
Clean Code Tutoring: Makings of a Foundation

Nikola Luburić a, Dragan Vidaković b, Jelena Slivka c, Simona Prokić d,
Katarina-Glorija Grujić e, Aleksandar Kovačević f and Goran Sladić g

Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad, Serbia

Keywords: Intelligent Tutoring Systems, e-Learning, Clean Code, Refactoring, Code Readability, Software Engineering.

Abstract: High-quality code enables sustainable software development, which is a prerequisite of a healthy digital
society. To train software engineers to write higher-quality code, we developed an intelligent tutoring system
(ITS) grounded in recent advances in ITS design. Its hallmark feature is the refactoring challenge subsystem,
which enables engineers to develop procedural knowledge for analyzing code quality and improving it
through refactoring. We conducted a focus group discussion with five working software engineers to get
feedback for our system. We further conducted a controlled experiment with 51 software engineering learners,
where we compared learning outcomes from using our ITS with educational pages offered by a learning
management system. We examined the correctness of knowledge, level of knowledge retention after one week,
and the learners’ perceived engagement. We found no statistically significant difference between the two
groups, establishing that our system does not lead to worse learning outcomes. Additionally, instructors can
analyze challenge submissions to identify common incorrect coding patterns and unexpected correct solutions
to improve the challenges and related hints. We discuss how our instructors benefited from the challenge
subsystem, shed light on the need for a specialized ITS design grounded in contemporary theory, and examine
the broader educational potential.

1 INTRODUCTION

Software code is written to answer specific functional
requirements and enable use cases required of the
complete software solution. These requirements state
what the code must do and do not care for how it is
designed. Consequently, a requirement can be
fulfilled by a near-infinite set of different code
configurations. While many code solutions can fulfill
a requirement, not all of them are acceptable. Many
of the possible solutions cause severe but non-
obvious problems. Code that is hard to understand
and modify harms the software’s maintainability,
evolvability, and reliability (Sharma and Spinellis,
2018), introducing technical debt.

a https://orcid.org/0000-0002-2436-7881
b https://orcid.org/0000-0003-3983-7249
c https://orcid.org/0000-0003-0351-1183
d https://orcid.org/0000-0002-2852-9219
e https://orcid.org/0000-0003-2816-7980
f https://orcid.org/0000-0002-8342-9333
g https://orcid.org/0000-0002-0691-7392

On the other hand, clean code is easy to
understand and maintain, imposing minor cognitive
strain on the programmer (Fowler, 2018), thereby
increasing their productivity and reducing the chance
of introducing bugs (Tom et al., 2013). Such code is
a prerequisite for sustainable software development.

Unfortunately, there is ambiguity regarding what
constitutes clean code. While functional requirements
are easy to test, a code’s cleanliness is challenging to
evaluate, and software engineers disagree on what
code is clean (Hozano et al., 2018) based on their
awareness, knowledge, and familiarity with the
domain and coding style (Luburić et al., 2021a).

The significance of clean code and the challenges
concerning its development produce a need for
effective and scalable training of software engineers
and their procedural knowledge required to analyze

Luburić, N., Vidaković, D., Slivka, J., Prokić, S., Grujić, K., Kovačević, A. and Sladić, G.
Clean Code Tutoring: Makings of a Foundation.
DOI: 10.5220/0010800900003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 1, pages 137-148
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

137

the code’s cleanliness and enhance it through
refactoring (Fowler, 2018). Luckily, e-learning and
intelligent tutoring system (ITS) advances can help
solve this problem by facilitating effective learning at
scale.

An ITS helps educators deliver an efficient and
effective learning experience by tailoring instruction
to a specific learner and their interaction with the
subject matter. At their best, they facilitate robust
learning for each learner – learning which achieves
(1) high knowledge retention, (2) is generalizable,
and (3) accelerates future learning opportunities
(Koedinger et al., 2012). They discover hidden
concepts in the domain knowledge (Piech et al.,
2015), identify ineffective instructional principles
(Aleven et al., 2016b; Gervet et al., 2020), and reduce
the learner’s over- and under-practice (Huang et al.,
2021). ITSs transform aspects of the educator’s work,
freeing them from being a database of facts or a hint
machine.

Our Clean CaDET8 ITS is based on contemporary
learning theory for ITS design (Shute & Towle, 2003;
Koedinger et al., 2012; Aleven et al., 2016a, Huang et
al., 2021) and specializes in the clean code and
refactoring domain (Fowler, 2018).

In Section 2, we examine the advances in
education theories and ITS design that found
widespread success in math, languages, and basic
programming (Koedinger et al., 2012; Aleven et al.,
2016a) and explore how existing tutoring systems
targeting clean code overlook this body of literature.

While our Clean CaDET ITS presents traditional
lectures to learners, combining learning objects and
delivering a tailored lecture with text, video, and
multiple-choice questions, we do not bring any
novelty to this area of ITS development. Instead, we
focus on our novel refactoring challenges subsystem
and describe how it builds on contemporary ITS
advances in Section 3.

To evaluate the usefulness of our ITS, we
organized a focus group discussion with five software
engineers, who evaluated our tool and gave feedback
for its improvement. We then conducted a controlled
experiment with 51 software engineering learners to
evaluate the initial version of our ITS. We found that
the Clean CaDET ITS produces satisfactory learning
outcomes. Notably, the challenge subsystem, this
paper’s focal point, received high praise from
working engineers and learners. We describe our

8 Clean CaDET (Prokić et al., 2021) is our platform for

clean code analysis, which includes the ITS. It is found
at https://github.com/Clean-CaDET/platform#readme.

empirical evaluations and the experiment’s design
and results in Section 4.

We see significant advances in the field of ITSs
and the disciplines that make up its foundation, such
as cognitive theory, educational psychology, and
computational modeling (Koedinger et al., 2012). We
discuss how these advances benefited our ITS, the
limitations of our design, and call for a more
systematic foundation for specialized ITS design in
Section 5.

Finally, in Section 6, we conclude the paper and
note ideas for further work.

2 BACKGROUND

In Section 2.1, we explore the background for our
work. Here we examine the terminology and
components of contemporary ITSs, which provide the
foundation for our ITS and challenge subsystem.
Section 2.2 examines related refactoring educational
tools. Here we discuss their strong points, limitations,
and underlying learning theory.

2.1 Intelligent Tutoring System
Foundations

An ITS is a computerized learning environment that
models learning, implements principles of efficient
instruction, and contains intelligent algorithms that
adapt instruction to the specificities of the learner
(Graesser et al., 2012). An ITS aims to develop robust
learning outcomes (Koedinger et al., 2012) for each
learner by adapting the instruction to their individual
needs (Shute & Towle, 2003).

Aleven et al. (2016a) differentiate three levels of
instruction adaptivity. Step-loop adaptivity is
common in ITSs and entails data-driven decisions the
ITS makes in response to a learner’s actions within an
instructional task. An ITS exhibits step-loop
adaptivity when it offers hints to a learner that is
working on an exercise. Task-loop adaptivity includes
decisions the ITSs make to select which instructional
task the learner should view next. Finally, design-
loop adaptivity entails decisions made by course
designers to improve the ITS or course content based
on data collected by the ITS or the environment in
which it is used. To enable all levels of adaptivity, the
ITS collects an extensive set of data to support
learning analytics (Siemens, 2013). The captured data

CSEDU 2022 - 14th International Conference on Computer Supported Education

138

can include time spent in the learning environment,
clickstreams, task submissions, and other behavioral
data. By tracking behavior, the instructors identify
common misconceptions, overly challenging tasks,
and ineffective content (Siemens, 2013; Holstein et
al., 2017). In this paper, we call this analytics system
the progress model.

Adaptive e-learning systems such as ITSs are
often conceptualized as consisting of three
components: the content model, the learner model,
and the instructional model (Shute & Towle, 2003;
Imhof et al., 2020).

The content model represents the domain
knowledge and skills covered by the ITS and the
course it serves. The model’s structure is designed to
support adapting to the learner’s needs (Shute &
Towle, 2003). A notable problem is determining the
grain size of the educational content (Shute & Towle,
2003; Koedinger et al., 2012), where step-loop and
task-loop adaptivity requires fine-grained content
(Aleven et al., 2016a). The IEEE Computer Society
(2020) standardized the metadata schema for learning
objects, often used as the smallest unit of educational
content in adaptive e-learning systems (Shute &
Towle, 2003; Imhof et al., 2020). Examples of
learning objects include instructional multimedia
(e.g., a short text or video that introduces new or
refines existing knowledge), assessments (e.g., tests
or tasks that evaluate a learner’s knowledge), or more
complex structures (e.g., case studies or simulations).
Koedinger et al. (2012) provide a different view of
learning objects in their Knowledge-Learning-
Instructional (KLI) framework. They define
instructional events (e.g., image, text, example) and
assessment events (e.g., test, task) as observable
events in the learning environment controlled by an
instructor or ITS. Considering these perspectives, we
can say that the ITS selects which instructional or
assessment events to trigger (Koedinger et al., 2012)
or learning objects to present (Shute & Towle, 2003)
to best fulfill the learner’s needs.

The learner model contains information about the
learner that effectively supports the adaptivity of the
ITS. The scope of this information varies in the
literature. It can include the learner’s assessed
knowledge (i.e., domain-dependent information),
general cognitive abilities, personality traits, and
emotional state (i.e., domain-independent
information) (Shute & Towle, 2003; Aleven et al.,
2016a; Normadhi et al., 2019). Regarding the
learner’s assessed knowledge, Koedinger et al. (2012)
define knowledge components as an acquired unit of
cognitive function that can be inferred from a
learner’s performance on a set of related tasks.

Aleven et al. (2016a) explored how instructional
design adapts to: the learner’s prior knowledge, the
learner’s path through a problem (i.e., their study
strategy and common errors), their affective and
motivational state, their self-regulation and
metacognition efforts, and their learning styles. They
found strong evidence that considering prior
knowledge or the learner’s path through a problem
leads to robust learning outcomes. They also found
weak evidence that adhering to a learner’s learning
style affects learning.

The instructional model merges the information
about the learner with the available content and
applies instructional principles to offer the correct
instructional events or learning objects and achieve
robust learning outcomes (Imhof et al., 2020). The
instructional principles can be based on general
guidelines for delivering effective instruction (Gagne
et al., 2005; Koedinger et al., 2012), enhancing the
learners’ learning processes (Fiorella and Mayer,
2016), or targeting a specific characteristic of the
learner, like motivation (Mayer, 2014). The
instructional model can be viewed as an expert
system, performing the instructor’s job by knowing
the domain (content model), the learners (learner
model), and effective ways to facilitate knowledge
development for each learner (instructional
principles). This expertise is often implemented using
recommender systems (Khanal et al., 2019). A subset
of these systems includes black-box machine learning
models that might enhance learning but do not offer
the necessary insight about learning that can aid
instructors in improving the overall ITS and course
(i.e., design-loop adaptivity) (Rosé et al., 2019). A
different set of recommenders are knowledge-based,
where instructors embed their expertise into a rule-
based system. Such recommenders are easy to reason
about and improve (Rosé et al., 2019). However, they
are time-consuming to develop.

2.2 Refactoring Tutors

Wiese et al. (2017) conducted a controlled
experiment with 103 students to evaluate AutoStyle,
a code style tutor with an automated feedback system.
A code’s style is a low-level aspect of code
cleanliness that often considers single-line changes
and simplifications of standalone statements. A basic
improvement of code style is illustrated in Figure 1.

Figure 1: The conditional expression on the left can be
simplified, improving the code style as seen on the right.

Clean Code Tutoring: Makings of a Foundation

139

Wiese et al. clustered similar submissions using
historical data from 500 prior submissions. They
wrote hints that would move the submission from the
current cluster to a cluster with a better coding style.
The authors performed an experiment where they
randomly divided 103 students into a control group
and the AutoStyle group for the experiment, which
got hints for improving their submission. They found
that the AutoStyle group improved their recognition
of code that follows a good style but did not perform
better than the control when tasked with writing clean
code without the support of AutoStyle.

Keuning et al. (2021) developed Refactor Tutor,
an educational tool meant to teach novice
programmers to improve their coding style. It
provides exercises with structured hints, enabling
students to ask for more specific help until they
finally reveal the solution. While such hint structures
are common in contemporary ITS, they often
transform the exercise into a worked example
(Aleven et al., 2016b) when the student avoids
solving the issue and clicks through the hints. The
authors perform focus group discussions with
teachers to define rules for evaluating student
submissions and hints to help them improve the
coding style. They compare the teachers’ insight with
outputs of code quality analysis tools (e.g., IntelliJ,
SonarQube) and conclude that the code quality
analysis tools are not suitable as educational tools. In
a related paper (Keuning et al., 2020), they use the
tool with 133 students to understand how students
solve refactoring challenges and perceive their Tutor.

Haendler et al. (2019) developed RefacTutor, a
tutoring system for software refactoring. The tool is
grounded in Bloom’s taxonomy (Haendler and
Neumann, 2019) and aims to improve software
engineers’ procedural knowledge for refactoring at
the application, analysis, and evaluation level. The
tool introduces novel features, such as UML class
visualization of the refactored code. However, the
authors did not employ the tool in an educational
setting, nor did they evaluate the learning outcomes it
produces.

Sandalski et al. (2011) developed a refactoring e-
learning environment that plugs into the Eclipse
integrated development environment (IDE). From
here, the learner submits code for analysis, which
runs against rules that determine if the code’s
cleanliness can be improved. Notably, no evaluation
to determine the effectiveness of the learning tool was
employed.

The examined educational tools explore exciting
ideas like: clustering student submissions to identify
trends (Wiese et al., 2017), analyzing hint use and

submissions to understand learner behavior during
refactoring (Keuning et al., 2021), providing several
views on the refactored code (Haendler et al., 2019),
and integrating the educational tool into an IDE,
enabling learners to utilize the power of their code
editor and become more familiar with the toolset they
will use in their careers (Sandalski et al., 2011).

Notably, the reviewed work has two sets of
limitations worth discussing: a lack of evaluation of
learning outcomes and a lack of foundation in
contemporary ITS design theory.

Most of the refactoring educational tools did not
evaluate the effectiveness of the learning facilitated
by the tool. Wiese et al. (2017) present the sole
empirical evaluation that tests the learning outcomes
of their tool. However, their experiment design
presents a threat to validity, as they randomly
separated students into a control and experiment
group. Consequently, the experiment group using
their educational tool might have included more
capable students, which could influence their
conclusions. This threat could be mitigated by using
randomized block design, where students are blocked
by skill level before being equally distributed to the
two groups.

Most of the examined studies do not ground their
educational tool in proven ITS design practices.
Haendler et al. (2019) present the sole study that uses
Bloom’s taxonomy, which structures knowledge and
cognitive processes, to design their ITS on this
foundation. While a good starting point, Bloom’s
taxonomy primarily classifies learning objectives in a
broader context. Advances in education theory and
ITS design, such as those presented by Koedinger et
al. (2012) and Aleven et al. (2016a), provide more
concrete guidance for ITS development. Given the
maturity of these contributions, we argue that
specialized ITSs should be founded on these advances
and develop our ITS accordingly.

3 CLEAN CaDET TUTOR

Our Clean CaDET ITS presents traditional lectures to
learners, combining learning objects and delivering a
tailored lecture using a basic learner model. It is
grounded in the theory described in Section 2.1 and
maintains a content, learner, progress, and
instructional model. Our novelty lies in utilizing these
models to provide refactoring challenges to develop
the learners’ procedural knowledge for clean code
analysis and refactoring. Figure 2 illustrates the
interaction flow between the learner and the challenge
subsystem of our ITS.

CSEDU 2022 - 14th International Conference on Computer Supported Education

140

Figure 2: Challenge submission and evaluation data flow.

Once the learner arrives at the challenge learning
object, they load the related code (i.e., the starting
challenge state) into their IDE9. The learner analyses
the code, refactors it, and creates a submission
through our ITS plugin.

The progress model coordinates the submission
processing by:
1. Receiving the challenge submission, including the

source code, challenge, and learner identifier.
2. Parsing the code into a model that contains the

code graph and calculated source code metrics.
3. Sending the model to the Challenge. The

challenge runs available unit tests to check
functional correctness. If they pass, it employs
evaluation strategies, where:
a. Each strategy analyses some part of the code

graph or metric values to determine if the
related clean code criteria is satisfied. A
challenge submission is correct if all strategies
are satisfied.

4. Asking the instructional model for suitable
learning objects for each unsatisfied strategy and
the final solution, where:
a. The learner model is consulted to determine

the relevant characteristics of the learner.
b. The content model is queried for the most

suitable available learning objects.
5. Persisting the submission and its correctness and

returning the selected set of learning objects.
The learner can make multiple submissions,

receiving tailored hints for aspects of their submission
that require improvement. The hints are learning
objects that present themselves as instructional events

9 We made a point to integrate our ITS with industry-

relevant IDEs to enable learners to acquaint themselves
with refactoring tools supported by the environment

(Koedinger et al., 2012). As learning objects, they can
be reused among challenges or integrated into a
traditional lecture offered by the ITS. As instructional
events, they help the learner complete the assessment
event (i.e., the challenge). Finally, the challenge
solution is a learning object and instructional event
that transforms the challenge into a worked example
(Aleven et al., 2016b).

Out of the many possible code configurations that
fulfill a requirement, we can find a subset of solutions
considered clean by most software engineers.
Notably, this is different from elementary algebra (a
domain for which we see many ITS developments),
where problems have a single correct solution.
Consequently, the evaluation needs to be flexible to
include the acceptable subset of possible solutions.
For example, we might define that all methods in the
submitted code must have below ten lines of code
(mapping to the LOC metric) instead of having
precisely five lines.

While fulfillment strategies are flexible, we
recommend that learning engineers map one
fulfillment strategy to a single knowledge component
(Koedinger et al., 2012). Adhering to this
recommendation allows educators to examine which
knowledge components are under-developed and
perform a design-loop adaptation of the content. To
better explain this point, we present two challenges,
their fulfillment strategies, and the related knowledge
components in Table 1.

Clean Code Tutoring: Makings of a Foundation

141

Table 1: Examples of challenges, their fulfillment strategies, and the related knowledge components.

We point to two significant elements present in
Table 1. First, our challenges assess multiple
knowledge components, which is typical for
sophisticated tasks involving procedural knowledge.
Second, multiple challenges can have the same
fulfillment strategy to test the same knowledge
component (in the example, the first strategy for both
challenges is the same). Testing the same knowledge
component through multiple challenges is desirable
as multiple assessment events are needed to infer
whether a learner has robustly acquired a knowledge
component (Koedinger et al., 2012).

4 TUTOR EVALUATION

Here we present our evaluations of the initial version
of our ITS. Section 4.1 describes the focus group
discussion we held with five working software
engineers to review their perceptions on the
usefulness of our tool. Next, we performed a
controlled experiment with 51 students to ensure that,
given the same amount of time, our tool does not lead
to worse learning outcomes when compared to a
traditional learning management system (LMS).
Section 4.2 describes our experiment design, while
Section 4.3 presents the achieved results.

4.1 Focus Group Discussion

We conducted the focus group discussion
(Templeton, 1994) with five working software
engineers of medium seniority (2-5 years of
experience) in three phases:
1. We discussed the tool’s purpose and features and

showed the engineers how to install and use it.

2. The engineers took two hours to go over the
lectures and try out the challenge system. During
this time, we observed their interaction, answered
any questions, and noted any usability issues.

3. We discussed the tool’s usefulness and examined
areas for improving its features and the presented
content.
The main takeaways from the focus group

discussion included a set of features, technical
improvements, and content enhancements.
Furthermore, we received unanimous praise for the
challenge subsystem, particularly how it integrated
into the IDE, allowing the engineers to use familiar
code refactoring tools.

4.2 Controlled Experiment Design

We designed our experiment based on the body of
research that performed a controlled experiment to
evaluate their software solutions. Wettel et al. (2011)
performed an exhaustive survey of experimental
validation research in software engineering to
compile an experimental design wish list. Our
controlled experiment is very similar to the one they
designed.

The purpose of our experiment is to quantitatively
evaluate the effectiveness of our Clean CaDET ITS
compared to the traditional learning approach. To this
aim, we formulated the following research questions
and their corresponding hypothesis (Table 2):

RQ1. Does the use of our ITS increase the
correctness of the solutions to code design test
questions compared to conventional consumption of
the static content?

RQ2. Is the use of our ITS more engaging for
learners than the conventional consumption of static
content?

Challenge description Fulfillment strategies Related knowledge component

Refactor the class so
that all identifiers have
meaningful names.

Find expected words or their synonyms at the
appropriate place in the code.

Use meaningful words in
identifier names

Detect if any class, method, field, parameter, or
variable name contains a meaningless noise word.

Avoid noise words in identifier
names

Refactor the class so
that all methods are
simple, short, and focus
on a single, clearly
defined task.

Find expected words or their synonyms at the
appropriate place in the code.

Use meaningful words in
identifier names

Detect if any method has cyclomatic complexity
higher than 10 or maximum nested blocks more than
four.

Write simple methods

Detect if any method has more than 20 unique words
in its body (excluding comments and language
keywords).

Write methods focused on a
single task

Detect if the containing class has more than 15
methods.

Avoid classes with many micro
methods

Detect if any method has more than 20 lines of code. Write short methods

CSEDU 2022 - 14th International Conference on Computer Supported Education

142

RQ3. Does the use of our ITS increase knowledge
retention compared to the conventional consumption
of static content?

RQ4. Which properties of our ITS appeal to
learners and which should be improved?

Table 2: The null and alternative hypothesis corresponding
to our research questions RQ1-RQ3.

Null hypothesis Alternative hypothesis
(H10) Our ITS does not

impact the correctness of
the solutions to code
design test questions.

(H1) Our ITS impacts the
correctness of the

solutions to code design
test questions.

(H20) Our ITS does not
impact knowledge

retention.

(H2) Our ITS impacts
knowledge retention.

(H30) Our ITS does not
impact engagement with

the studied material.

(H3) Our ITS impacts
engagement with the

studied material.

To answer RQ1 – RQ3, we have three dependent
variables in our experiment: (1) post-test correctness,
(2) engagement, and (3) knowledge retention. Our
experiment has one independent variable: the means
of learning about clean code design practices. Thus,
we have two treatments in our experiment:
• The experimental group: learners learning about

clean code design through our ITS.
• The control group: learners learning about clean

code design via traditional learning techniques.
To facilitate traditional learning, we offer static
learning content through an LMS.
To avoid the possibility of the educational

materials influencing the experiment outcome, we
offer the same educational materials to both groups10.
The design of our experiment is a between-subjects
design, i.e., a subject is part of either the control group
or the experimental group.

Our controlled variable, i.e., a factor that could
influence the participants’ performance, is the skill
level obtained after listening to several software
engineering courses. The participants in our
experiments are third-year undergraduate software
engineering students with roughly the same
knowledge and experience in software engineering.
However, we use the randomized block design to
reduce the possibility of differences in skill levels
affecting the experiment. That is, we first divide our
subjects into groups (blocks) according to their skill
level. Then, we randomly assign subjects from each

10 The offered educational material is based on the

guidelines for creating engaging digital educational
content from our earlier work (Luburić et al., 2021b).

block to the two treatments for a between-subjects
design.

The flow of our experiment execution was as
follows:
1. The participants applied for the experiment by

answering a pre-experiment survey. We used the
answers to assess the participants’ skill level and
divided them into treatment groups accordingly.

2. The experiment was held in a single day and took
three hours: participants had 2.5 hours to learn the
subject matter (i.e., the learning phase) and 0.5
hours to complete the post-test.

3. A day after the experiment, we asked the
participants to answer a post-experiment survey to
collect their experience with the experiment and
feedback to improve our ITS.

4. A week after the experiment, we organized a
knowledge retention test.
We constructed the pre-experiment and post-

experiment surveys following Punter et al. (2003)
recommendations for effective online surveys.

We estimated the participants’ skill level
(controlled variable) according to their:
• Years of programming experience: we asked the

learners to specify the years of their programming
experience in general and their experience with
the C# programming language that we used in our
experiment.

• Grades: we asked the learners to specify their
average grade and the grades they achieved on the
courses related to software engineering they
completed.
To measure the post-test correctness (dependent

variable), we constructed a test designed to evaluate
the learners’ conceptual knowledge (through
carefully constructed multiple-choice questions) and
procedural knowledge (where they had to analyze
code and refactor it using the learned principles). We
administrated this test after the learning phase and a
short break. We added the scores of individual
questions to obtain the value of the post-test
correctness variable. Participants were asked not to
share their post-text experience with other
participants to avoid influencing the knowledge
retention test.

To measure participants’ engagement with the
educational materials (dependent variable), we used
their answers from the post-experiment survey to a
question: “ I was focused and engaged during the
experiment.” This question was a 5‐point response

Clean Code Tutoring: Makings of a Foundation

143

scale Likert item (Subedi, 2016), ranging from 1 =
strongly disagree to 5 = strongly agree. To confirm the
participants’ self-assessment, we observed them during
the learning phase following guidelines on conducting
empirical research (Taylor et al., 2015) to estimate their
engagement with the educational materials.

To measure knowledge retention (dependent
variable), we asked the learners to solve the identical
post-test a week after their learning experience and
measured the correctness of their solutions. Karaci et
al. (2018) and Abu-Naser (2009) measured
knowledge retention similarly but applied the
knowledge retention test a month after the post-test.
Due to organizational constraints11, we had to shorten
this period to a week. We derived the knowledge
retention variable the same way as the post-test
correctness variable.

To answer RQ4, we constructed the post-
experiment survey questions we administered to the
experimental group participants (learners using our
ITS). We constructed the following structured Likert
item questions:

Q1. “I would integrate the Clean CaDET ITS into
everyday learning.”

Q2. “The Clean CaDET ITS has a user-friendly
UI and is easy to use.”

Q3. “The challenges are too demanding.”
Q4. “The hints and solutions to the challenges are

clear and useful.”
Additionally, we asked the experiment group

learners to answer the following two multiple-choice
questions:

Q5. “I wish there were LESS,”
Q6. “I wish there were MORE,”
where the choices were different types of learning

objects: (1) text-based explanations, (2) images, (3)
videos, (4) multiple-choice questions, (5) challenges.

4.3 Controlled Experiment Results

A total of 51 learners participated in our experiment,
where we assigned 33 learners to the experiment
group and 18 learners to the control group. Our
experiment is a between-subjects, unbalanced
experiment as the groups are of unequal size. As we
have one independent variable, the appropriate
parametric test for hypothesis testing is the one-way
Analysis Of Variance (ANOVA) (Norman, 2010;
Wettel et al., 2011). Before the analysis, we ensured
that our data met the test’s assumptions:

11 If we delayed the knowledge retention test any longer,

learners would learn the same subject matter on their
course, influencing the results.

1. The independence of observations assumption is
met due to the between-subject design of the
experiment.

2. We tested the homogeneity of variances of the
dependent variables’ assumption of all our
dependent variables’ using Levene’s test (Levene,
1961) and found that the assumption was met in
all cases.

3. We tested the normality of the dependent variable
across levels of the independent variables using
the Shapiro-Wilk test for normality (Shaphiro and
Wilk, 1965). We found that the normality
assumption was met for the post-test correctness
and knowledge retention variables. However, the
assumption was violated for the engagement variable.
Therefore, we used the one-way ANOVA

parametric test for the post-test correctness and
knowledge retention variables. We used the
nonparametric Kruskal-Wallis H Test for the
engagement variable. Kruskal-Wallis H Test does not
require data normality and is well-suited for ordinal
Likert item questions (MacFarland and Yates, 2016).
We performed all statistical tests using the IBM SPSS
statistical package. We used the significance level α
of .05; if the p-value is less than 0.05 (p ≤ .05), we
consider the result significant.

Table 3 shows the mean and standard deviation
for the post-test correctness and knowledge retention
variables and ANOVA test results for the related null
hypothesis (H10 and H20). We observe that the mean
scores fall near the center of the score range (15).
Furthermore, the Shapiro-Wilk test for normality
showed that the scores are normally distributed. This
result indicates that our test was well-constructed –
not too hard and not too easy to solve. We can see that
the mean value for the post-test correctness and the
knowledge retention test is higher for the experiment
than the control group. However, the ANOVA test
shows that we do not have sufficient evidence to
reject the null hypothesis (i.e., to claim these means
are not equal).

Figure 3 shows the distributions of the self-
assessed participant engagement for the experiment
and control group. The Kruskal-Wallis H test showed
that there was not a statistically significant difference
in engagement between the control and experiment
group, χ2(2) = 2.177, p = 0.140 > 0.05, with a mean
rank engagement score of 22.17 for the control group,
and 28.09 for the experiment group. Our observations

CSEDU 2022 - 14th International Conference on Computer Supported Education

144

of the participants during the learning phase concur
with this result.

To summarize, for RQ1 – RQ3, we cannot reject
the null hypothesis. Thus, we conclude that the use of
our ITS does not impact the correctness of the
solutions to code design test questions, knowledge
retention, or engagement with the studied material.
We consider this result positive as it establishes that
our system does not lead to worse learning outcomes
than the traditional learning approach.

Table 3: Participant scores (mean ± standard deviation) on
the immediate post-test and the identical knowledge
retention test administered a week later. The range of test
scores is [0, 30].

Treatment
group

Post-test
correctness

Knowledge
retention

Experiment 17.4 ± 2.76 17.8 ± 2.64
Control 16.5 ± 2.85 16.4 ± 3.22

ANOVA F1,49 = 1.274
p = 0.264 > 0.05

F1,49 = 2.822
p = 0.099 > 0.05

Figure 3: Self-assessed participant engagement (5-point
response scale Likert item question).

Figure 4: Participants’ answers to the 5-point Likert item
questions Q1-Q4.

Next, we analyze the post-experiment survey
questions constructed to answer RQ4. Figure 4 shows
the participants’ answers to the 5-point Likert item
questions Q1-Q4. We can see that most of the
participants would integrate our Clean CaDET ITS
into everyday learning (median 4) and thought that its
user interface (UI) is user-friendly and easy to use
(median 5). The participants did not find the
challenges we offered too easy or demanding (median
3) and found the hints and solutions to these

challenges clear and useful (median 4). We conclude
that the participants were satisfied with our ITS.

To answer RQ4, we can look at Table 4 that shows
which learning objects participants found engaging
and helpful (and wished more were offered) and
which learning objects were overrepresented. We also
show the number of learning object types offered
through our ITS to put these answers into context.
From Table 4, we see that our participants mostly
wished for more challenges out of the offered
learning object types. The multiple-choice questions
closely followed this. However, judging by the
number of multiple-choice questions offered through
our platform, we can see that this may be due to these
learning objects being underrepresented compared to
other learning object types. We can also conclude that
the number of video learning objects is balanced and
that the participants wished there were more images
and fewer text-based explanations.

Table 4: Participants’ answers to questions Q5 and Q6:
number of learning object types offered to the participants
through our ITS and the number of participants that wish
there were more or less of these object types.

Learning
object type

No. of
served
objects

“I wish
there were

LESS”

“I wish
there were
MORE”

Text-based
explanations 11 8 4

Images 7 1 7
Videos 4 4 5

Multi-choice
questions 2 5 12

Challenges 5 3 13

5 DISCUSSION

In Section 2.2, we presented related clean code tutors
and listed two categories of limitations from which
most suffer. In this section, we examine how our
approach stands against these limitations.

Section 5.1 examines the limitations of performed
empirical evaluations for ITSs, discusses how our
empirical study addresses these limitations and lists
the related threats to our evaluations’ validity. Section
5.2 reconsiders the problem of rooting ITS
development in education theory advances. We use
our ITS as a case study to examine the benefits of
adhering to these advances. Finally, Section 5.3
discusses related challenges, including ambiguous
knowledge components and laborious content
authoring.

0 01 1
5 2

12 1215

3

0

10

20

Experiment Control

Participants' engagement 1
2
3
4
5

0 0 1 0
2

0

14

3
7

5

11

6

11 11

6

18

13
17

1

6

0

5

10

15

20

Q1 Q2 Q3 Q4

1

2

3

4

5

Clean Code Tutoring: Makings of a Foundation

145

5.1 Evaluation Limitations

Software engineering is intensely people-oriented.
Consequently, empirical studies and evaluations have
become a required element of mature software
engineering research (Shull et al., 2007). While it is
helpful to utilize the many empirical methods to
evaluate a tool’s usability, gather ideas for features,
or explore the users’ engagement, the priority should
be to evaluate the extent to which the tool fulfills its
purpose. For an ITS, this is its ability to facilitate
robust learning, given a reasonable amount of time
(Koedinger et al., 2012). We have seen that most
existing ITSs specialized in clean code do not
perform such evaluation.

While we employed two empirical methods to
evaluate our ITS, both introduce threats to our study’s
validity.

First, we conducted a focus group discussion to
gather early insight into our tool, assess its usability
and overall usefulness. This evaluation was a
valuable stepping stone, but it did not examine
learning outcomes. Furthermore, it included a small
number of participants from a single software vendor,
limiting the gathered insight.

Second, the controlled experiment included a
modest number of participants and content, including
51 students and two lectures, examined over three
hours. At this scale, our results may be misleading, and
further experimentation in the classroom is required to
verify the achieved learning outcomes. Furthermore,
our evaluation is limited to software engineering
students, and it is unclear how effective our ITS is for
professional software engineers. Finally, our
knowledge retention test introduces a validity threat, as
it was conducted only a week after the initial learning.

5.2 Benefits of Anchoring ITS
Research in Broader ITS Design
Advances

Anchoring the design and development of an ITS to a
common framework brings several benefits.

Firstly, it improves communication by bringing
consistency to the used terminology. The shared
concepts are present in discussions among research
team members, the ITS code, documentation, and
scientific papers. Without a baseline framework, we
can state that our instructors examined the challenge
submissions to find patterns of incorrect submissions,
to improve the educational materials, or add new
challenges. By anchoring the previous statement in
the KLI framework (Koedinger et al., 2012), we can
state that our instructors examined the assessment

events (i.e., challenge submissions) to analyze which
knowledge components were underdeveloped. Our
instructors then conducted design-loop adaptivity
(Aleven et al., 2016a) by enhancing existing
instructional events or introducing new assessment
events that target the underdeveloped knowledge
components. We can better organize and exchange
ideas, design experiments, and communicate novelty
by utilizing these established concepts.

Secondly, by anchoring our specialized ITS to a
tried and tested framework, we benefit from
innovations that build upon the same framework. For
example, when designing the challenge hint feature,
we can directly integrate Aleven et al. (2016b)
insights for delivering effective instructional events
in the form of hints. Likewise, we can enhance our
design-loop adaptivity by expanding our progress
model with advances from Huang et al. (2021). As a
final example, by understanding the structure of the
knowledge component (e.g., application conditions,
nature of response) targeted by our challenges, we can
benefit from the advances from any field that targets
a knowledge component of the same structure.

5.3 Challenges with ITS Design

We explore two challenges that plague ITS design,
which are very much present in our work – the
ambiguity of knowledge and the difficulty of
authoring ITS content.

Knowledge and knowledge structures, in general,
suffer from ambiguity (Law, 2014). One aspect of this
problem is determining the appropriate granularity of
a knowledge component or learning objective. For
example, Haendler et al. (2019) use Bloom’s
taxonomy as a foundation and point out that their
Tutor develops higher cognitive processes like
analysis and evaluation. However, the assignments in
their Tutor often decompose the complex problem of
refactoring a class into simple steps the learner should
perform (e.g., “add an attribute to a class”). The
presence of these steps reduces the cognitive level
required to complete the task (e.g., adding an attribute
requires remembering, the first level of Bloom’s
taxonomy). We do not intend to criticize the approach
provided by Haendler et al. We point to the broader
problem of knowledge ambiguity and how
introducing a subtask, or a hint can degrade the
cognitive process required to complete the task.
Knowledge components are not exempt from this
ambiguity, which is why Koedinger et al. (2012)
provide many guidelines for their use. A common
challenge is defining the granularity of a knowledge
component, where “write clean code” is significantly

CSEDU 2022 - 14th International Conference on Computer Supported Education

146

different from “Use meaningful words in identifier
names.” Despite our best efforts, we still struggle
with knowledge engineering, and we expect to refine
our knowledge components, like those presented in
Table 1, for many more iterations.

A second limitation present in many ITSs,
including ours, is the time it takes to develop the
content. Creating a refactoring challenge for our
platform entails:
• Writing the starting challenge code,
• Defining one or more rules for each knowledge

component the challenge assesses,
• Creating one or more learning objects to act as

hints for each rule,
• Writing the assignment text, and
• Optionally developing a test suite to ensure the

code is functionally correct.
To help mitigate this somewhat inherent issue, we

plan to develop high-usability authoring tools to
support instructors.

6 CONCLUSION

We have developed and empirically evaluated an ITS
specialized for clean code analysis and refactoring.
Our novelty lies in the refactoring challenge
subsystem, anchored in advances from broader ITS
design advances. We have empirically evaluated our
tool to collect ideas for improvement and ensure it
produces satisfactory learning outcomes.

Throughout the paper, we have emphasized the
need to develop novel solutions in specialized fields
by grounding our work in advances from broader and
well-tested domains. While we have chosen
Koedinger et al. (2012), Aleven et al. (2016a), and the
related body of literature as our anchors, we do not
claim this work to be the only option. Mature research
groups have produced many advances in intelligent
tutoring system design and educational data mining.
It is at the intersection of these general advances and
the intricacies of specialized fields like clean code
where novelty can be found.

As further work, we will work on the authoring
problem to simplify challenge creation. We will also
monitor advances that spring from our anchors to
incorporate helpful solutions into our ITS and
continuously evaluate our advances to ensure they
contribute to the ultimate goal of producing robust
learning outcomes.

ACKNOWLEDGEMENTS

Funding provided by Science Fund of the Republic of
Serbia, Grant No 6521051, AI-Clean CaDET.

REFERENCES

Abu-Naser, S.S., 2009. Evaluating the Effectiveness of the
CPP-Tutor, an Intelligent Tutoring System for Learners
Learning to Program in C+. Journal of Applied
Sciences Research, 5(1), pp.109-114.

Aleven, V., McLaughlin, E.A., Glenn, R.A. and Koedinger,
K.R., 2016, Instruction based on adaptive learning
technologies. Handbook of research on learning and
instruction, pp.522-560.

Aleven, V., Roll, I., McLaren, B.M. and Koedinger, K.R.,
2016. Help helps, but only so much: Research on help
seeking with intelligent tutoring systems. International
Journal of Artificial Intelligence in Education, 26(1),
pp.205-223.

Fiorella, L. and Mayer, R.E., 2016. Eight ways to promote
generative learning. Educational Psychology Review,
28(4), pp.717-741.

Fowler, M., 2018. Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Gagne, R.M., Wager, W.W., Golas, K.C., Keller, J.M. and
Russell, J.D., 2005. Principles of instructional design.

Gervet, T., Koedinger, K., Schneider, J. and Mitchell, T.,
2020. When is Deep Learning the Best Approach to
Knowledge Tracing?. JEDM| Journal of Educational
Data Mining, 12(3), pp.31-54.

Graesser, A.C., Conley, M.W. and Olney, A., 2012,
Intelligent tutoring systems. APA educational
psychology handbook, Vol 3: Application to learning
and teaching., pp.451-473.

Haendler, T., Neumann, G. and Smirnov, F., 2019, May.
RefacTutor: an interactive tutoring system for software
refactoring. In International Conference on Computer
Supported Education (pp. 236-261). Springer, Cham.

Haendler, T. and Neumann, G., 2019. A Framework for the
Assessment and Training of Software Refactoring
Competences. In KMIS (pp. 307-316).

Holstein, K., McLaren, B.M. and Aleven, V., 2017, March.
Intelligent tutors as teachers' aides: exploring teacher
needs for real-time analytics in blended classrooms. In
Proceedings of the seventh international learning
analytics & knowledge conference (pp. 257-266).

Hozano, M., Garcia, A., Fonseca, B. and Costa, E., 2018.
Are you smelling it? Investigating how similar
developers detect code smells. Information and
Software Technology, 93, pp.130-146.

Huang, Y., Lobczowski, N.G., Richey, J.E., McLaughlin,
E.A., Asher, M.W., Harackiewicz, J.M., Aleven, V. and
Koedinger, K.R., 2021, April. A general multi-method
approach to data-driven redesign of tutoring systems. In
LAK21: 11th International Learning Analytics and
Knowledge Conference (pp. 161-172).

Clean Code Tutoring: Makings of a Foundation

147

IEEE Computer Society, 2020, IEEE Standard for Learning
Object Metadata (1484.12.1-2020). Standard, IEEE,
New York, NY, USA.

Imhof, C., Bergamin, P. and McGarrity, S., 2020,
Implementation of adaptive learning systems: Current
state and potential. In Online Teaching and Learning in
Higher Education (pp. 93-115). Springer, Cham.

Karaci, A., Akyüz, H.I., Bilgici, G. and Arici, N., 2018.
Effects of Web-Based Intelligent Tutoring Systems on
Academic Achievement and Retention. International
Journal of Computer Applications, 181(16), pp.35-41.

Keuning, H., Heeren, B. and Jeuring, J., 2020, November.
Student refactoring behaviour in a programming tutor.
In Koli Calling'20: Proceedings of the 20th Koli Calling
International Conference on Computing Education
Research (pp. 1-10).

Keuning, H., Heeren, B. and Jeuring, J., 2021, March. A
tutoring system to learn code refactoring. In
Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education (pp. 562-568).

Khanal, S.S., Prasad, P.W.C., Alsadoon, A. and Maag, A.,
2019. A systematic review: machine learning based
recommendation systems for e-learning. Education and
Information Technologies, pp.1-30.

Koedinger, K.R., Corbett, A.T. and Perfetti, C., 2012, The
Knowledge ‐ Learning ‐ Instruction framework:
Bridging the science ‐ practice chasm to enhance
robust learner learning. Cognitive science, 36(5),
pp.757-798.

Law, K.K., 2014. The problem with knowledge ambiguity.
European Management Journal, 32(3), pp.444-450.

Levene, H., 1961. Robust tests for equality of variances.
Contributions to probability and statistics. Essays in
honor of Harold Hotelling, pp.279-292.

Luburić, N., Prokić, S., Grujić, K.G., Slivka, J., Kovačević,
A., Sladić, G. and Vidaković, D., 2021. Towards a
systematic approach to manual annotation of code
smells.

Luburić, N., Slivka, J., Sladić, G. and Milosavljević, G.,
2021. The challenges of migrating an active learning
classroom online in a crisis. Computer Applications in
Engineering Education.

MacFarland, T.W. and Yates, J.M., 2016. Kruskal–Wallis
H-test for oneway analysis of variance (ANOVA) by
ranks. In Introduction to nonparametric statistics for the
biological sciences using R (pp. 177-211). Springer,
Cham.

Mayer, R.E., 2014. Incorporating motivation into
multimedia learning. Learning and instruction, 29,
pp.171-173.

Normadhi, N.B.A., Shuib, L., Nasir, H.N.M., Bimba, A.,
Idris, N. and Balakrishnan, V., 2019. Identification of
personal traits in adaptive learning environment:
Systematic literature review. Computers & Education,
130, pp.168-190.

Norman, G., 2010. Likert scales, levels of measurement and
the “laws” of statistics. Advances in health sciences
education, 15(5), pp.625-632.

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,
Guibas, L.J. and Sohl-Dickstein, J., 2015. Deep

Knowledge Tracing. Advances in Neural Information
Processing Systems, 28, pp.505-513.

Prokić, S., Grujić, K.G. Luburić, N., Slivka, J., Kovačević,
A., Vidaković, D., Sladić, G., 2021. Clean Code and
Design Educational Tool. In 2021 44th International
Convention on Information and Communication
Technology, Electronics and Microelectronics
(MIPRO) (In Press). IEEE.

Punter, T., Ciolkowski, M., Freimut, B. and John, I., 2003,
September. Conducting on-line surveys in software
engineering. In 2003 International Symposium on
Empirical Software Engineering, 2003. ISESE 2003.
Proceedings. (pp. 80-88). IEEE.

Rosé, C.P., McLaughlin, E.A., Liu, R. and Koedinger, K.R.,
2019. Explanatory learner models: Why machine
learning (alone) is not the answer. British Journal of
Educational Technology, 50(6), pp.2943-2958.

Sandalski, M., Stoyanova-Doycheva, A., Popchev, I. and
Stoyanov, S., 2011. Development of a refactoring
learning environment. Cybernetics and Information
Technologies (CIT), 11(2).

Shaphiro, S. and Wilk, M., 1965. An analysis of variance
test for normality. Biometrika, 52(3), pp.591-611.

Sharma, T. and Spinellis, D., 2018. A survey on software
smells. Journal of Systems and Software, 138, pp.158-173.

Shull, F., Singer, J. and Sjøberg, D.I. eds., 2007. Guide to
advanced empirical software engineering. Springer
Science & Business Media.

Shute, V. and Towle, B., 2003, Adaptive e-learning.
Educational psychologist, 38(2), pp.105-114.

Siemens, G., 2013. Learning analytics: The emergence of a
discipline. American Behavioral Scientist, 57(10),
pp.1380-1400.

Subedi, B.P., 2016. Using Likert type data in social science
research: Confusion, issues and challenges.
International journal of contemporary applied sciences,
3(2), pp.36-49.

Taylor, S.J., Bogdan, R. and DeVault, M., 2015.
Introduction to qualitative research methods: A
guidebook and resource. John Wiley & Sons.

Templeton, J.F., 1994. The focus group: A strategic guide
to organizing, conducting and analyzing the focus
group interview. Probus Publishing Company.

Tom, E., Aurum, A. and Vidgen, R., 2013. An exploration
of technical debt. Journal of Systems and Software,
86(6), pp.1498-1516.

Wettel, R., Lanza, M. and Robbes, R., 2011, May. Software
systems as cities: A controlled experiment. In
Proceedings of the 33rd International Conference on
Software Engineering (pp. 551-560).

Wiese, E.S., Yen, M., Chen, A., Santos, L.A. and Fox, A.,
2017, April. Teaching students to recognize and
implement good coding style. In Proceedings of the
Fourth (2017) ACM Conference on Learning@ Scale
(pp. 41-50).

CSEDU 2022 - 14th International Conference on Computer Supported Education

148

