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Abstract: High-quality code enables sustainable software development, which is a prerequisite of a healthy digital 
society. To train software engineers to write higher-quality code, we developed an intelligent tutoring system 
(ITS) grounded in recent advances in ITS design. Its hallmark feature is the refactoring challenge subsystem, 
which enables engineers to develop procedural knowledge for analyzing code quality and improving it 
through refactoring. We conducted a focus group discussion with five working software engineers to get 
feedback for our system. We further conducted a controlled experiment with 51 software engineering learners, 
where we compared learning outcomes from using our ITS with educational pages offered by a learning 
management system. We examined the correctness of knowledge, level of knowledge retention after one week, 
and the learners’ perceived engagement. We found no statistically significant difference between the two 
groups, establishing that our system does not lead to worse learning outcomes. Additionally, instructors can 
analyze challenge submissions to identify common incorrect coding patterns and unexpected correct solutions 
to improve the challenges and related hints. We discuss how our instructors benefited from the challenge 
subsystem, shed light on the need for a specialized ITS design grounded in contemporary theory, and examine 
the broader educational potential. 

1 INTRODUCTION 

Software code is written to answer specific functional 
requirements and enable use cases required of the 
complete software solution. These requirements state 
what the code must do and do not care for how it is 
designed. Consequently, a requirement can be 
fulfilled by a near-infinite set of different code 
configurations. While many code solutions can fulfill 
a requirement, not all of them are acceptable. Many 
of the possible solutions cause severe but non-
obvious problems. Code that is hard to understand 
and modify harms the software’s maintainability, 
evolvability, and reliability (Sharma and Spinellis, 
2018), introducing technical debt. 
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On the other hand, clean code is easy to 
understand and maintain, imposing minor cognitive 
strain on the programmer (Fowler, 2018), thereby 
increasing their productivity and reducing the chance 
of introducing bugs (Tom et al., 2013). Such code is 
a prerequisite for sustainable software development. 

Unfortunately, there is ambiguity regarding what 
constitutes clean code. While functional requirements 
are easy to test, a code’s cleanliness is challenging to 
evaluate, and software engineers disagree on what 
code is clean (Hozano et al., 2018) based on their 
awareness, knowledge, and familiarity with the 
domain and coding style (Luburić et al., 2021a). 

The significance of clean code and the challenges 
concerning its development produce a need for 
effective and scalable training of software engineers 
and their procedural knowledge required to analyze 
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the code’s cleanliness and enhance it through 
refactoring (Fowler, 2018). Luckily, e-learning and 
intelligent tutoring system (ITS) advances can help 
solve this problem by facilitating effective learning at 
scale. 

An ITS helps educators deliver an efficient and 
effective learning experience by tailoring instruction 
to a specific learner and their interaction with the 
subject matter. At their best, they facilitate robust 
learning for each learner – learning which achieves 
(1) high knowledge retention, (2) is generalizable, 
and (3) accelerates future learning opportunities 
(Koedinger et al., 2012). They discover hidden 
concepts in the domain knowledge (Piech et al., 
2015), identify ineffective instructional principles 
(Aleven et al., 2016b; Gervet et al., 2020), and reduce 
the learner’s over- and under-practice (Huang et al., 
2021). ITSs transform aspects of the educator’s work, 
freeing them from being a database of facts or a hint 
machine. 

Our Clean CaDET8 ITS is based on contemporary 
learning theory for ITS design (Shute & Towle, 2003; 
Koedinger et al., 2012; Aleven et al., 2016a, Huang et 
al., 2021) and specializes in the clean code and 
refactoring domain (Fowler, 2018). 

In Section 2, we examine the advances in 
education theories and ITS design that found 
widespread success in math, languages, and basic 
programming (Koedinger et al., 2012; Aleven et al., 
2016a) and explore how existing tutoring systems 
targeting clean code overlook this body of literature. 

While our Clean CaDET ITS presents traditional 
lectures to learners, combining learning objects and 
delivering a tailored lecture with text, video, and 
multiple-choice questions, we do not bring any 
novelty to this area of ITS development. Instead, we 
focus on our novel refactoring challenges subsystem 
and describe how it builds on contemporary ITS 
advances in Section 3. 

To evaluate the usefulness of our ITS, we 
organized a focus group discussion with five software 
engineers, who evaluated our tool and gave feedback 
for its improvement. We then conducted a controlled 
experiment with 51 software engineering learners to 
evaluate the initial version of our ITS. We found that 
the Clean CaDET ITS produces satisfactory learning 
outcomes. Notably, the challenge subsystem, this 
paper’s focal point, received high praise from 
working engineers and learners. We describe our 

 
8 Clean CaDET (Prokić et al., 2021) is our platform for 

clean code analysis, which includes the ITS. It is found 
at https://github.com/Clean-CaDET/platform#readme. 

empirical evaluations and the experiment’s design 
and results in Section 4. 

We see significant advances in the field of ITSs 
and the disciplines that make up its foundation, such 
as cognitive theory, educational psychology, and 
computational modeling (Koedinger et al., 2012). We 
discuss how these advances benefited our ITS, the 
limitations of our design, and call for a more 
systematic foundation for specialized ITS design in 
Section 5. 

Finally, in Section 6, we conclude the paper and 
note ideas for further work. 

2 BACKGROUND 

In Section 2.1, we explore the background for our 
work. Here we examine the terminology and 
components of contemporary ITSs, which provide the 
foundation for our ITS and challenge subsystem. 
Section 2.2 examines related refactoring educational 
tools. Here we discuss their strong points, limitations, 
and underlying learning theory. 

2.1 Intelligent Tutoring System 
Foundations 

An ITS is a computerized learning environment that 
models learning, implements principles of efficient 
instruction, and contains intelligent algorithms that 
adapt instruction to the specificities of the learner 
(Graesser et al., 2012). An ITS aims to develop robust 
learning outcomes (Koedinger et al., 2012) for each 
learner by adapting the instruction to their individual 
needs (Shute & Towle, 2003). 

Aleven et al. (2016a) differentiate three levels of 
instruction adaptivity. Step-loop adaptivity is 
common in ITSs and entails data-driven decisions the 
ITS makes in response to a learner’s actions within an 
instructional task. An ITS exhibits step-loop 
adaptivity when it offers hints to a learner that is 
working on an exercise. Task-loop adaptivity includes 
decisions the ITSs make to select which instructional 
task the learner should view next. Finally, design-
loop adaptivity entails decisions made by course 
designers to improve the ITS or course content based 
on data collected by the ITS or the environment in 
which it is used. To enable all levels of adaptivity, the 
ITS collects an extensive set of data to support 
learning analytics (Siemens, 2013). The captured data 
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can include time spent in the learning environment, 
clickstreams, task submissions, and other behavioral 
data. By tracking behavior, the instructors identify 
common misconceptions, overly challenging tasks, 
and ineffective content (Siemens, 2013; Holstein et 
al., 2017). In this paper, we call this analytics system 
the progress model. 

Adaptive e-learning systems such as ITSs are 
often conceptualized as consisting of three 
components: the content model, the learner model, 
and the instructional model (Shute & Towle, 2003; 
Imhof et al., 2020). 

The content model represents the domain 
knowledge and skills covered by the ITS and the 
course it serves. The model’s structure is designed to 
support adapting to the learner’s needs (Shute & 
Towle, 2003). A notable problem is determining the 
grain size of the educational content (Shute & Towle, 
2003; Koedinger et al., 2012), where step-loop and 
task-loop adaptivity requires fine-grained content 
(Aleven et al., 2016a). The IEEE Computer Society 
(2020) standardized the metadata schema for learning 
objects, often used as the smallest unit of educational 
content in adaptive e-learning systems (Shute & 
Towle, 2003; Imhof et al., 2020). Examples of 
learning objects include instructional multimedia 
(e.g., a short text or video that introduces new or 
refines existing knowledge), assessments (e.g., tests 
or tasks that evaluate a learner’s knowledge), or more 
complex structures (e.g., case studies or simulations). 
Koedinger et al. (2012) provide a different view of 
learning objects in their Knowledge-Learning-
Instructional (KLI) framework. They define 
instructional events (e.g., image, text, example) and 
assessment events (e.g., test, task) as observable 
events in the learning environment controlled by an 
instructor or ITS. Considering these perspectives, we 
can say that the ITS selects which instructional or 
assessment events to trigger (Koedinger et al., 2012) 
or learning objects to present (Shute & Towle, 2003) 
to best fulfill the learner’s needs. 

The learner model contains information about the 
learner that effectively supports the adaptivity of the 
ITS. The scope of this information varies in the 
literature. It can include the learner’s assessed 
knowledge (i.e., domain-dependent information), 
general cognitive abilities, personality traits, and 
emotional state (i.e., domain-independent 
information) (Shute & Towle, 2003; Aleven et al., 
2016a; Normadhi et al., 2019). Regarding the 
learner’s assessed knowledge, Koedinger et al. (2012) 
define knowledge components as an acquired unit of 
cognitive function that can be inferred from a 
learner’s performance on a set of related tasks. 

Aleven et al. (2016a) explored how instructional 
design adapts to: the learner’s prior knowledge, the 
learner’s path through a problem (i.e., their study 
strategy and common errors), their affective and 
motivational state, their self-regulation and 
metacognition efforts, and their learning styles. They 
found strong evidence that considering prior 
knowledge or the learner’s path through a problem 
leads to robust learning outcomes. They also found 
weak evidence that adhering to a learner’s learning 
style affects learning. 

The instructional model merges the information 
about the learner with the available content and 
applies instructional principles to offer the correct 
instructional events or learning objects and achieve 
robust learning outcomes (Imhof et al., 2020). The 
instructional principles can be based on general 
guidelines for delivering effective instruction (Gagne 
et al., 2005; Koedinger et al., 2012), enhancing the 
learners’ learning processes (Fiorella and Mayer, 
2016), or targeting a specific characteristic of the 
learner, like motivation (Mayer, 2014). The 
instructional model can be viewed as an expert 
system, performing the instructor’s job by knowing 
the domain (content model), the learners (learner 
model), and effective ways to facilitate knowledge 
development for each learner (instructional 
principles). This expertise is often implemented using 
recommender systems (Khanal et al., 2019). A subset 
of these systems includes black-box machine learning 
models that might enhance learning but do not offer 
the necessary insight about learning that can aid 
instructors in improving the overall ITS and course 
(i.e., design-loop adaptivity) (Rosé et al., 2019). A 
different set of recommenders are knowledge-based, 
where instructors embed their expertise into a rule-
based system. Such recommenders are easy to reason 
about and improve (Rosé et al., 2019). However, they 
are time-consuming to develop. 

2.2 Refactoring Tutors 

Wiese et al. (2017) conducted a controlled 
experiment with 103 students to evaluate AutoStyle, 
a code style tutor with an automated feedback system. 
A code’s style is a low-level aspect of code 
cleanliness that often considers single-line changes 
and simplifications of standalone statements. A basic 
improvement of code style is illustrated in Figure 1. 

 
Figure 1: The conditional expression on the left can be 
simplified, improving the code style as seen on the right. 
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Wiese et al. clustered similar submissions using 
historical data from 500 prior submissions. They 
wrote hints that would move the submission from the 
current cluster to a cluster with a better coding style. 
The authors performed an experiment where they 
randomly divided 103 students into a control group 
and the AutoStyle group for the experiment, which 
got hints for improving their submission. They found 
that the AutoStyle group improved their recognition 
of code that follows a good style but did not perform 
better than the control when tasked with writing clean 
code without the support of AutoStyle. 

Keuning et al. (2021) developed Refactor Tutor, 
an educational tool meant to teach novice 
programmers to improve their coding style. It 
provides exercises with structured hints, enabling 
students to ask for more specific help until they 
finally reveal the solution. While such hint structures 
are common in contemporary ITS, they often 
transform the exercise into a worked example 
(Aleven et al., 2016b) when the student avoids 
solving the issue and clicks through the hints. The 
authors perform focus group discussions with 
teachers to define rules for evaluating student 
submissions and hints to help them improve the 
coding style. They compare the teachers’ insight with 
outputs of code quality analysis tools (e.g., IntelliJ, 
SonarQube) and conclude that the code quality 
analysis tools are not suitable as educational tools. In 
a related paper (Keuning et al., 2020), they use the 
tool with 133 students to understand how students 
solve refactoring challenges and perceive their Tutor. 

Haendler et al. (2019) developed RefacTutor, a 
tutoring system for software refactoring. The tool is 
grounded in Bloom’s taxonomy (Haendler and 
Neumann, 2019) and aims to improve software 
engineers’ procedural knowledge for refactoring at 
the application, analysis, and evaluation level. The 
tool introduces novel features, such as UML class 
visualization of the refactored code. However, the 
authors did not employ the tool in an educational 
setting, nor did they evaluate the learning outcomes it 
produces. 

Sandalski et al. (2011) developed a refactoring e-
learning environment that plugs into the Eclipse 
integrated development environment (IDE). From 
here, the learner submits code for analysis, which 
runs against rules that determine if the code’s 
cleanliness can be improved. Notably, no evaluation 
to determine the effectiveness of the learning tool was 
employed. 

The examined educational tools explore exciting 
ideas like: clustering student submissions to identify 
trends (Wiese et al., 2017), analyzing hint use and 

submissions to understand learner behavior during 
refactoring (Keuning et al., 2021), providing several 
views on the refactored code (Haendler et al., 2019), 
and integrating the educational tool into an IDE, 
enabling learners to utilize the power of their code 
editor and become more familiar with the toolset they 
will use in their careers (Sandalski et al., 2011). 

Notably, the reviewed work has two sets of 
limitations worth discussing: a lack of evaluation of 
learning outcomes and a lack of foundation in 
contemporary ITS design theory. 

Most of the refactoring educational tools did not 
evaluate the effectiveness of the learning facilitated 
by the tool. Wiese et al. (2017) present the sole 
empirical evaluation that tests the learning outcomes 
of their tool. However, their experiment design 
presents a threat to validity, as they randomly 
separated students into a control and experiment 
group. Consequently, the experiment group using 
their educational tool might have included more 
capable students, which could influence their 
conclusions. This threat could be mitigated by using 
randomized block design, where students are blocked 
by skill level before being equally distributed to the 
two groups. 

Most of the examined studies do not ground their 
educational tool in proven ITS design practices. 
Haendler et al. (2019) present the sole study that uses 
Bloom’s taxonomy, which structures knowledge and 
cognitive processes, to design their ITS on this 
foundation. While a good starting point, Bloom’s 
taxonomy primarily classifies learning objectives in a 
broader context. Advances in education theory and 
ITS design, such as those presented by Koedinger et 
al. (2012) and Aleven et al. (2016a), provide more 
concrete guidance for ITS development. Given the 
maturity of these contributions, we argue that 
specialized ITSs should be founded on these advances 
and develop our ITS accordingly. 

3 CLEAN CaDET TUTOR 

Our Clean CaDET ITS presents traditional lectures to 
learners, combining learning objects and delivering a 
tailored lecture using a basic learner model. It is 
grounded in the theory described in Section 2.1 and 
maintains a content, learner, progress, and 
instructional model. Our novelty lies in utilizing these 
models to provide refactoring challenges to develop 
the learners’ procedural knowledge for clean code 
analysis and refactoring. Figure 2 illustrates the 
interaction flow between the learner and the challenge 
subsystem of our ITS.
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Figure 2: Challenge submission and evaluation data flow. 

Once the learner arrives at the challenge learning 
object, they load the related code (i.e., the starting 
challenge state) into their IDE9. The learner analyses 
the code, refactors it, and creates a submission 
through our ITS plugin. 

The progress model coordinates the submission 
processing by: 
1. Receiving the challenge submission, including the 

source code, challenge, and learner identifier. 
2. Parsing the code into a model that contains the 

code graph and calculated source code metrics. 
3. Sending the model to the Challenge. The 

challenge runs available unit tests to check 
functional correctness. If they pass, it employs 
evaluation strategies, where: 
a. Each strategy analyses some part of the code 

graph or metric values to determine if the 
related clean code criteria is satisfied. A 
challenge submission is correct if all strategies 
are satisfied. 

4. Asking the instructional model for suitable 
learning objects for each unsatisfied strategy and 
the final solution, where: 
a. The learner model is consulted to determine 

the relevant characteristics of the learner. 
b. The content model is queried for the most 

suitable available learning objects. 
5. Persisting the submission and its correctness and 

returning the selected set of learning objects. 
The learner can make multiple submissions, 

receiving tailored hints for aspects of their submission 
that require improvement. The hints are learning 
objects that present themselves as instructional events 

 
9  We made a point to integrate our ITS with industry-

relevant IDEs to enable learners to acquaint themselves 
with refactoring tools supported by the environment 

(Koedinger et al., 2012). As learning objects, they can 
be reused among challenges or integrated into a 
traditional lecture offered by the ITS. As instructional 
events, they help the learner complete the assessment 
event (i.e., the challenge). Finally, the challenge 
solution is a learning object and instructional event 
that transforms the challenge into a worked example 
(Aleven et al., 2016b). 

Out of the many possible code configurations that 
fulfill a requirement, we can find a subset of solutions 
considered clean by most software engineers. 
Notably, this is different from elementary algebra (a 
domain for which we see many ITS developments), 
where problems have a single correct solution. 
Consequently, the evaluation needs to be flexible to 
include the acceptable subset of possible solutions. 
For example, we might define that all methods in the 
submitted code must have below ten lines of code 
(mapping to the LOC metric) instead of having 
precisely five lines. 

While fulfillment strategies are flexible, we 
recommend that learning engineers map one 
fulfillment strategy to a single knowledge component 
(Koedinger et al., 2012). Adhering to this 
recommendation allows educators to examine which 
knowledge components are under-developed and 
perform a design-loop adaptation of the content. To 
better explain this point, we present two challenges, 
their fulfillment strategies, and the related knowledge 
components in Table 1. 
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Table 1: Examples of challenges, their fulfillment strategies, and the related knowledge components. 

 

We point to two significant elements present in 
Table 1. First, our challenges assess multiple 
knowledge components, which is typical for 
sophisticated tasks involving procedural knowledge. 
Second, multiple challenges can have the same 
fulfillment strategy to test the same knowledge 
component (in the example, the first strategy for both 
challenges is the same). Testing the same knowledge 
component through multiple challenges is desirable 
as multiple assessment events are needed to infer 
whether a learner has robustly acquired a knowledge 
component (Koedinger et al., 2012). 

4 TUTOR EVALUATION 

Here we present our evaluations of the initial version 
of our ITS. Section 4.1 describes the focus group 
discussion we held with five working software 
engineers to review their perceptions on the 
usefulness of our tool. Next, we performed a 
controlled experiment with 51 students to ensure that, 
given the same amount of time, our tool does not lead 
to worse learning outcomes when compared to a 
traditional learning management system (LMS). 
Section 4.2 describes our experiment design, while 
Section 4.3 presents the achieved results. 

4.1 Focus Group Discussion 

We conducted the focus group discussion 
(Templeton, 1994) with five working software 
engineers of medium seniority (2-5 years of 
experience) in three phases: 
1. We discussed the tool’s purpose and features and 

showed the engineers how to install and use it. 

2. The engineers took two hours to go over the 
lectures and try out the challenge system. During 
this time, we observed their interaction, answered 
any questions, and noted any usability issues. 

3. We discussed the tool’s usefulness and examined 
areas for improving its features and the presented 
content. 
The main takeaways from the focus group 

discussion included a set of features, technical 
improvements, and content enhancements. 
Furthermore, we received unanimous praise for the 
challenge subsystem, particularly how it integrated 
into the IDE, allowing the engineers to use familiar 
code refactoring tools. 

4.2 Controlled Experiment Design  

We designed our experiment based on the body of 
research that performed a controlled experiment to 
evaluate their software solutions. Wettel et al. (2011) 
performed an exhaustive survey of experimental 
validation research in software engineering to 
compile an experimental design wish list. Our 
controlled experiment is very similar to the one they 
designed. 

The purpose of our experiment is to quantitatively 
evaluate the effectiveness of our Clean CaDET ITS 
compared to the traditional learning approach. To this 
aim, we formulated the following research questions 
and their corresponding hypothesis (Table 2): 

RQ1. Does the use of our ITS increase the 
correctness of the solutions to code design test 
questions compared to conventional consumption of 
the static content? 

RQ2. Is the use of our ITS more engaging for 
learners than the conventional consumption of static 
content? 

Challenge description Fulfillment strategies Related knowledge component 

Refactor the class so 
that all identifiers have 
meaningful names. 

Find expected words or their synonyms at the 
appropriate place in the code.

Use meaningful words in 
identifier names 

Detect if any class, method, field, parameter, or 
variable name contains a meaningless noise word.

Avoid noise words in identifier 
names

Refactor the class so 
that all methods are 
simple, short, and focus 
on a single, clearly 
defined task. 

Find expected words or their synonyms at the 
appropriate place in the code.

Use meaningful words in 
identifier names 

Detect if any method has cyclomatic complexity 
higher than 10 or maximum nested blocks more than 
four. 

Write simple methods 

Detect if any method has more than 20 unique words 
in its body (excluding comments and language 
keywords). 

Write methods focused on a 
single task 

Detect if the containing class has more than 15 
methods. 

Avoid classes with many micro 
methods 

Detect if any method has more than 20 lines of code. Write short methods 
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RQ3. Does the use of our ITS increase knowledge 
retention compared to the conventional consumption 
of static content? 

RQ4. Which properties of our ITS appeal to 
learners and which should be improved? 

Table 2: The null and alternative hypothesis corresponding 
to our research questions RQ1-RQ3. 

Null hypothesis Alternative hypothesis
(H10) Our ITS does not 

impact the correctness of 
the solutions to code 
design test questions. 

(H1) Our ITS impacts the 
correctness of the 

solutions to code design 
test questions.

(H20) Our ITS does not 
impact knowledge 

retention. 

(H2) Our ITS impacts 
knowledge retention. 

(H30) Our ITS does not 
impact engagement with 

the studied material. 

(H3) Our ITS impacts 
engagement with the 

studied material.

To answer RQ1 – RQ3, we have three dependent 
variables in our experiment: (1) post-test correctness, 
(2) engagement, and (3) knowledge retention. Our 
experiment has one independent variable: the means 
of learning about clean code design practices. Thus, 
we have two treatments in our experiment: 
• The experimental group: learners learning about 

clean code design through our ITS. 
• The control group: learners learning about clean 

code design via traditional learning techniques. 
To facilitate traditional learning, we offer static 
learning content through an LMS. 
To avoid the possibility of the educational 

materials influencing the experiment outcome, we 
offer the same educational materials to both groups10. 
The design of our experiment is a between-subjects 
design, i.e., a subject is part of either the control group 
or the experimental group. 

Our controlled variable, i.e., a factor that could 
influence the participants’ performance, is the skill 
level obtained after listening to several software 
engineering courses. The participants in our 
experiments are third-year undergraduate software 
engineering students with roughly the same 
knowledge and experience in software engineering. 
However, we use the randomized block design to 
reduce the possibility of differences in skill levels 
affecting the experiment. That is, we first divide our 
subjects into groups (blocks) according to their skill 
level. Then, we randomly assign subjects from each 

 
10  The offered educational material is based on the 

guidelines for creating engaging digital educational 
content from our earlier work (Luburić et al., 2021b). 

block to the two treatments for a between-subjects 
design. 

The flow of our experiment execution was as 
follows: 
1. The participants applied for the experiment by 

answering a pre-experiment survey. We used the 
answers to assess the participants’ skill level and 
divided them into treatment groups accordingly. 

2. The experiment was held in a single day and took 
three hours: participants had 2.5 hours to learn the 
subject matter (i.e., the learning phase) and 0.5 
hours to complete the post-test. 

3. A day after the experiment, we asked the 
participants to answer a post-experiment survey to 
collect their experience with the experiment and 
feedback to improve our ITS. 

4. A week after the experiment, we organized a 
knowledge retention test. 
We constructed the pre-experiment and post-

experiment surveys following Punter et al. (2003) 
recommendations for effective online surveys.  

We estimated the participants’ skill level 
(controlled variable) according to their: 
• Years of programming experience: we asked the 

learners to specify the years of their programming 
experience in general and their experience with 
the C# programming language that we used in our 
experiment. 

• Grades: we asked the learners to specify their 
average grade and the grades they achieved on the 
courses related to software engineering they 
completed. 
To measure the post-test correctness (dependent 

variable), we constructed a test designed to evaluate 
the learners’ conceptual knowledge (through 
carefully constructed multiple-choice questions) and 
procedural knowledge (where they had to analyze 
code and refactor it using the learned principles). We 
administrated this test after the learning phase and a 
short break. We added the scores of individual 
questions to obtain the value of the post-test 
correctness variable. Participants were asked not to 
share their post-text experience with other 
participants to avoid influencing the knowledge 
retention test. 

To measure participants’ engagement with the 
educational materials (dependent variable), we used 
their answers from the post-experiment survey to a 
question: “ I was focused and engaged during the 
experiment.” This question was a 5‐point response 
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scale Likert item (Subedi, 2016), ranging from 1 = 
strongly disagree to 5 = strongly agree. To confirm the 
participants’ self-assessment, we observed them during 
the learning phase following guidelines on conducting 
empirical research (Taylor et al., 2015) to estimate their 
engagement with the educational materials. 

To measure knowledge retention (dependent 
variable), we asked the learners to solve the identical 
post-test a week after their learning experience and 
measured the correctness of their solutions. Karaci et 
al. (2018) and Abu-Naser (2009) measured 
knowledge retention similarly but applied the 
knowledge retention test a month after the post-test. 
Due to organizational constraints11, we had to shorten 
this period to a week. We derived the knowledge 
retention variable the same way as the post-test 
correctness variable. 

To answer RQ4, we constructed the post-
experiment survey questions we administered to the 
experimental group participants (learners using our 
ITS). We constructed the following structured Likert 
item questions: 

Q1. “I would integrate the Clean CaDET ITS into 
everyday learning.” 

Q2. “The Clean CaDET ITS has a user-friendly 
UI and is easy to use.” 

Q3. “The challenges are too demanding.” 
Q4. “The hints and solutions to the challenges are 

clear and useful.” 
Additionally, we asked the experiment group 

learners to answer the following two multiple-choice 
questions: 

Q5. “I wish there were LESS,” 
Q6. “I wish there were MORE,” 
where the choices were different types of learning 

objects: (1) text-based explanations, (2) images, (3) 
videos, (4) multiple-choice questions, (5) challenges. 

4.3 Controlled Experiment Results 

A total of 51 learners participated in our experiment, 
where we assigned 33 learners to the experiment 
group and 18 learners to the control group. Our 
experiment is a between-subjects, unbalanced 
experiment as the groups are of unequal size. As we 
have one independent variable, the appropriate 
parametric test for hypothesis testing is the one-way 
Analysis Of Variance (ANOVA) (Norman, 2010; 
Wettel et al., 2011). Before the analysis, we ensured 
that our data met the test’s assumptions: 

 
11 If we delayed the knowledge retention test any longer, 

learners would learn the same subject matter on their 
course, influencing the results. 

1. The independence of observations assumption is 
met due to the between-subject design of the 
experiment. 

2. We tested the homogeneity of variances of the 
dependent variables’ assumption of all our 
dependent variables’ using Levene’s test (Levene, 
1961) and found that the assumption was met in 
all cases. 

3. We tested the normality of the dependent variable 
across levels of the independent variables using 
the Shapiro-Wilk test for normality (Shaphiro and 
Wilk, 1965). We found that the normality 
assumption was met for the post-test correctness 
and knowledge retention variables. However, the 
assumption was violated for the engagement variable.  
Therefore, we used the one-way ANOVA 

parametric test for the post-test correctness and 
knowledge retention variables. We used the 
nonparametric Kruskal-Wallis H Test for the 
engagement variable. Kruskal-Wallis H Test does not 
require data normality and is well-suited for ordinal 
Likert item questions (MacFarland and Yates, 2016). 
We performed all statistical tests using the IBM SPSS 
statistical package. We used the significance level α 
of .05; if the p-value is less than 0.05 (p ≤ .05), we 
consider the result significant. 

Table 3 shows the mean and standard deviation 
for the post-test correctness and knowledge retention 
variables and ANOVA test results for the related null 
hypothesis (H10 and H20). We observe that the mean 
scores fall near the center of the score range (15). 
Furthermore, the Shapiro-Wilk test for normality 
showed that the scores are normally distributed. This 
result indicates that our test was well-constructed – 
not too hard and not too easy to solve. We can see that 
the mean value for the post-test correctness and the 
knowledge retention test is higher for the experiment 
than the control group. However, the ANOVA test 
shows that we do not have sufficient evidence to 
reject the null hypothesis (i.e., to claim these means 
are not equal). 

Figure 3 shows the distributions of the self-
assessed participant engagement for the experiment 
and control group. The Kruskal-Wallis H test showed 
that there was not a statistically significant difference 
in engagement between the control and experiment 
group, χ2(2) = 2.177, p = 0.140 > 0.05, with a mean 
rank engagement score of 22.17 for the control group, 
and 28.09 for the experiment group. Our observations 
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of the participants during the learning phase concur 
with this result. 

To summarize, for RQ1 – RQ3, we cannot reject 
the null hypothesis. Thus, we conclude that the use of 
our ITS does not impact the correctness of the 
solutions to code design test questions, knowledge 
retention, or engagement with the studied material. 
We consider this result positive as it establishes that 
our system does not lead to worse learning outcomes 
than the traditional learning approach. 

Table 3: Participant scores (mean ± standard deviation) on 
the immediate post-test and the identical knowledge 
retention test administered a week later. The range of test 
scores is [0, 30]. 

Treatment 
group 

Post-test 
correctness 

Knowledge 
retention 

Experiment 17.4 ± 2.76 17.8 ± 2.64
Control 16.5 ± 2.85 16.4 ± 3.22

ANOVA F1,49 = 1.274 
p = 0.264 > 0.05 

F1,49 = 2.822 
p = 0.099 > 0.05

 
Figure 3: Self-assessed participant engagement (5-point 
response scale Likert item question). 

 
Figure 4: Participants’ answers to the 5-point Likert item 
questions Q1-Q4. 

Next, we analyze the post-experiment survey 
questions constructed to answer RQ4. Figure 4 shows 
the participants’ answers to the 5-point Likert item 
questions Q1-Q4. We can see that most of the 
participants would integrate our Clean CaDET ITS 
into everyday learning (median 4) and thought that its 
user interface (UI) is user-friendly and easy to use 
(median 5). The participants did not find the 
challenges we offered too easy or demanding (median 
3) and found the hints and solutions to these 

challenges clear and useful (median 4). We conclude 
that the participants were satisfied with our ITS. 

To answer RQ4, we can look at Table 4 that shows 
which learning objects participants found engaging 
and helpful (and wished more were offered) and 
which learning objects were overrepresented. We also 
show the number of learning object types offered 
through our ITS to put these answers into context. 
From Table 4, we see that our participants mostly 
wished for more challenges out of the offered 
learning object types. The multiple-choice questions 
closely followed this. However, judging by the 
number of multiple-choice questions offered through 
our platform, we can see that this may be due to these 
learning objects being underrepresented compared to 
other learning object types. We can also conclude that 
the number of video learning objects is balanced and 
that the participants wished there were more images 
and fewer text-based explanations. 

Table 4: Participants’ answers to questions Q5 and Q6: 
number of learning object types offered to the participants 
through our ITS and the number of participants that wish 
there were more or less of these object types. 

Learning 
object type 

No. of 
served 
objects

“I wish 
there were 

LESS” 

“I wish 
there were 
MORE”

Text-based 
explanations 11 8 4 

Images 7 1 7
Videos 4 4 5

Multi-choice 
questions 2 5 12 

Challenges 5 3 13

5 DISCUSSION 

In Section 2.2, we presented related clean code tutors 
and listed two categories of limitations from which 
most suffer. In this section, we examine how our 
approach stands against these limitations. 

Section 5.1 examines the limitations of performed 
empirical evaluations for ITSs, discusses how our 
empirical study addresses these limitations and lists 
the related threats to our evaluations’ validity. Section 
5.2 reconsiders the problem of rooting ITS 
development in education theory advances. We use 
our ITS as a case study to examine the benefits of 
adhering to these advances. Finally, Section 5.3 
discusses related challenges, including ambiguous 
knowledge components and laborious content 
authoring. 
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5.1 Evaluation Limitations 

Software engineering is intensely people-oriented. 
Consequently, empirical studies and evaluations have 
become a required element of mature software 
engineering research (Shull et al., 2007). While it is 
helpful to utilize the many empirical methods to 
evaluate a tool’s usability, gather ideas for features, 
or explore the users’ engagement, the priority should 
be to evaluate the extent to which the tool fulfills its 
purpose. For an ITS, this is its ability to facilitate 
robust learning, given a reasonable amount of time 
(Koedinger et al., 2012). We have seen that most 
existing ITSs specialized in clean code do not 
perform such evaluation. 

While we employed two empirical methods to 
evaluate our ITS, both introduce threats to our study’s 
validity. 

First, we conducted a focus group discussion to 
gather early insight into our tool, assess its usability 
and overall usefulness. This evaluation was a 
valuable stepping stone, but it did not examine 
learning outcomes. Furthermore, it included a small 
number of participants from a single software vendor, 
limiting the gathered insight. 

Second, the controlled experiment included a 
modest number of participants and content, including 
51 students and two lectures, examined over three 
hours. At this scale, our results may be misleading, and 
further experimentation in the classroom is required to 
verify the achieved learning outcomes. Furthermore, 
our evaluation is limited to software engineering 
students, and it is unclear how effective our ITS is for 
professional software engineers. Finally, our 
knowledge retention test introduces a validity threat, as 
it was conducted only a week after the initial learning. 

5.2 Benefits of Anchoring ITS 
Research in Broader ITS Design 
Advances 

Anchoring the design and development of an ITS to a 
common framework brings several benefits. 

Firstly, it improves communication by bringing 
consistency to the used terminology. The shared 
concepts are present in discussions among research 
team members, the ITS code, documentation, and 
scientific papers. Without a baseline framework, we 
can state that our instructors examined the challenge 
submissions to find patterns of incorrect submissions, 
to improve the educational materials, or add new 
challenges. By anchoring the previous statement in 
the KLI framework (Koedinger et al., 2012), we can 
state that our instructors examined the assessment 

events (i.e., challenge submissions) to analyze which 
knowledge components were underdeveloped. Our 
instructors then conducted design-loop adaptivity 
(Aleven et al., 2016a) by enhancing existing 
instructional events or introducing new assessment 
events that target the underdeveloped knowledge 
components. We can better organize and exchange 
ideas, design experiments, and communicate novelty 
by utilizing these established concepts. 

Secondly, by anchoring our specialized ITS to a 
tried and tested framework, we benefit from 
innovations that build upon the same framework. For 
example, when designing the challenge hint feature, 
we can directly integrate Aleven et al. (2016b) 
insights for delivering effective instructional events 
in the form of hints. Likewise, we can enhance our 
design-loop adaptivity by expanding our progress 
model with advances from Huang et al. (2021). As a 
final example, by understanding the structure of the 
knowledge component (e.g., application conditions, 
nature of response) targeted by our challenges, we can 
benefit from the advances from any field that targets 
a knowledge component of the same structure. 

5.3 Challenges with ITS Design 

We explore two challenges that plague ITS design, 
which are very much present in our work – the 
ambiguity of knowledge and the difficulty of 
authoring ITS content. 

Knowledge and knowledge structures, in general, 
suffer from ambiguity (Law, 2014). One aspect of this 
problem is determining the appropriate granularity of 
a knowledge component or learning objective. For 
example, Haendler et al. (2019) use Bloom’s 
taxonomy as a foundation and point out that their 
Tutor develops higher cognitive processes like 
analysis and evaluation. However, the assignments in 
their Tutor often decompose the complex problem of 
refactoring a class into simple steps the learner should 
perform (e.g., “add an attribute to a class”). The 
presence of these steps reduces the cognitive level 
required to complete the task (e.g., adding an attribute 
requires remembering, the first level of Bloom’s 
taxonomy). We do not intend to criticize the approach 
provided by Haendler et al. We point to the broader 
problem of knowledge ambiguity and how 
introducing a subtask, or a hint can degrade the 
cognitive process required to complete the task. 
Knowledge components are not exempt from this 
ambiguity, which is why Koedinger et al. (2012) 
provide many guidelines for their use. A common 
challenge is defining the granularity of a knowledge 
component, where “write clean code” is significantly 
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different from “Use meaningful words in identifier 
names.” Despite our best efforts, we still struggle 
with knowledge engineering, and we expect to refine 
our knowledge components, like those presented in 
Table 1, for many more iterations. 

A second limitation present in many ITSs, 
including ours, is the time it takes to develop the 
content. Creating a refactoring challenge for our 
platform entails: 
• Writing the starting challenge code, 
• Defining one or more rules for each knowledge 

component the challenge assesses, 
• Creating one or more learning objects to act as 

hints for each rule, 
• Writing the assignment text, and 
• Optionally developing a test suite to ensure the 

code is functionally correct. 
To help mitigate this somewhat inherent issue, we 

plan to develop high-usability authoring tools to 
support instructors. 

6 CONCLUSION 

We have developed and empirically evaluated an ITS 
specialized for clean code analysis and refactoring. 
Our novelty lies in the refactoring challenge 
subsystem, anchored in advances from broader ITS 
design advances. We have empirically evaluated our 
tool to collect ideas for improvement and ensure it 
produces satisfactory learning outcomes. 

Throughout the paper, we have emphasized the 
need to develop novel solutions in specialized fields 
by grounding our work in advances from broader and 
well-tested domains. While we have chosen 
Koedinger et al. (2012), Aleven et al. (2016a), and the 
related body of literature as our anchors, we do not 
claim this work to be the only option. Mature research 
groups have produced many advances in intelligent 
tutoring system design and educational data mining. 
It is at the intersection of these general advances and 
the intricacies of specialized fields like clean code 
where novelty can be found. 

As further work, we will work on the authoring 
problem to simplify challenge creation. We will also 
monitor advances that spring from our anchors to 
incorporate helpful solutions into our ITS and 
continuously evaluate our advances to ensure they 
contribute to the ultimate goal of producing robust 
learning outcomes. 
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