
Solver-based Approaches for Robust Multi-index Selection Problems
with Stochastic Workloads and Reconfiguration Costs

Marcel Weisgut, Leonardo Hübscher, Oliver Nordemann and Rainer Schlosser
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Keywords: Resource Allocation Problems, Stochastic Workloads, Index Selection, Robustness, Linear Programming.

Abstract: Fast processing of database queries is a primary goal of database systems. Indexes are a crucial means for
the physical design to reduce the execution times of database queries significantly. Therefore, it is of great
interest to determine an efficient selection of indexes for a database management system (DBMS). However, as
indexes cause additional memory consumption and the storage capacity of databases is limited, index selection
problems are highly challenging. In this paper, we consider a basic index selection problem and address
additional features, such as (i) multiple potential workloads, (ii) different risk-averse objectives, (iii) multi-
index configurations, and (iv) reconfiguration costs. For the different problem extensions, we propose specific
model formulations, which can be solved efficiently using solver-based solution techniques. The applicability
of our concepts is demonstrated using reproducible synthetic datasets.

1 INTRODUCTION

In this paper, we consider resource allocation prob-
lems in database systems using means of quantitative
methods and operations research. Specifically, to be
able to run database workloads efficiently, we opti-
mize whether and where to store certain auxiliary data
structures such as indexes.

1.1 Background

Indexes in a relational database system are auxiliary
data structures used to reduce the execution time re-
quired for generating the result of a database query.
The shorter the execution time of a workload’s query
set, the more queries can be executed per time unit.
Consequently, reducing query execution times implic-
itly increases the throughput of the database. Indexes
are data structures that have to be stored in addition to
the stored data of a database itself, which leads to ad-
ditional memory consumption and increases the over-
all memory footprint of the database. Memory ca-
pacity is limited and, therefore, a valuable resource.
For this reason, it is important to take the memory
consumption into account for decision making about
which indexes to store in the system’s memory.

For a single database query, multiple indexes may
exist, each of which can improve the query execution
time differently. Table 1 shows an exemplary scenario

in which different combinations of indexes lead to dif-
ferent execution times of a single hypothetical exam-
ple query. The first combination without any index
leads to the longest execution time of the query with
500 milliseconds. The best execution time of 300 mil-
liseconds can be achieved by using both index 1 and
index 2. However, the best performing combination
regarding the execution time also involves the largest
memory footprint. The second-best solution from an
execution time perspective results in an index mem-
ory consumption of only 40% of the optimal solution
and is only about 17% slower. This simple example
illustrates the need to consider the index memory con-
sumption for selecting which indexes should be used.

In real-world database scenarios, a DBMS pro-
cesses more than only a single query. Instead, a set of
queries is executed on a database with a certain fre-
quency in a specific time frame for each query. The

Table 1: Sample index combinations with their memory
consumption and the resulting execution times of a hypo-
thetical query.

Usage of
index 1

Usage of
index 2

Total memory
footprint

Query
execution time

false false 0 MB 500 ms
true false 100 MB 350 ms
false true 150 MB 400 ms
true true 250 MB 300 ms

28
Weisgut, M., Hübscher, L., Nordemann, O. and Schlosser, R.
Solver-based Approaches for Robust Multi-index Selection Problems with Stochastic Workloads and Reconfiguration Costs.
DOI: 10.5220/0010800600003117
In Proceedings of the 11th International Conference on Operations Research and Enterprise Systems (ICORES 2022), pages 28-39
ISBN: 978-989-758-548-7; ISSN: 2184-4372
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

set of queries with their frequencies is referred to as
workload. Executing a workload using a selection
of indexes has a certain performance. This perfor-
mance is characterized by the total execution time of
the workload and the selected indexes’ memory con-
sumption. The workload execution time should be as
low as possible, and the index memory consumption
must not exceed a specific memory budget.

An additional challenge of selecting the set of in-
dexes that shall be present and used by queries is in-
dex interaction. ”Informally, an index a interacts with
an index b if the benefit of a is affected by the pres-
ence of b and vice-versa.” (Schnaitter et al., 2009)
For example, assume a particular index i for a subset
S of the overall workload may provide the best per-
formance improvement for each query in that subset.
There is also no other index that has a better accu-
mulated performance improvement. Suppose i now
has such a high memory consumption that the avail-
able index memory budget is completely spent. In
that case, no other index can be created. Therefore,
only queries of the subset S are improved by index i.
Another index selection might be worse for the work-
load subset S but better for the overall workload. Con-
sequently, a (greedily chosen) single index whose ac-
cumulated performance improvement is the highest is
not necessarily in the set of indexes that provides the
best performance improvement for the total workload.

1.2 Contribution

In this work, we present solver-based approaches to
address specific challenges of index selection that oc-
cur in practice. Besides one basic problem, solution
concepts for four extended problem versions are pro-
posed. Our contributions are the following:

• We study solver-based approaches for single- and
multi-index selection problems.

• We use a flexible chunk-based heuristic approach
to attack larger problems.

• We consider extensions with multiple stochastic
workload scenarios and reconfiguration costs.

• We derive risk-aware index selections using worst
case and variance-based objectives.

• We use reproducible examples to test our ap-
proaches, which can be easily combined.

The remainder of this work is structured as fol-
lows. Section 2 summarizes related work. In Sec-
tion 3, the various index selection problems are for-
mulated, and their solutions are presented. Section 4
then briefly describes how the models were imple-
mented. An evaluation of the developed models is

given in Section 5. In Section 6, we discuss future
work. Finally, Section 7 concludes this work.

2 RELATED WORK

Index recommendation and automated selection have
been in the focus of database research for many
years and are still important today, particularly in the
rise of self-optimizing databases (Pavlo et al., 2017;
Kossmann and Schlosser, 2020). Next, we give an
overview index selection algorithms.

An overview of the historic development as well
as an evaluation of index selection algorithms is sum-
marized by Kossmann et al. (Kossmann et al., 2020).
Current state-of-the-art index selection algorithms
are, e.g., AutoAdmin (Chaudhuri and Narasayya,
1997), DB2Advis (Valentin et al., 2000), CoPhy
(Dash et al., 2011), DTA (Chaudhuri and Narasayya,
2020), and Extend (Schlosser et al., 2019). All those
selection approaches focus on deterministic work-
loads. Risk-aversion in case of multiple potential
workloads is not supported. As typically iterated or
recursive methods are used, it is not straightforward
how they have to be amended to address the exten-
sions considered in this paper, such as multiple work-
loads, risk-aversion, or transition costs.

Early approaches tried to derive optimal index
configurations by evaluating attribute access statis-
tics (Finkelstein et al., 1988). Newer index selec-
tion approaches are mostly coupled with the query
optimizer of the database system (Kossmann et al.,
2020). By doing so, the costs models of the index
selection algorithm and the optimizer are the same.
As a result, the benefit of considered indexes can
be estimated consistently (Chaudhuri and Narasayya,
1997). As optimizer invocations are costly, especially
for complex queries, along with improved index se-
lection algorithms, techniques to reduce and speed up
optimizer calls have been developed (Chaudhuri and
Narasayya, 1997; Papadomanolakis et al., 2007; ?).

An increasing number of possible optimizer calls
for index selection algorithms opens the possibility
to investigate an increasing number of index can-
didates. Compared to greedy algorithms (Chaud-
huri and Narasayya, 1997; Valentin et al., 2000), ap-
proaches using mathematical optimization are able
to efficiently evaluate index combinations. In this
context, we perceive a shift away from greedy al-
gorithms (Chaudhuri and Narasayya, 1997; Valentin
et al., 2000) towards approaches using mathematical
optimization models and methods of operations re-
search, especially integer linear programming (ILP)
(Casey, 1972; Dash et al., 2011). A major challenge

Solver-based Approaches for Robust Multi-index Selection Problems with Stochastic Workloads and Reconfiguration Costs

29

of these solver-based approaches is to deal with the in-
creasing complexity of integer programs. An obvious
solution is reducing the number of initially considered
index candidates, which may, however, reduce the so-
lution quality.

Alternatively, also machine learning-based ap-
proaches for index selection are an emerging research
direction. For example, deep reinforcement learning
(RL) have already been applied, cf., e.g., (Sharma
et al., 2018) or (Kossmann et al., 2022). Such ap-
proaches, however, require extensive training, and are
still limited with regard to large workloads or multi-
attribute indexes, and do not support risk-averse opti-
mization criteria.

3 SOLUTION APPROACH

In this section, a basic index selection problem and its
extensions are formulated, and the solutions for each
problem are presented. Section 3.1 describes a ba-
sic index selection problem, which is considered the
basic problem in this work. In addition to the prob-
lem’s description, we formulate an integer linear pro-
gramming model, which can solve this problem. Sec-
tions 3.2, 3.3, 3.4, and 3.5 each describe an extension
of the basic problem and explain which adjustments
can be made to the solution of the basic problem to
solve the specialized problems. Finally, Section 3.6
describes the problem in which all advanced problems
were combined.

3.1 Basic Problem

In this subsection, we first describe a basic version
of the index selection problem, which resembles typ-
ical properties. The basic index selection problem is
about finding a subset of a given set of index (multi-
attribute) candidates used by a hypothetical database
to minimize the total execution time of a given work-
load. The given workload consists of a set of queries
and a frequency for each query. A query can use
no index or exactly one index for support. Differ-
ent indexes induce different improvements for a sin-
gle query. As a result, the execution time of a query
highly depends on the used index. A query has the
longest execution time if no index is used. For each
query, it has to be decided whether and which index
is to be used. Only if at least one query uses an in-
dex, the index can belong to the set of selected in-
dexes. Each index involves a certain amount of mem-
ory consumption. The total memory consumption of
the selected indexes must not exceed a predefined in-
dex memory budget.

Table 2: Basic parameters and decision variables.

Designation Type Description

I parameter number of indexes

Q parameter number of queries

M parameter index memory budget

tq,i parameter

execution time of query
q = 1, ...,Q using index
i = 0, ..., I; i = 0
indicates that no index
is used by query q

mi parameter memory consumption of
index i = 1, ..., I

fq parameter frequency of query
q = 1, ...,Q

uq,i
decision
variable

binary variable whether
index i = 0, ..., I is used
for query q = 1, ...,Q;
i = 0 indicates that no
index is used by query q

vi
decision
variable

binary variable whether
index i = 1, ..., I is used
for at least one query

Table 2 shows the formal representation of the
given parameters and the decision variables of our
model. The binary variable uq,i ∈ {0,1} is used to
control whether an index i is used for query q. Vari-
able vi ∈ {0,1} indicates whether index i is selected
overall. It is used to calculate the overall memory con-
sumption of selected indexes. Similar to the work of
Schlosser and Halfpap (Schlosser and Halfpap, 2020),
the considered standard basic index selection problem
can be formulated as an integer LP model:

minimize
vi,uq,i∈{0,1}I+Q×(I+1)

∑
q=1,...,Q
i=0,...,I

uq,i · tq,i · fq (1)

s.t. ∑
i=1,...,I

vi ·mi ≤ M (2)

∑
i=0,...,I

uq,i = 1, q = 1, ...,Q (3)

∑
q=1,...,Q

uq,i ≥ vi, i = 1, ..., I (4)

1
Q
· ∑

q=1,...,Q
uq,i ≤ vi, i = 1, ..., I (5)

The objective (1) minimizes the execution time of
the overall workload taking into account the index us-
age for queries, the index-dependent execution times,

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

30

and the frequency of queries. The constraint (2) en-
sures that the selected indexes do not exceed the given
memory budget M. Constraint (3) ensures that a max-
imum of one index is used for a single query. Here, a
unique option has to be chosen including the no index
option. Thus, if uq,i with i = 0 is true, no index is used
for query q. The constraints (4) and (5) are required to
connect uq,i with vi. If no query uses a specific index
i, constraint (4) ensures that vi is equal to 0 for that
index. If at least one query uses index i, constraint (5)
ensures that vi is equal to 1 for that index.

3.2 Chunking

The number of possible solutions of the index selec-
tion problem grows exponentially with the number of
index candidates. Databases for modern enterprise
applications consist of hundreds of tables and thou-
sands of columns. This leads to long execution times
to find the optimal solution of the increasing prob-
lem. In this extension, the set of possible indexes is
split into chunks of indexes. The index selection prob-
lem will then be solved via (1) - (5) only with the re-
duced set of indexes for each chunk, and the indexes
of the optimal solution will be returned. After solving
the problem for each chunk, the best indexes of each
chunk will get on. In the second round, the reduced
number of remaining indexes will be used for a final
selection using again (1) - (5).

The approach allows an effective problem decom-
position and accounts for index interaction. Naturally,
chunking remains a heuristic approach an does not
guarantee an optimal solution, but the main advantage
is to avoid large problems. Of course chunks should
not be chosen too small as splitting the global prob-
lem into too many local problems can also add over-
head (see the evaluations presented in Section 5.4).
An other advantage is that, in the first round, all the
chunks could be solved in parallel. With this, the
overall execution time could be reduced even further.

3.3 Multi-index Configuration

Our basic problem introduced in Section 3.1 could not
handle the interaction of indexes as described in the
introduction: One query could be accelerated by more
than one index and the performance gain of an index
could be affected by other indexes. We tackle this part
of the index selection problem by adding one level of
indirection called index configurations.

An index configuration maps to a set of indexes.
Assuming the index selection problem has ten in-
dexes, then the first configuration (configuration 0)
means that no index is used for this query. The next

ten possible configurations point to the respective in-
dexes, e.g., configuration 1 points to index 1, config-
uration 2 points to index 2, configuration 10 points to
index 10. The subsequent configurations map to sets
containing combinations of two indexes. Database
queries could be accelerated by more than two in-
dexes, but we simplified the configurations in our im-
plementation so that they can consist of a maximum
of two different indexes. We use a binary parame-
ter dc,i indicating whether configuration c contains the
index i. c = 0, ...,C and i = 0, ..., I with C being the
number of index configurations and I being the num-
ber of indexes. Furthermore, we assume that ten per-
cent of all possible index combinations will interact
in configurations. Our approach to index selection
works with configurations in the same way as with
indexes, cf. (1) - (5). The constraints (3) - (5) of the
basic problem, cf. Section 3.1, are adapted in the fol-
lowing way for multi-index configurations:

∑
c=0,...,C

uq,c = 1, q = 1, ...,Q (6)

∑
q=1,...,Q

uq,c ·dc,i ≥ vi,
c = 1, ...,C
i = 1, ..., I (7)

1
Q
· ∑

q=1,...,Q
uq,c ·dc,i ≤ vi,

c = 1, ...,C
i = 1, ..., I (8)

Again, the binary variable uq,c is used to control if
configuration c is used for query q and C is the num-
ber of index configurations. Similar to the basic ap-
proach, c = 0 represents a configuration that contains
no index. Constraint (6) ensures that one single query
uses exactly one configuration option instead of one
index. In constraint (7) - (8), the parameter dc,i is in-
cluded to activate indexes of used configurations.

3.4 Stochastic Workloads

Until now, we considered a single given workload
only. However, in the context of enterprise applica-
tions, we could imagine that each day of the week has
a different workload. For example, the workloads on
the weekend could contain fewer requests compared
to a workload during the week. In this section, we
propose an approach that can take multiple workloads
into account. The solution seeks to provide a robust
index selection, where robust means that the perfor-
mance is good no matter which workload may occur.

First, the expected total workload cost T across all
workloads is being calculated as

T = ∑
w=1,...,W

gw · kw

∑w2=1,...,W kw2

(9)

Solver-based Approaches for Robust Multi-index Selection Problems with Stochastic Workloads and Reconfiguration Costs

31

Figure 1: Exemplary costs for each workload when mini-
mizing the global costs (lower is better).

where W is the number of different workloads. To
describe workload probabilities, we use the intensities
kw, w = 1, ...,W . Further, the execution time gw of a
workload w is determined by (10), with fw,q being the
frequency of query q in workload w, w = 1, ...,W , i.e.,

gw = ∑
q=1,...,Q,c=1,...,C

uq,c · tq,c · fw,q (10)

The information whether a configuration c is be-
ing used for a query q of a workload w is shared be-
tween the workloads, leaving it to the solver to mini-
mize the total costs across all workloads.

Figure 1 shows exemplary total workload costs
when minimizing the global execution time. It can
be seen that the actual costs of each workload differ a
lot, leading to poor performances for W1 and W3 in
favor of W2 and W4. We use two different approaches
to make the index selection more robust.

The first one includes the worst-case performance
by punishing the total costs with the maximum work-
load costs as additional costs. The maximum work-
load costs L (modelled as a continuous variable) are
determined by the constraint:

L ≥ gw ∀w = 1, ...,W (11)

The following (mixed) ILP, cp. (1) - (5), now in-
cludes this maximum workload cost (L) in the objec-
tive using the penalty factor a ≥ 0, cf. (9) - (10):

minimize
vi,uq,i∈{0,1}I+Q×(I+1),L∈R

T +a ·L (12)

Figure 2 illustrates a typical solution leading to
better worst-case cost, cp. Figure 1. However, the
costs of W2 and W3 increased, leaving also a bigger
gap between W4 and the rest.

To obtain robust performances, the second ap-
proach uses the variance V , cf. (9) - (10),

V = ∑
w=1,...,W

(gw −T)2 · kw

∑
w2=1,...,W

kw2

(13)

Figure 2: Exemplary workload costs with increased robust-
ness by optimizing the worst-case costs.

Figure 3: Exemplary workload costs with increased robust-
ness by using the mean-variance criterion.

of the workload costs as a penalty to minimize the
scenarios’ cost differences. Now, the factor b and the
term b ·V is used in the objective, cp. (12) - (13),

minimize
vi,uq,i∈{0,1}I+Q×(I+1)

T +b ·V (14)

Remark that the problem, cf. (14), becomes a bi-
nary quadratic programming (BQP) problem by us-
ing the variance V in the penalty term. Using the
mean-variance criterion (14) typically leads to results
illustrated in Figure 3. Typically, all costs are now
within a similar range. However, in comparison to the
previous figures, not only have been W1, W2 and W3
brought into a plannable range, but also W4. The to-
tal costs of W4 may not be reduced, which makes the
result indeed more robust but less effective in the end.
A third option to resolve this issue would be to use
the semi-variance instead of V . Similar to the vari-
ance, the semi-variance can be used to penalize only
those workloads whose costs are higher than the mean
cost of all workloads, i.e., workloads with lower costs
would not increase the applied penalty.

Finally, the proposed risk-averse approaches
enables us to use potential workloads (e.g., observed
in the past) to optimize index selections for stochastic
future scenarios under risk considerations.

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

32

Table 3: Transition cost calculation example.

Index v∗i vi RM+MK

mki rmi

1 50 10 1 1 0 (keep)
2 20 5 0 1 20 (create)
3 100 30 1 0 30 (remove)
4 10 1 0 0 0 (skip)

Total transition costs 50

3.5 Transition Costs

In the previous subsections, we showed how to deal
with different workloads, e.g., on consecutive days.
In this problem extension, we consider the costs of
a transition from one index configuration to another.
We assume that the database removes indexes that are
no longer used and loads indexes that are to be used
into the memory. Typically, the database would need
to do some I/O operations, which are time expensive
and generate additional costs. We model such cre-
ation and removal costs in our final extension to re-
duce such transition costs.

To adapt the index configurations, the algorithm
identifies the differences between the previous con-
figuration (now characterized by parameters v∗i) and
a new target configuration governed by the variables
vi. For each removal at index i, the algorithm looks
up the removal costs rmi for index i and adds them to
the total removal costs RM. Analogous, the algorithm
proceeds to calculate the total creation costs MK us-
ing the creation costs mki of the index i. The sum
of the removal costs and creation costs is then being
added to any of the previous objectives, which allows
to avoid high transition costs. The costs can be mod-
elled linearly:

RM = ∑
i=1,...,I

v∗i · (1− vi) · rmi (15)

MK = ∑
i=1,...,I

vi · (1− v∗i) ·mki (16)

Table 3 describes an explanatory calculation of the
transition costs between two index selections. The
previous selection (v∗) uses the indexes 1 and 3. The
new selection (v) uses index 1 and 2. The resulting
transition costs are 50.

3.6 Combined Problem

All extensions described in the previous subsections
were developed on top of the basic approach. To
show the encapsulation of all extensions, we also im-
plemented a solution that integrates all extensions in

an all-in-one solution. In most of the cases, this
is straightforward as all key concepts are indepen-
dent from each other and no coupling is involved.
However, when combining multiple components the
model’s complexity increases. Hence, we recommend
to use only those features that are really needed in spe-
cific applications.

4 IMPLEMENTATION

To evaluate the described approaches, we imple-
mented our different models using AMPL1, which is
a modeling language tailored for working with op-
timization problems (Fourer et al., 2003). The syn-
tax of AMPL is quite close to the algebraic one and
should be easy to read and understand, even for the
readers, who have never seen AMPL syntax before.
AMPL itself translates the given syntax into a format
solvers can understand.

The solver is a separate program that needs to be
specified by the developer. The approach is based on
linear/quadratic programming using integer numbers.
Both solvers, CPLEX2 and Gurobi3, are suited to
solve the index selection task. A first test showed that
Gurobi is faster than CPLEX in most cases, which is
the reason why we used Gurobi.

The .run-file contains information about the se-
lected solver and loads the specified model and data
specifications. After a given problem was solved, the
solution is displayed. The .mod-file contains the de-
scription of the mathematical model, such as parame-
ters, constraints, and objectives used. The input data,
which is required for solving a certain problem, is
specified in the .dat-file. All code files are available
at GitHub4. Our implementation in AMPL allows the
reader to evaluate the different approaches and to re-
produce its results, see Section 5.

5 EVALUATION

In this section, we evaluate our approach. The con-
sidered setup and the input data are described in
Section 5.1 and Section 5.2, respectively. In Sec-
tion 5.3, we reflect on the scalability of the basic ap-
proach. Then, in Section 5.4, we investigate when in-
dex chunking is beneficial for the performance com-
pared to the basic approach and reflect on the cost

1https://ampl.com/
2https://www.ibm.com/de-de/analytics/cplex-optimizer
3https://www.gurobi.com/de/
4https://github.com/mweisgut/DDDM-index-selection

Solver-based Approaches for Robust Multi-index Selection Problems with Stochastic Workloads and Reconfiguration Costs

33

trade-off that the heuristic entails. Afterward, in Sec-
tion 5.5, we determine the computational overhead of
the multi-index extension. Lastly, in Section 5.6, we
take a more in-depth look into the stochastic work-
load extension, evaluating the impact of the different
robustness measures and the trend of costs depending
on the number of potential workloads.

5.1 Evaluation Setup

All performance measurements were performed on
the same machine, featuring an Intel i5 8th genera-
tion (4 cores) and 8GB memory storage. All mea-
surements were repeated three times. For each time
measurement, we used the AMPL build-in function
total solve time. It returns the user and system CPU

seconds used by all solve commands.
The final value was determined by the mean of all

three measurement results. All non-related applica-
tions have been closed to reduce any side effects of
the operating system.

5.2 Datasets

The datasets that are being used for the evaluation are
being generated randomly, using multiple fixed ran-
dom seeds. Each dataset is defined by the number
of indexes, queries, and available memory budget.
The algorithm provided in the index-selection.data-
file then generates the execution time of each query,
depending on the utilized index. Firstly, the “original”
execution time for the query without using any in-
dex are chosen randomly within the interval [10;100].
Based on the drawn costs, the speedup for each in-
dex is calculated by choosing a random value between
the “original” costs and a 90% speedup. The memory
consumption of a query can be an integer between 1
and 20. The frequencies can be between 1 and 1 000.

The extensions that are applied on top of the ba-
sic approach introduce further variables that need to
be generated. For the stochastic workload extension,
we introduced a workload intensity, which gets drawn
randomly for each workload. This also applies to the
transition cost extension, where the creation costs and
removal costs are random. The multi-index configu-
rations package requires a more complex generation
process since each index configuration should be a
unique set of indexes. The configuration zero repre-
sents the option that no index is being used. The con-
figurations 1 to I point to their respective single index.
All other generated configurations consist of up to
two indexes, whereas the combinations are drawn ran-
domly. By using a second data structure, it is ensured
that no index combination is used multiple times. The

Figure 4: Execution times in seconds of the basic solution,
cf. (1) - (5), for different numbers of index candidates.

speedup s for a combination, existing of two indexes
i and j, is then calculated by the following formulas:

min speedupsi, j = max(si,s j) (17)

max speedupsi, j = si + s j (18)

The minimum speed up and the maximum speed
up are then passed to a function that returns a uni-
formly distributed random number within the interval
[min speedupsi, j ;max speedupsi, j], cf. (16) - (17).

Outsourcing the generation of input data into the
index-selection.data–file allows for an easy replace-
ment with actual data, e.g., benchmarking data of a
real system. However, this also enables the reader to
validate basic example cases on their own.

5.3 Basic Index Selection Solution

”The complexity of the view- and index-selection
problem is significant and may result in high total
cost of ownership for database systems.” (Kormilitsin
et al., 2008) In this section, we evaluate our basic so-
lution, cf. Section 3.1. We show the scalability of
our implemented solution, which we later compare to
the chunking approach. We set up the memory limit
with 100 units and assume 100 queries with random
occurrences uniform between 1 and 1 000. To test the
scalability on our machine, we generate data with 50,
100, 150, ..., 1 450, 1 500 index candidates. The out-
come measurements are shown in Figure 4. The total
solve time on the y-axis is a logarithmic scale.

Figure 4 shows the growing total solve time while
the number of indexes rises. With an increasing index

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

34

count, the execution times vary more. Naturally, the
solve time depends on the specific generated data in-
put. In some cases with over 1 000 indexes, the gen-
erated input could not be solved with our setup in a
meaningful time. Note that the possible combinations
of the index selection problem grows exponentially.
In order to limit the number of index candidates, one
might only consider smaller subsets of a workload’s
queries that are responsible for the majority of the
workload costs.

5.4 Index Chunking

To tackle the exponential growing number of admis-
sible index combinations, we divide the problem into
chunks, find the best indexes of each chunk, and then
find the best index of the winners of all chunks, cf.
Section 3.2. Compared to the basic index selection
solution, problems with much more indexes can be
solved with chunking. Figure 5 shows the total solve
time with chunking in orange and without chunking
in blue. The other parameters were fixed (see previ-
ous Section 5.3). The orange dots of the chunking
approach show a linear relationship between an in-
dex count of 500 to 2 500. In the beginning, the total
solve time of the chunking curve has a higher gradi-
ent. The overhead introduced by chunking to split the
indexes into chunks has not always a positive impact
on the total execution time of our linear program. The
chunking solution has a lower scattering than the ba-
sic solution. In each execution, some chunks could
be solved faster than the mean and some other chunks
need more time. The long and short solve times of
single chunks balance each other and chunking leads
to lower variations.

As described in Section 3.2, the heuristic chunk-
ing approach might cause the final solution not to be
an optimal global solution of the initial problem. In
this context, Table 4 shows the total cost growth of
the found solution compared to the optimal solution.
The lower the chunk count, the higher the mean and
the maximum growth. With a lower chunk count, the
possibility that an index of the optimal solution is not
a winner of the related chunk is higher. The more
chunks, the more indexes get on to the final round.

Table 4: Total costs growth with different numbers of
chunks compared to the optimal solution in percent (%).

Chunks Mean growth Max growth

5 0.49 % 0.92 %
10 0.34 % 0.65 %
20 0.20 % 0.65 %
50 0.07 % 0.38 %

Figure 5: Execution times in seconds of basic solutions and
with different numbers of chunks (lower is better).

Chunking reduces the total solve time and fewer
outliers with very long execution times occur. The
degradation of the calculated solution is surprisingly
low. We observe that the total workload costs growth
is consistently lower than 1%.

5.5 Multi-index Configuration

In this section, we evaluate the potential solve time
overhead, which might get introduced by the multi-
index configuration extension, see Section 3.3. There-
fore, we compare the solve times of the extension with
the basic approach. For both implementations, we
tested multiple settings. The number of indexes de-
fines a setting and is one of 10, 50, 100, 200, 500, or
1 000. Independent of the setting, we assume a mem-
ory budget of 100 units and 100 queries. Figure 6
shows the solve time for both settings in comparison.

Figure 6: Execution times in seconds of the basic approach
and the multi-index configuration extension in comparison.

Solver-based Approaches for Robust Multi-index Selection Problems with Stochastic Workloads and Reconfiguration Costs

35

Overall, as expected, the multi-index configura-
tion extension has an execution time overhead com-
pared to the basic solution, which assigns at most only
one index to each query. However, the additional re-
quired solve time is acceptable. Further, the relative
solution time overhead decreases with an increasing
number of indexes. One explanation for this effect
could be that increasing the number of index candi-
dates also increases the number of dominated indexes
excluded by the (pre)solver.

5.6 Stochastic Workloads

In enterprise applications, we have different use cases
which produce different workloads for database sys-
tems. Each use case has different requirements. The
output of some workloads is needed within a defined
time, so we could set a maximum execution time as
upper barrier for a workload. In other use cases, the
different workload costs should be robust without ma-
jor deviations. Therefore, we minimize the variance
between the costs of different workloads.

Furthermore, in other use cases, we do not need
robust workloads and the minimization of the total
costs is the best decision for database systems. In this
section, we compare different objective functions.

The next evaluated index selection problem has
I = 20 indexes, Q = 20 queries, M = 30 available
memory, and four different workloads. The W = 4
different workloads occur with different workload in-
tensities, cf. kw, see Section 3.4:

95×W1 19×W2 45×W3 7×W4 (19)

We solve this problem with the following differ-
ent optimization criteria: minimize the expected total
costs T , cf. (9), minimize the pure worst case cost L
(a −→ ∞), cf. (11), and minimize the pure variance V
(b −→ ∞), cf. (13). Note, we use these special case cri-
teria of the proposed mean-risk approaches to empha-
size their impact. For the 4th criterion, we exemplary
combine the three different criteria via the following
weighting factors, cp. (9), (11), (13):

minimize
uq,i∈{0,1}Q×(I+1),L∈R

100 ·T +100 ·L+1 ·V (20)

Figure 7 shows the different costs per workload
for the four objectives mentioned before. Each bar
shows the costs of one workload.

When minimizing the worst-case costs (top left
in Figure 7), the costs per workload vary between
129 017 and 154 602. When minimizing the total
costs (bottom left), the costs for each workload range

Figure 7: Workload costs with different objectives: (i) mini-
mize worst case costs L via a−→∞ (upper left), (ii) minimize
variance V via b −→ ∞ (upper right), (iii) minimize expected
total costs T (lower left), and (iv) the combined approach
(lower right).

from 102 907 to 162 762. The deviation between
the different workloads are higher than the workload
costs optimized with an upper barrier. The minimiza-
tion of the variance objective (top right) harmonizes
the four single workload costs. Each bar seems to
have the same height. The cost per workload is be-
tween 236 571 and 236 611. Thus, the costs for each
workload are significantly higher than any other ap-
proach. The combination objective (bottom right)
shows a much smaller deviation than the the mini-
mization of the worst case and the total costs. With
this objective, the costs per workload are between
166 480 and 172 912.

An index selection calculated with the variance
minimization strategy leads to a fair workload cost
distribution. However, this extreme approach leads to
overall high workload costs as the mean is not part
of the objective. The problem is that workloads with
lower costs than the mean workload costs worsen
the value of the objective function. Naturally, the
quadratic objective of the BQP adds some com-
plexity. The total solve time of the pure variance
optimization was comparably large (248 s). However,
the solve time for the combined objective was only
0.78 s. Clearly, the total expected costs model and the
worst case costs model had the fastest solution times.

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

36

Table 5: Results of the four different objectives regarding
the following performance metrics: worst workload costs,
variance of the workload costs, and (expected) total costs.

Objective Worst-
case costs

Cost
variance

Total exp.
costs

worst case ∼155 k ∼8.5 G 22.4 M
variance ∼237 k 6 188 39.3 M
total exp. costs ∼163 k ∼35 G 19.5 M
combination ∼173 k ∼0.3 G 28.0 M

Table 5 shows the metrics of each optimization ap-
proach. The optimal total costs are 19 539 400. The
worst-case optimization leads to a growth of about
14.5 % compared to the total cost optimization. The
variance optimization has by far the highest total
costs, but the variance is the smallest. Compared to
the optimized variance, the worst-case optimization
has a variance that is six orders of magnitude worse,
and the total cost optimization has a variance that is
seven orders of magnitude worse. If we optimize the
worst case, we get W4 as the worst workload with
costs of 154 602. With the total costs optimization,
the worst case is only 5 % higher. The combination
is also only 11 % higher than the minimal worst case,
but the variance approach’s worst case is 53 % higher.

The variance solution is a fair solution for all
workloads. However, for database systems, it can be
more important to execute the workloads as fast as
possible. Ultimately, it is up to the decision maker
to decide on an appropriate objective that meets the
desired outcomes.

Some workloads should be executed in a specific
time frame because a user waits on the results. In this
case, an optimization of the worst case is helpful. An-
other opportunity is to add a constraint for this single
workload to tweak the total cost optimization. How-
ever, the application needs to specify this requirement
and inform the database system in some way. If it
is not important that some workloads should be exe-
cuted within a maximum cost range, the total cost op-
timization strategy is the best one, because it reduces
the total cost of ownership of database systems.

The worst-case optimization and the total costs
optimization have similar performance indicators.
Both have their specific advantages and are good op-
timization strategies for the index selection problem.

6 FUTURE WORK

In Section 3.4, we presented alternative objectives
that minimize an upper bound to optimize the exe-
cution time of the worst workload or use the mean-

variance criterion to achieve robust execution times
with small deviations. Note that optimizing the mean-
variance criterion also penalizes execution times that
are better than the average execution time. How-
ever, short execution times are desirable from a
database perspective. Alternatively, by using mean-
semivariance criteria, one could only penalize the ex-
ecution times that are higher than the average execu-
tion time. As further risk-averse objectives also utility
functions could be used, where the associated non-
linear objectives could be resolved using piece-wise
linear approximations.

In this work, the created models were evaluated
using randomly generated synthetic data. In further
experiments, the models could also be evaluated with
data from real database scenarios to obtain more in-
formation on the quality and practical applicability of
the proposed models. For this purpose, our imple-
mentation could be executed for real database bench-
mark workloads (e.g., data of the TPC-H or TPC-DS
benchmark). A database that supports what-if opti-
mizer calls should be used to anticipate performance
improvements of the potential use of individual in-
dexes and to obtain the required model input data (i.e.,
cost values and memory consumption).

Further evaluations might further investigate the
scalability of the chunking approach as well as the
impact of (i) the assignment of similar indexes to the
same chunk and (ii) a chunk’s storage capacity, which
allows to increase or decrease the number of indexes
to be excluded, and in turn, affects both the overall so-
lution quality and the runtime. The results should al-
low to recommend storage capacities and chunk sizes
for given workloads.

Finally, our different proposed concepts and ap-
proaches should be not only compared to classical
(risk-neutral) index selection approaches (for deter-
ministic workloads) but particularly to approaches
that are also capable of addressing risk-averse objec-
tives in the presence of multiple potential future work-
loads as well as transition costs. As such evaluations
require the simulation and evaluation of more com-
plex stochastic dynamic workload realizations, we
leave such experiments to future work.

7 CONCLUSION

In this work, we considered different variants of index
selection problems and proposed solver-based solu-
tion concepts. In the basic model, we take one work-
load consisting of a set of queries and their frequen-
cies into account and decide which subset of indexes
to select under a given budget constraint.

Solver-based Approaches for Robust Multi-index Selection Problems with Stochastic Workloads and Reconfiguration Costs

37

In the extended chunking approach, we divided
the overall index selection problem into multiple
smaller sub-problems, which are solved individually.
The selected indexes of these sub-problems are then
put together and the best selection among these can-
didates will be determined in a final step. We showed
that, compared to the optimal solution of the basic
problem, this heuristic performs near-optimal and al-
lows to significantly reduce the overall solution time.

For the multi-index configuration extension, the
granularity of the possible options was changed from
the index level to the index configuration level, where
each configuration represents a combination of in-
dexes (e.g., a maximum of two). We showed that our
formulation is viable for standard solvers. The results
show that the execution time overhead is substantial
in small scenarios but decreases with an increasing
number of indexes.

The extension to stochastic workloads takes mul-
tiple workload scenarios into account. Such different
scenarios may be derived from historical data within
specific time spans. In this framework, different ob-
jectives were used to minimize: (1) the total workload
costs, (2) the worst-case workload costs, (3) a mean-
variance criterion, and (4) a weighted combination of
the first three objectives. Our results show that the tar-
geted effect to avoid bad and uneven performances is
achieved.

In the fourth extension with transition costs, we
addressed the additional challenge to create and re-
move indexes in the presence of an existing configu-
ration while balancing performance and minimal re-
quired reconfiguration costs. In our approach, we
used an extended penalty-based objective to endog-
enize creation and removal costs. We find that in-
volving transition costs makes it possible to iden-
tify minimal-invasive reconfigurations of index selec-
tions, which helps to manage them over time, e.g.,
under changing workloads.

Finally, our concepts, i.e., chunking, multi-index
configurations, stochastic workloads, and transition
costs, are designed such that they can be combined.

REFERENCES

Casey, R. G. (1972). Allocation of copies of a file in an
information network. In AFIPS, pages 617–625.

Chaudhuri, S. and Narasayya, V. (2020). Anytime Algo-
rithm of Database Tuning Advisor for Microsoft SQL
Server. https://www.microsoft.com/en-us/research/
publication/anytime-algorithm-of-database-tuning-\
advisor-for-microsoft-sql-server, visited 2020-06-04.

Chaudhuri, S. and Narasayya, V. R. (1997). An efficient

cost-driven index selection tool for Microsoft SQL
Server. In Proc. VLDB’97, pages 146–155.

Dash, D., Polyzotis, N., and Ailamaki, A. (2011). CoPhy:
A scalable, portable, and interactive index advisor for
large workloads. PVLDB, 4(6):362–372.

Finkelstein, S. J., Schkolnick, M., and Tiberio, P. (1988).
Physical database design for relational databases.
ACM Trans. Database Syst., 13(1):91–128.

Fourer, R., Gay, D., and Kernighan, B. (2003). AMPL: A
Modeling Language for Mathematical Programming.
Thomson/Brooks/Cole.

Kormilitsin, M., Chirkova, R., Fathi, Y., and Stallmann,
M. (2008). View and index selection for query-
performance improvement: Algorithms, heuristics
and complexity. In CIKM08: Proceedings of the 17th
ACM conference on Information and knowledge man-
agement, volume 2, pages 1329–1330.

Kossmann, J., Halfpap, S., Jankrift, M., and Schlosser, R.
(2020). Magic mirror in my hand, which is the best in
the land? An experimental evaluation of index selec-
tion algorithms. In PVLDB, volume 13, pages 2382–
2395.

Kossmann, J., Kastius, A., and Schlosser, R. (2022). Swirl:
Selection of workload-aware indexes using reinforce-
ment learning. In working paper.

Kossmann, J. and Schlosser, R. (2020). Self-driving
database systems: A conceptual approach. Distributed
and Parallel Databases, 38(4):795–817.

Papadomanolakis, S., Dash, D., and Ailamaki, A. (2007).
Efficient use of the query optimizer for automated
database design. In Proc. VLDB 2007, pages 1093–
1104.

Pavlo, A. et al. (2017). Self-driving database management
systems. In CIDR 2017.

Schlosser, R. and Halfpap, S. (2020). A decomposition
approach for risk-averse index selection. In SSDBM,
pages 16:1–16:4.

Schlosser, R., Kossmann, J., and Boissier, M. (2019). Effi-
cient scalable multi-attribute index selection using re-
cursive strategies. In ICDE, pages 1238–1249.

Schnaitter, K., Polyzotis, N., and Getoor, L. (2009). In-
dex interactions in physical design tuning: Modeling,
analysis, and applications. In Proc. VLDB’09, vol-
ume 2, pages 1234–1245.

Sharma, A., Schuhknecht, F. M., and Dittrich, J. (2018).
The case for automatic database administration using
deep reinforcement learning. CoRR, abs/1801.05643.

Valentin, G., Zuliani, M., Zilio, D. C., Lohman, G. M., and
Skelley, A. (2000). DB2 Advisor: An optimizer smart
enough to recommend its own indexes. In Proc. ICDE,
pages 101–110.

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

38

APPENDIX

Table 6: List of parameters and variables.

PARAMETERS
C number of index configurations
I number of indexes
M index memory budget
Q number of queries
W number of workloads
a maximum workload costs penalty factor
b variance penalty factor

dc,i binary parameter whether configuration
c = 0, ...,C contains the indexes i = 1, ..., I

fq frequency of query q = 1, ...,Q
fw,q frequency of query q = 1, ...,Q

in workload w = 1, ...,W
kw intensity of workload w = 1, ...,W
mi memory consumption of index i = 1, ..., I
si speedup of index i = 1, ..., I in contrast

to no index being used
tq,i execution time of query q = 1, ...,Q

using index i = 0, ..., I; i = 0 indicates that
no index is used

mki creation costs of the index i = 1, ..., I
rmi removal costs of the index i = 1, ..., I

VARIABLES
T total expected execution time of all workloads
L maximum workload costs (worst case)
V variance of execution times

MK total creation costs
RM total removal costs
gw execution time of a workload w = 1, ...,W
uq,c binary variable whether configuration

c = 0, ..., I is used for query q = 1, ...,Q;
c = 0 represents an empty configuration
with no indexes

uq,i binary variable whether index i = 0, ..., I
is used for query q = 1, ...,Q; i = 0 indicates
that no index is used by query q

vi binary variable whether index i = 1, ..., I
is used for at least one query

vi∗ binary variable whether index i = 0, ..., I
was used previously used for at least
one query and thus is already created

Solver-based Approaches for Robust Multi-index Selection Problems with Stochastic Workloads and Reconfiguration Costs

39

