach to textline detection and representation
thus is guided by the heretical question ”Why should
we first learn what we already know?” – simply since
in our case it is well known that in the first layers of
some deep nets primarily ”Gaborish” filter kernels are
arduously learned ((Zeiler and Fergus, 2014), (Sprin-
genberg et al., 2015), (Krizhevsky et al., 2017)), but
devoid of theoretical grounding as common in low-
level computer vision. In the chapters to follow we
outline the theory behind our learning-free approach,
illustrate the validity via our 1D model of textlines as
texture, describe our OpenCV-based 2D implementa-
tion and present experimental results1 as a conclusive
proof-of-concept for the cases of linear and curvilin-
ear textlines in retro-digitized documents as well as of
even circular epigraphic textlines in digital images of
ancient bowls. Eventually we attempt to surmount the
dichotomy of neat math and DARing needs of users as
posed by Lopresti and Nagy one decade ago in their
influential paper ”When is a Problem Solved?” (Lo-
presti and Nagy, 2011).

2 RELATED WORK

As mentioned above, much work has been done on
textline extraction and particularly baseline detection
(see (Diem et al., 2019) for state-of-the art results of
the 2019 cBAD competition) as such but – apart from
lack of space – due to our focus on the texture-side
of textlines in digital documents we here only review
matching papers. The fact that the Gabor transforma-
tion plays a key role in computational texture analysis
per se (see (Humeau-Heurtier, 2019) for a recent com-
prehensive survey) was early recognized in the DAR
community (see recent reviews by (Mehri et al., 2017)
and (Eskenazi et al., 2017)).

As a two-fold summary, first, despite the popu-
larity of the Gabor transform in the DAR domain so
far only local and/or directional filter energy measures
have been used for, e.g. more recently, texture-based
textline segmentation (Chen et al., 2014) and texture-
exploiting binarization (Sehad et al., 2019). Second,
the bulk of line detection approaches was tailored to
baselines and, again to the best of our knowledge, in
DAR no machine learning approach (see surveys in

1Please note that due to our University’s pandemic-
driven lab access restrictions since more than one year
the planned number of joint experiments in our lab had
to be trimmed. Further results of our web-based ex-
perimentation beyond the reported proof-of-concept are
made available via https://www.inf.uni-hamburg.de/en/inst/
ab/bv/publications.html
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(Liwicki and Liwicki, 2020), (Lombardi and Mari-
nai, 2020) and (Subramani et al., 2020)) to visual tex-
ture detection in digital documents aiming at compu-
tational measurement of textline features in a quadri-
linear reference system is available as yet.

Interestingly, already in 2007 Likforman-Sulem et
al. (Likforman-Sulem et al., 2007) in their early sur-
vey stressed the importance of visual characteristics
as well as representation of text lines, e.g. baseline,
median line, upper line, and lower line in their nota-
tion, for textline segmentation. In their vein, recent
research has been reported on learning-free beyond-
baseline detection drawing upon computational vision
milestones. Manmatha and Srimal (Manmatha and
Srimal, 1999) at first applied the then well-established
scale space theory to segmentation of hand-written
words via i) scaled anisotropic Laplacian-of-Gaussian
operators and ii) scale selection for blob detection re-
sulting in bounding boxes for words. Later on, Cohen
et al. (Cohen et al., 2014) also used the anisotropic
directional Gaussian kernel G(σ) along with its 2nd

order derivatives at multiple scales for textline extrac-
tion by scaling G(σ) to the average textline height.
On this basis, Saabni et al. (Saabni et al., 2014)
proposed an approach to impose so-called seams on
binary/gray-scale images (inter alia using an energy
map derived from a signed distance transform) pass-
ing across/between textlines thus approximating their
upper/lower boundaries.

In a recent follow-up paper on language-
independent - though computationally expensive -
text line extraction for handwritten gray-scale docu-
ments with near-horizontal or fluctuating lines, Azran
et al. (Azran et al., 2021) proposed a combination of
two known CNNs resulting in an energy map. In a
second step, minimal energy sub-seams are tracked
and accumulated ”. . . to perform a full local mini-
mal/maximal separating and medial seam defining the
text baselines and the text line regions.” (trilinear rep-
resentation).

In like manner to (Cohen et al., 2014), Aldav-
ert and Rusinol (Aldavert and Rusiñol, 2018) at-
tempted streak-like representations of textlines (vary-
ing in height, orientation and bending) utilizing scaled
oriented 2nd order Gaussian derivatives again with σ

proportional to line height.
Current work by Barakat et al. (2020) (Barakat

et al., 2020) described a method based upon 2nd or-
der derivatives of anisotropic Gaussian filters (with
automatic scale selection), energy minimization and
graph cuts for detecting so-called blob lines that strike
through text lines with an admissible skew and bend-
ing (see also their companion paper linking their pre-
vious work to CNN (Barakat et al., 2021)).

Lately, Mechi et al. (Mechi et al., 2021) pro-
posed a complex two-step framework for text line seg-
mentation (for Arabic and Latin manuscripts) which
comprises both a deep FCN model and a post-
processing based on topological structural analysis.
Through copious FCN benchmarking, they experi-
mentally demonstrated superiority of the adaptive U-
Net model which yields a two-line (namely base- and
top-line, or synonymously, X-height) representation
enhanced by a rather sophisticated post-processing
step for extraction of complete text lines (including
both the ascender and descender components). Exper-
imental results of the two-step architecture revealed a
97/99% correctness of text lines given ANT-A/ANT-
L datasets 2.

Taken together, so far learning-free line detec-
tion as well as representation in the first place cap-
italized on scaled anisotropic – ergo oriented – 2nd

order Gaussian derivatives matching textline height
whereas - as will be elucidated below - the complex
Gabor transform renders possible both bottom-up de-
tection of line-line texture and its quadri-linear repre-
sentation borrowed from typography/paleography.

3 OUR APPROACH

As sketched above, we ground our approach on linear
(LTI) system theory in order to i) model the structure
of visual texture at hand and ii) derive convolution
kernels via the complex Gabor transform. For reason
of convenience we briefly introduce the 1D case only
since generalization to 2D is straightforward (see also
below).

Let I(x,y) be a digital document (or, tout court,
image I with x/y for columns/rows and its origin in
the upper left corner) and I(x = const,y)≡ I(y) a ver-
tical section. Then an idealized, viz binary, 1D model
of both a black-inked textline and a white interspace
is a rectangular pulse P(y) with either negative or
positive polarity. Since for the latter case P(y) can
be composed from two shifted Heaviside functions
H(.), P(y) = H(y)−H(y−w) holds with w as pulse
width (see fig 1). Note that for modeling of varying
contrast, constants can easily be included. Since a
pulse of whatever polarity has two Heaviside flanks
of inverse polarity and a mid-point at its center, four
salient visual features are defined: Points of ascend-
ing/descending flanks of a pulse and mid-points of a
positive/negative pulse – which in 2D generalize to
the above mentioned four lines: base-/top-lines and
textline/interspace midlines.

2http://www.archives.nat.tn/
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Since the mentioned flanks of a pulse are of odd
nature with inverse polarity whereas the pulse (be it
of positive or negative polarity) is even, the complex
Gabor transform comes into play with both even and
odd kernel

G (y) = G(y;σ) · exp
(

j · 2πy
λ

)
= G(y;σ) ·

[
cos
(

2πy
λ

)
+ j · sin

(
2πy
λ

)] (1)

with the Gaussian envelope G(y;σ) = 1√
2πσ

e−
y2
2σ and

λ as the wavelength of the sinusoidals. The Gabor
transform as convolution then reads as T (G (y)) =
I(y)⊗G (y) with its result coined response map R(y).

Note that the convolution kernels map to filters in
the frequency domain with tunable mid frequency and
bandwidth rendering possible a best match with local
spatial frequency content.

Evidently both the real even and the imaginary
odd parts are required as convolution kernels (in the
sense of matched filters) in order to detect the above
mentioned four salient features. Moreover, as a more
than welcome side effect, each kernel with a speci-
ficity for just one of the four salient points bears
an implicit semantics yielding four pre-classified re-
sponse maps (or feature channels). For the detec-
tion of the extrema in the response maps, the criterion
d
dyR(y) !

= 0 must hold. In fig. 1c and 1d the local
extrema are indicated by the vertical lines, which rep-
resent the mid- and top-line of the interline space.

Since the implicit convolution of both the Heav-
iside functions and the rectangular pulse (being dis-
tributions not functions in the common sense) with
a Gaussian kernel implies their regularization, result-
ing extrema at the mentioned points can easily be de-
tected. However, as pointed out below, in the case of
the rectangular pulse the kernel width of the even Ga-
bor kernel has to match the pulse width for an unique
extrema giving rise to the necessity of appropriately
selecting the scale σ of the Gaussian.

Line texture now can trivially be modeled in 1D
by a linear combination of rectangular pulses with de-
grees of freedom allowing for varying local frequency
via a change of the width of neighboring pulses of op-
posite polarity (forming an antisymmetric pair mod-
eling textline and interspace in 1D). Clearly the ideal
case in terms of texture regularity is a linear combi-
nation of antisymmetric pairs of pulses for which the
four salient line features can easily be detected via the
above mentioned two kernels of the complex Gabor
transform. In the case of texture irregularity, how-
ever, a careful analysis of the Fourier phase space is
required.

For the case of 1D regularity in I(y), the following
fig. 1a and 1b illustrate the core of our approach.

(a) Positive pulse with
width-matching even Gabor
kernel.

(b) Positive pulse with flank-
matching odd Gabor kernel.

(c) Response map for (a)
with extremum at mid-point
of pulse.

(d) Response map for (b)
with extrema at flank of
pulse.

Figure 1: Principle of detecting salient points at positive
pulse (aka interline space model).

As known the 1D Gabor kernel generalize to 2D
without ado (Henriksen, 2007) for both the real even
and imaginary odd part:

GReal(p) = exp

(
−
(x′2

σ2 +
y′2

(σ

γ
)2

))
cos
(

2π
x′

λ

)
(2)

GImg(p) = exp

(
−
(x′2

σ2 +
y′2

(σ

γ
)2

))
sin
(

2π
x′

λ

)
(3)

where
p := (x,y;λ,θ,σ,γ)

x′ = xcosθ+ ysinθ

y′ =− xsinθ+ ycosθ

and λ as the wavelength of the wavefronts, θ as the
orientation of the kernel, σ as the standard deviation
along x’ and γ steering the anisotropy of the Gaus-
sian along y’. However it is worth recalling that in
2D two more degrees of freedom have to be consid-
ered, viz the orientation of line-like texture and the
anisotropy of the Gaussian determined by its covari-
ance matrix or, respectively, the aspect ratio (imply-
ing a tradeoff between frequency and orientation sen-
sitivity). Having said that, the 2D complex Gabor
transform reads as T (G (x,y)) = I(x,y)⊗GX , where
GX ∈ {GReal,GImg}.

In other words, a fully-fledged 2D Gabor trans-
form spans a solution space S(λ,θ,σ,γ) for 2D vi-
sual texture with dimensions anisotropy/orientation
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of Gaussian and frequency/orientation of sinusoidal
wave fronts. As a consequence, S(λ,θ,σ,γ) has to be
explored for extrema in order to detect spatially vary-
ing local texture with high precision which relates to
both Gaussian scale-space and wavelet theory. How-
ever, as laid out with acuity in (Lee, 1996), although
the 2D Gabor transform with the Gabor kernels from
Equ. 2 and 3 achieves the resolution limit, it does
not fully satisfy wavelet theory due to an existing d.c.
component of the even kernel (see (Lee, 1996) sec. 2
for details and a derivation of – still nonorthogonal –
Gabor wavelets).

In our case, since the Gabor transform utilized
is the standard complex one (with kernels provided
by OpenCV for the sake of convenience; see also
below), a solution to our visual texture detection
problem in digital documents requires some further
thoughts. First, in terms of regularity, we assume dig-
ital document images (or, synonymously, pages from
e.g. manuscripts, codices or newspaper collections) to
obey block-wise texture regularity due to constancy in
writing school, hand or print typeface barring admis-
sible deviation. Thus, secondly, as yet we only allow
for spatially regular composition of textlines varying
in height, interline spacing, orientation but also cur-
vature of rather arbitrary radius. In order to constrain
the mentioned full solution space S(.), in the follow-
ing a pragmatic approach will be presented which i)
capitalizes on prior domain/task knowledge embed-
ded in an interactive scenario and ii) serves as proof-
of-concept.

4 EXPERIMENTS AND RESULTS

In brief, our experimental strategy for the 2D case
complies with the methodology in (Neumann and
Stiehl, 1987) for controllable experimentation (see
also (Alberti et al., 2018) as well as the in-depth
treatise in (Thacker et al., 2008)) proposing the use
of a well-defined range of test images with increas-
ing visual complexity. Hence synthetic images of bi-
nary line texture (subject to e.g. scaling, orientation,
curvilinearity and Gaussian noise) allow for basal per-
formance characterization whereas digital documents
with increasing line texture complexity – due to e.g.
spatial frequency, orientation, and curvilinearity – do
so for task-specific problems. Along the graded range
our experiments also reveal the tolerance of certain
Gabor kernels to deviation from whatever regularity
assumption. As yet no consideration was given to typ-
ical degradations in ancient/historical documents such
as bleed-through, stains, etc. (except for intensity gra-
dients due to scanning).

As mentioned above, for the sake of both brevity
and simplicity we utilized the current OpenCV imple-
mentation of the Gabor kernels (see (OpenCV, 2021a)
and (Henriksen, 2007)) for our 2D experiments al-
though we found through careful late-minute code
scrutiny that neither the normalization of the Gaus-
sian nor the d.c. compensation for the even Gabor
kernel (see below) have been implemented. Although
the numerical results have a known bias, we decided
not to correct for it now in favor of reproducibility by
other research groups.

Moreover we have to point out that due to the lack-
ing d.c. compensation the even kernel does not obey
the wavelet criterion ψ(.) = 0 (Lee, 1996) hence the
full complex Gabor transform is not a wavelet trans-
form yet. Apart from that, given that the real even and
imaginary odd part resemble scaled differential oper-
ators like the seminal ones by e.g. (Hildreth, 1983)
and (Canny, 1986) and later on by e.g. (Florack et al.,
1993), for the purpose of a full scale-space integra-
tion (with degrees-of-freedom like scale/aspect ratio
of the Gaussian, local frequency range of the sinu-
soidal waves, and their orientation) w.r.t. the solution
space S(.) from above, both kernels need to be further
normalized according to milestone research by (Lin-
deberg, 1990). To this end of our knowledge no val-
idated and reliable open source tools have been pro-
vided in order to fully falsify the theory thru experi-
ments.

As a pragmatic consequence of the lack, in order
to constrain the above mentioned full solution space,
we adopt the “keep-the-user-in-the-loop” paradigm
behind interactive document exploration (see (Pandey
et al., 2020) for a recent use case) as follows: Given
sets of document images with a minimally required
and persistent regularity e.g. in a collection (which
is safe to assume), a user is provided with an inter-
active tool for measuring the prevalent visual texture
properties thus tailoring specific sets of Gabor kernels
(as feature channels) to the texture detection problem
at hand. In this vein of experimentation, the follow-
ing results for linear, curvilinear and circular textlines
have been attained so far (see below).

Since the convolution of a digital document with
Gabor kernels alone will not yield the quadrilinear
textline representation, post-processing was neces-
sary also in order to visualize the detected lines as
briefly described next. First, the gray-value docu-
ment image as well as the texture parameters such
as the height and orientation of the lines are up-
loaded and convolved with the respective even/odd
Gabor kernels. Second, our post-processing entails
global/local thresholding on the response maps as
well as local extrema detection. The resulting points
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are then grouped into lines via a connected com-
ponent labeling algorithm which is available thru
OpenCV (OpenCV, 2021b). The four lines are col-
ored (red/blue as below) and overlaid with the up-
loaded image. Note that our rough-and-ready post-
processing was not a research topic by itself and thus
can be varied at each step in order to further improve
the results.

(a) Detected top-/baselines
(blue/red) in odd-Gabor
response map.

(b) Detected textline/inter-
space midlines (red/blue)
in even-Gabor response
map.

Figure 2: Quadrilinear representation of synthetic textlines
(height: 10 pixels).

Following our experimental strategy, we first con-
verted the 1D rectangular pulses into 2D straight bars,
which can be considered as a regular textline model.
Similar to fig. 1 these synthetic textlines have each a
height of 10 pixels. Based on this and the given hor-
izontal orientation as pre-knowledge, the Gabor ker-
nels from Equ. 2 and 3 are used with λ = 20, σ = 10,
γ = 0.5 and θ = 0. Both λ and σ are directly derived
from the line height while γ is a fixed value hence the
solution space S(.) is reduced by three dimensions.

By convolving the synthetic image with even and
odd Gabor kernels, the response maps will yield ex-
trema along the quadrilinear lines as shown in fig. 2.
Because of the elongation of the (anisotropic) Gabor
kernels along the textline, there are still relatively high
responses at the end of textlines, which are not sup-
pressed by the thresholding. Note that Gabor-based
line end detection is work in progress.

(a) Detected top/baselines in
regular text block.

(b) Detected midlines in reg-
ular text block.

Figure 3: Quadrilinear representation of newspaper
textblock3.

Applying our approach to real documents faces
noise as a result of imperfect imaging barring low
resolution and further degradation. Hence efficient
thresholding of the response maps as one way to lower
the sensitivity to noise is all-important. Fig. 3 depicts

3Courtesy: Content Conversion Specialists GmbH,
Hamburg https://content-conversion.com/

our results for a low-noise document with small irreg-
ularity due to different font size.

The horizontally aligned anisotropic Gabor ker-
nels used here were parametrized to a line height of
19 pixels thus fitting the text block. Since the word
”Kantone” is larger than the textlines in the textblocks
below, some false-positives result occur though the
kernel setting is quite tolerant against height devia-
tion.

(a) Detected top/baselines in
irregular text block.

(b) Detected midlines in ir-
regular text block.

Figure 4: Quadrilinear representation of irregular
manuscript text block (Islamic Manuscripts, 2021).

In contrast, results for a cropped Arab manuscript
with irregularity are given in fig. 4. Despite the par-
ticular language and writing style, the lower contrast
and some irregularities w.r.t. line height, spacing and
orientation, the response maps still expose extrema as
in the use cases above. Here the Gabor kernels are
tailored to a line height of 21 pixels, due to ascen-
ders/descenders and diacritics, and the results do well
approximate a quadrilinear reference systems. Note
that spurious detections can easily be suppressed by
imposing task-specific geometric constraints.

(a) Detected top/baselines in index card.

(b) Detected textline/interspace midlines in index card.

Figure 5: Quadrilinear representation of index card4.

A different case of historic documents is a form or
index card as shown in fig. 5. Using Gabor kernels
tailored to a line height of 11 pixels, the approach is
able to detect form fields as well as most of the hand-

4Courtesy: Archive of Universität Hamburg
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writing. The increased spacing between the lines pre-
vents the detection of the inter lines with the same
Gabor Kernel and requires a different scale. Fitting
the Gabor kernel to a line height of 17 pixels will im-
prove the detection of the inter lines, which is shown
in fig. 6, but on the other hand the mid lines are not as
narrow as in fig. 5, which means bigger gaps between
words are connected as shown in the last textline.

Figure 6: Detected interlines in index card4.

(a) Detected textline/interspace midlines.

(b) Detected top/baselines.

Figure 7: Quadrilinear representation of a Latin manuscript
from DIVA-HisDB (Courtesy: https://diuf.unifr.ch/main/
hisdoc/diva-hisdb).

We also tested our approach on some manuscripts
from the DIVA-HisDB dataset in comparison to
(Mechi et al., 2021, fig. 10). The shown manuscript

page in particular stands out w.r.t. an overall differ-
ence – or moderate irregularity – in textline height and
spacing. As parameter constraint for the Gabor ker-
nels, in our experiment we interactively estimated the
page-averaged line height at 67 pixels, which yields
a result as shown in fig. 7. Similar to the results
from fig. 6, due to the estimated line height the top-
and baselines cannot perfectly represent the textline
margins but expose tolerance to such irregularity. On
the other hand, however, both lines encase descenders
and ascenders, which reveals their usability for de-
termining a bounding box in a subsequent processing
step.

As mentioned above, our Gabor-based proof-of-
concept and the post-processing step include a sim-
ple global thresholding to reduce noise. As a result
we have some small gaps even though the response
map does have local extrema. For illustration pur-
pose fig. 8 displays the response maps of the convo-
lution of data in fig. 7 with even/odd Gabor kernels.
Fig. 8 display absolute values to make the extrema
more visible, which is why both minima und max-
ima are shown as high values. The response maps
indicate that the gaps are results of the global thresh-
olding, which can be improved with more advanced
algorithms.

Since 2D Gabor kernels are both selective and sen-
sitive to texture orientation, detection of textlines with
varying curvature is not far to seek (fig. 9). However,
in the case of curvilinear or even circular textlines,
two questions arise: First, how to discretize the angu-
lar range and, second, how to match the scale of an
anisotropic Gabor kernel to the textline curvature. As
shown below, our experiments demonstrate that one
set of Gabor kernels is quite tolerant against deviation
from textline linearity (fig.9a) but a combination of
multiple kernels is required for imposing a quadrilin-
ear reference system on textlines beyond a lower cur-
vature limit. In fig. 9a, with parabola-like textlines
having slight curvature of 0.0018, just one even ker-
nel set (for midlines) with an orientation of θ = 0.5π

does not suffice.
The midlines are cut-off because the responses

were too low and also false-positives are prominent at
the line end. Evidently, to detect curvilinear or even
circular textlines, a set of Gabor kernels with multiple
orientations - depending on the present curvature - is
in order.

Our experiments reveal that only three kernels of
different orientation are sufficient for fully detecting
the mid-lines in fig. 9b. For fusion of the response
maps, the arithmetic mean of the responses for each
pixel is calculated. However, the responses will be di-
minished such that the difference between responses
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(a) Response map of textline/interspace midlines.

(b) Response map of top/baselines.

Figure 8: Reponse map of the quadrilinear representation of
a Latin manuscript from DIVA-HisDB.

(a) Detected midlines via one
even kernel θ = 0.5π.

(b) Detected midlines via
combination of 3 even ker-
nels θ1,2,3 = (0.2π, 0.5π,
0.8π).

Figure 9: Detection of midlines in synthetic curvilinear text
block.

from textlines and noise will be less plainly. To cir-
cumvent this effect, which gets worse the more ker-
nels are used, kernels may only contribute to pixels
that lay in their respective orientation of detection.
Here two assumptions have to be made for our current
experimental system: i) the circular textlines have

only one center and ii) its coordinates must be prior
given. From this center the angle between a pixel and
each kernel can be derived to let a kernel only con-
tribute if this angle is within its orientation. Adopting
the ”keep-the-user-in-the-loop” paradigm, the center
is interactively determined and aligned with the cen-
ter of the cropped image. Ellipse detection using two
focal points is ongoing work.

In our experiments 16 kernels are used with orien-
tations equally distributed between 0π and (2− 1

8 )π

with a step size of 1
8 . Two exemplary results for cir-

cular textlines with a moderate but observable irregu-
larity are presented in fig. 10.

(a) Mid and inter lines with
line height of 10 pixels
(Tilemahos Efthimiadis,
2010).

(b) Top and base lines with
line height of 10 pixels
(Tilemahos Efthimiadis,
2010).

(c) Mid and inter lines with
line height of 12 pixels
(Daderot, 2011).

(d) Top and base lines with
line height of 12 pixels
(Daderot, 2011).

Figure 10: Detection of epigraphy midlines in bowl images.

Note that in fig. 10a the bleeding glaze of the bowl
leads to an irregularity that has not much affected the
midline detection whereas in fig. 10c only midlines
for the epigraphy are detected while the low responses
for the drawn rectangles were removed due to thresh-
olding. The entire set of the quadrilinear line repre-
sentation for each bowl will be made public via the
given footnote link 1. In summary our experiments
provide strong evidence of both validity and feasibil-
ity of our approach and its proof-of-concept imple-
mentation.

5 CONCLUSION

In our theoretically well-grounded research we i) de-
fined repetitive textlines with varying properties (e.g.
height, spatial frequency, orientation and curvature)
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as visual texture in documents, ii) derived an explicit
LTI-based model for textlines of varying regularity
and their detection via even/odd Gabor kernels with
implicit semantics, iii) bridged a specific gap between
complex-valued Gabor theory and DAR practice in
order to not only detect text(base)lines but to impose a
quadrilinear reference system (or ”textural stave”) as
a signage for further computational processes such as
Hough transform, textline extraction, word spotting,
machine learning, OCR etc., iv) demonstrated the va-
lidity of our approach thru controlled experimentation
with a variety of documents as a proof-of-concept (see
footnote 1) and v) linked our learning-free approach
to the “human-in-the-loop-and-control” paradigm.

Needless to say that our current research couldn’t
reach the top end of the flagpole in DAR practice
as pointed out above: Apart from known theoretical
blank spots for computationally exploring the solu-
tion space solely for the case of texture regularity, in
the case of irregularity the role of the Fourier/Gabor
phase space – being inherent to the pair of real even
and odd imaginary kernels and indicating deviation
from textline regularity in the spatial domain – has
to be given proper attention in future work. In ad-
dition, given the rich quadrilinear text line represen-
tation derived so far, Gabor-based texture analysis
of text blocks is a next logical step in a processing
chain. Moreover, in terms of algorithmic time com-
plexity of multi-scale filter banks, recent GPU hard-
ware progress up to hundreds of TOPS will alleviate
computational burden. Taken all together such issues
will be part of our research road map to further deepen
the transdisciplinary understanding of line texture in
documents - in the end probably yielding a theoreti-
cally grounded, generic, and bottom-up thus learning-
free tool for computation of rich visual representa-
tions to be fed into higher-level modules of a fully-
fledged DAR system.
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