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Abstract: The concepts of non-reducible descriptor (NRD) and typical testor (TT) have been used for solving quite
different pattern recognition problems, the former related to feature selection problems and the latter related to
supervised classification. Both TT and NRD concepts are based on the idea of discriminating objects belonging
to different classes. In this paper, we theoretically examine the connection between these two concepts. Then,
as an example of the usefulness of our study, we present how the algorithms for computing typical testors can
be used for computing non-reducible descriptors. We also discuss several future research directions motivated
by this work.

1 INTRODUCTION

In pattern recognition, both feature selection and pat-
tern discovery provide useful information for object
classification. Although they are quite different prob-
lems they often deal with similar topics and involve
the same data properties into their formalism. An
example of this occurs with the concepts of typical
testors (TTs) and non-reducible descriptors (NRDs).

Some supervised pattern recognition applications
deal with binary features like in medicine, namely,
presence or absence of a given symptom. Hence,
the information needed for pattern classification is
generally included in various combinations of binary
features. The mathematical model that uses binary
features for describing patterns is based on learning
Boolean formulas. An NRD is a descriptor with min-
imal length and hence, different NRDs for a given
object may have different lengths. The length of the
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NRD is obtained during the process of its construc-
tion. General approach to feature selection based on
mutual information is described in (Kwak and Choi,
2002).

Typical testors derive from the test theory
(Cheguis and Yablonskii, 1955; Chikalov et al.,
2012). A typical testor is a feature subset where fea-
tures are jointly sufficient and each feature is nec-
essary to discriminte among object descriptions be-
longing to different classes. Thus, typical testors are
commonly used for feature selection, see, e.g., (Pons-
Porrata et al., 2007). On the other hand, a non-
reducible descriptor (Valev, 2014; Valev and Sankur,
2004) for a certain object in a particular class is a se-
quence of values of its features that makes this ob-
ject different from the descriptions of objects in the
remaining classes. Thus, descriptors refer to the in-
formation needed for classifying an object, which
may be contained in some combinations of several
of its features. The assumption that these concepts
are closely related is based on the fact that both con-
cepts focus in discriminating objects belonging to dif-
ferent classes. The complexity of computing all typ-
ical testors of a training matrix grows exponentially
with respect to the number of features. Several meth-
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ods that speed up the calculation of the set of all
typical testors have been developed, see, e.g., (Lias-
Rodríguez and Pons-Porrata, 2009).

In this paper, we theoretically examine the con-
nection between these two concepts. Additionally,
as a result of this study, we introduce a way for tak-
ing advantage of the algorithms for computing typical
testors to compute non-reducible descriptors.

The rest of the paper is organized as follows. In
Section 2, we provide the theoretical foundations of
typical testors and non-reducible descriptors. Sec-
tion 3 presents the connection between both concepts
as well as an example of its use for applying algo-
rithms for computing typical testors, but for comput-
ing non-reducible descriptors. An illustrative exam-
ple for showing the usefulness of our study is pre-
sented in Section 4. Finally, in Section 5 some con-
cluding remarks are discussed.

2 THEORETICAL
FOUNDATIONS

Let us consider a supervised pattern recognition prob-
lem. We denote by U the set of all objects, U is the
union of a finite number of subsets C1, C2, . . . , Cr
which are called classes. We assume that these classes
are disjoint.

Each object Qt ∈U is described in terms of n fea-
tures R={x1,x2,..., xn} as an n-tuple (x1(Qt),x2(Qt),
... , xn(Qt)). However, the known information corre-
sponds only to a reduced subset, T S ⊆ U called the
training set. We assume that |T S| = m; i. e., there
are m objects in T S, which are distributed into the r
classes; it means that all classes are represented by at
least one object in the training set. We will denote by
mk the number of objects in T S belonging to the class
Ck. Thus, m1+m2+ ...+mr = m. This information is
organized in a matrix called training matrix, denoted
by T Mm,n,r. When this does not generate confusion,
we will use only T M.

For the purposes of this work, we will restrict the
problem to the case in which objects are described by
only binary features. A typical example of a pattern
recognition problem with binary features would be a
medical diagnosis based on the presence or absence
of several symptoms. Table 1 shows an example of
a training matrix with six objects, seven features and
two classes. The last column contains the class each
object belongs to.

The supervised pattern recognition problem is for-
mulated as follows. Using the training matrix and
the description of an unseen object Q ∈ U\T S, the
problem consists in assigning Q to one of the classes

Table 1: An example of T M.

T M6,7,2 =



x1 x2 x3 x4 x5 x6 x7 class
Q1 0 0 1 1 0 1 0 C1
Q2 1 0 0 0 0 1 0 C1
Q3 0 1 0 0 1 0 0 C1
Q4 0 0 0 1 0 1 1 C1
Q5 0 0 1 1 1 0 0 C2
Q6 1 0 1 1 0 0 1 C2


C1, ...Cr. The descriptions of objects in T M are as-
sumed to be in terms of Boolean features. Thus, for
the object Q each entry with “1” is equivalent to the
presence of the respective binary feature, while a “0”
means that the respective feature is absent, this can
be expressed as the negation of the respective binary
feature.

2.1 Typical Testors

The concept of testor was originally formulated by
Cheguis and Yablonskii (Cheguis and Yablonskii,
1955), after that, Zhuravlev (Dmitriev et al., 1966)
introduced this concept into the framework of pattern
recognition theory. And then the concept has been ex-
tended in several directions (Lazo-Cortes et al., 2001).
Below, we formulate the definitions of testor and typ-
ical testor.

Definition 1. T ⊆ R is a testor for T M if in the sub-
matrix of the training matrix T M, containing only
columns associated to features in T , all rows corre-
sponding to objects belonging to different classes are
different.

It means that if T is a testor, and in the correspond-
ing sub-matrix of T M there are two equal rows, they
are sub-descriptions of two objects that belong to the
same class. Among testors, there are some of them
where all their features are essential for discriminat-
ing objects from different classes. Such testors are
called typical testors and are defined as follows.

Definition 2. If T ⊆ R is a testor such that none of
its proper subsets is a testor, then we call T a typical
testor.

These definitions mean that features belonging to
a testor are jointly sufficient to discriminate between
any pair of objects belonging to different classes. If
a testor is typical, each feature is individually neces-
sary.

For the training matrix in Table 1, the following
subsets of features {x1,x3,x6}, {x3,x5,x7}, {x3,x6}
are examples of testors. It is not difficult to observe
that if we reduce this training matrix considering only
the columns corresponding to one of these sets of fea-
tures, none of the first four rows (corresponding to
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class C1) is confused with the last two rows (corre-
sponding to class C2). Since {x3,x6} is a subset of
{x1,x3,x6}, then {x1,x3,x6} is not a typical testor, but
{x3,x6} is a typical testor. We can easily corrobo-
rate it, since if we eliminate x3 from {x3, x6} then
the rows 3 and 5 in Table 1 are indistinguishable (the
same happens with rows 3 and 6); if we eliminate x6
from {x3, x6}, the rows 1 and 5 in Table 1 are also
indistinguishable (the same happens with rows 1 and
6). For Table 1, the whole set of typical testors is
{{x1,x2,x5,x7} , {x1,x3,x5} , {x1,x4,x5}, {x3,x5,x7},
{x2,x6} , {x3,x6} , {x4,x6}}.

Several algorithms for computing all typical
testors have been proposed, for example (Lias-
Rodríguez and Pons-Porrata, 2009; Piza-Davila et al.,
2018; Sanchez-Díaz and Lazo-Cortés, 2007).

2.2 Non-reducible Descriptors

The concept of non-reducible descriptor was intro-
duced in (Djukova, 1989). This concept has been ex-
tended in several directions (Valev and Radeva, 1996;
Valev and Sankur, 2004).

Below, we introduce the concept of non-reducible
descriptor using the notations previously presented.

Definition 3. Let Qt = (x1(Qt), x2(Qt), ... , xn(Qt))
be an object in T S. The subsequence (x j1(Qt),
x j2(Qt), ... , x jd (Qt)), jd ≤ n, is called a descrip-
tor of object Qt , if there does not exist any object in
T S, belonging to a class different from the class of Qt ,
with the same subsequence of values.

Definition 4. A descriptor is called a Non-Reducible
Descriptor (NRD) if none of its proper sub-sequences
is a descriptor.

Definition 4 means that if an arbitrarily chosen
feature is removed from a non-reducible descriptor,
then this subsequence loses its property of descriptor.
Therefore, an NRD is a descriptor of minimal length.

Being T ⊆ R a subset of features, Q|T denotes the
partial description of Q considering only features be-
longing to T . For simplicity, in the representation of
Q|T as an n-tuple we will use a dot “.” in the respec-
tive entry of the n-tuple for indicating that the corre-
sponding feature is not being taken into account.

In Table 1, if we consider, for example, the
first object Q1, then (0,0, ., .,0, .,0) (i.e. x1 = x2 =
x5 = x7 = 0) is a descriptor since the object Q1 be-
longs to class C1 and that combination does not ap-
pear in any object of class C2, however this descrip-
tor does not fulfil being a non-reducible descriptor,
since (0, ., ., .,0, ., .) (x1 = x5 = 0) is also a descrip-
tor of the object Q1, and in this case, the descrip-
tor (0, ., ., .,0, ., .) is non-reducible. The descriptor

(., ., ., ., .,1, .) is also a non-reducible descriptor for the
object Q1 of Table 1, since x6 6= 1 for all objects of
class C2.

Algorithms for construction of NRDs based on the
dissimilarity matrix concept following a combinato-
rial approach have been proposed in (Valev, 2014) and
(Valev and Sankur, 2004).

3 OUR THEORETICAL STUDY

A very important aspect to highlight in any analy-
sis that involves typical testors and non-reducible de-
scriptors, is that the former are relative to a training
sample as a whole, that is, all classes are considered
together. Notice that a testor is a combination of fea-
tures that allows differentiating any pair of objects
that belong to different classes, and a testor is typ-
ical if all its features are essential for this purpose;
however, when we refer to a non-reducible descrip-
tor, we are referring specifically to an object in the
training set, a descriptor is a combination of values
of certain features, which characterizes that specific
object in the training set and distinguishes this object
from all the objects belonging to the other classes.

With this perspective, let us analyze the connec-
tion between testors and descriptors.

Proposition 1. Let T M be a training matrix. If T ⊆ R
is a testor for T M then each combination of values of
the features in T is a descriptor for the object in which
this combination appears.

Corollary 1. Let T M be a training matrix. If T ⊆ R
is a typical testor in T M then each combination of
values of the features in T is a descriptor (not neces-
sarily non-reducible) for the object in which the com-
bination appears.

We can see, by using Table 1, that a combination
of values associated with a typical testor does not nec-
essarily become a non-reducible descriptor.

For example, {x2,x6} is a typical testor for T M.
Then (.,0, ., ., .,1, .) is a descriptor for Q1, Q2 and
Q4, but this descriptor is not an NRD because the de-
scriptor (., ., ., ., .,1, .) is also a descriptor for Q1,Q2
and Q4. The descriptor (.,1, ., ., .,0, .) is a descriptor
for Q3 but it is not an NRD, because the descriptor
(.,1, ., ., ., ., .) is also a descriptor for Q3. On the other
hand, the descriptor (.,0, ., ., .,0, .) is an NRD for Q5
and Q6.

Let us now consider an object in the training ma-
trix T M that appears in Table 1, for example Q1 be-
longing to class C1. We build a new two class (C′1, C′2)
training matrix T Mm−mk+1,n,2 from T M by consider-
ing Q1 as the only object in the class C′1 of the new
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Table 2: Training matrix corresponding to object Q1 regard-
ing T M in Table 1.

T̃ M(Q1) =


x1 x2 x3 x4 x5 x6 x7 c
0 0 1 1 0 1 0 C′1
0 0 1 1 1 0 0 C′2
1 0 1 1 0 0 1 C′2


T̃ M(Q1) = T M3,7,2

training matrix, while those objects belonging to the
other classes in T M, different from C1, will belong to
the class C′2 in the new training matrix. From Table
1, by applying the procedure above described for Q1,
we get the training matrix shown in Table 2.

Let us denote the training matrix derived from this
procedure, for object Qi as T̃ M(Qi).

Proposition 2. Let T = {x j1 ,x j2 , ...,x jd} be a typi-
cal testor in T̃ M(Qi), then the subsequence (x j1(Qi),
x j2(Qi),..., x jd (Qi)) is a non-reducible descriptor for
Qi.

Proposition 3. Let the subsequence (x j1(Qi),
x j2(Qi), ..., x jd (Qi)) be a non-reducible descriptor
for Qi, then T = {x j1 , x j2 , ..., x jd} is a typical testor
in T̃ M(Qi).

Corollary 2. Let T M be a training matrix and let
NRD(Qi) be the set of all non-reducible descrip-
tors for Qi, then NRD(Qi) = {(x j1(Qi), x j2(Qi), ...
,x jd (Qi)) such that {x j1 , x j2 , ... , x jd} is a typical
testor in T̃ M(Qi)}.

Corollary 2 allows us to define a strategy for com-
puting all NRDs for a T M by computing typical
testors as follows:

For each object Qi of T M:
Obtain T̃ M(Qi).
Compute the set Ψ∗(T̃ M(Qi) of all typical

testors in the matrix T̃ M(Qi).
For each typical testor T =

{x j1 ,x j2 , ...,x jd} ∈Ψ∗(T̃ M(Qi).
Generate the subsequence (x j1(Qi),

x j2(Qi), ..., x jd (Qi)).
Save the subsequence as an NRD for Qi.

4 ILLUSTRATIVE EXAMPLE

In order to illustrate our proposed strategy for com-
puting all NRDs by the algorithm for computing typ-
ical testors let us consider the problem of Arabic nu-
merals recognition as discussed in (Valev, 9962). In
this example, each digit is represented by a 7-segment
display as shown in Figure 1. Each display segment
is a feature useful for describing a digit. The Arabic

numerals be represented as in Figure 2. Considering
the features ordered from x1 to x7 as in Figure 1, we
obtain the training matrix shown in Table 3. Notice
that in T M10,7,10 each row represents a class.

Figure 1: Features describing Arabic numerals.

Figure 2: The Arabic numerals represented by a 7-segment
display.

Table 3: Training matrix for the Arabic numerals in Fig.2.

T M10,7,10 =



x1 x2 x3 x4 x5 x6 x7 class
1 1 1 0 1 1 1 0
0 0 1 0 0 1 0 1
1 0 1 1 1 0 1 2
1 0 1 1 0 1 1 3
0 1 1 1 0 1 0 4
1 1 0 1 0 1 1 5
1 1 0 1 1 1 1 6
1 0 1 0 0 1 0 7
1 1 1 1 1 1 1 8
1 1 1 1 0 1 1 9


In the first column of Table 4 appears each Ara-

bic numeral, the second column shows all the non-
reducible descriptors of these Arabic numerals (the
non-reducible descriptors that appear in this column
are those reported in [15]), while in the third column
the corresponding typical testors are shown. For ex-
ample, if we look at the third row, we notice that there
are two typical testors, namely, {x6} and {x2,x5};
this means that if we take the values corresponding
to these features for the Arabic numeral “2”, that is,
x6 = 0, or x2 = 0 and x5 = 1, we obtain the two non-
reducible descriptors corresponding to the Arabic nu-
meral “2”, as it can be seen in the second column of
Table 4. In Figure 2, it can be seen that the Arabic nu-
meral “2” is the only digit that does not have the lower
right vertical segment. Likewise, the Arabic numeral
“2” is the only digit for which the upper left vertical
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Table 4: Non-reducible descriptors and typical testors for Arabic numerals.

Non-reducible descriptors Corresponding features

0 {.,1, .,0, ., ., .},{., ., .,0,1, ., .},{., ., .,0, ., .,1} {x2,x4},{x4,x5},{x4,x7}
1 {0, ., .,0, ., ., .},{0,0, ., ., ., ., .} {x1,x4},{x1,x2}
2 {., ., ., ., .,0, .},{.,0, ., .,1, ., .} {x6},{x2,x5}
3 {.,0, ., ., .,1,1},{.,0, .,1,0, ., .},{.,0, .,1, .,1, .},{.,0, ., .,0, .,1} {x2,x6,x7},{x2,x4,x5},{x2,x4,x6},{x2,x5,x7}
4 {0,1, ., ., ., ., .},{0, ., .,1, ., ., .},{.,1, ., ., ., .,1},{., ., .,1, ., .,0} {x1,x2},{x1,x4},{x2,x7},{x4,x7}
5 {., .,0, .,0, ., .} {x3,x5}
6 {., .,0, .,1, ., .} {x3,x5}
7 {1,0, .,0, ., ., .},{1, ., .,0,0, ., .},{1, ., ., ., ., .,0} {x1,x2,x4},{x1,x4,x5},{x1,x7}
8 {.,1,1,1,1, ., .},{., .,1,1,1,1, .} {x2,x3,x4,x5}, {x3,x4,x5,x6}
9 {1,1,1, .,0, ., .},{.,1,1, .,0, .,1} {x1,x2,x3,x5}, {x2,x3,x5,x7}

segment is omitted and the lower left vertical segment
is present.

The only typical testor for Table 3 is
{x1,x2,x3,x4,x5}. From the training matrix shown
in Table 3, we build the training matrices T̃ M(0),
T̃ M(1),..., T̃ M(9) accordingly to the strategy for
computing all NRDs explained above in Section 3.
Thus, we have ten two-class problems, one for each
digit. For each matrix, typical testors were computed
by using the YYC algorithm (Piza-Davila et al.,
2018), here it is convenient to remember that any
other algorithm for computing typical testors could be
used. All calculations were carried out on an Intel(R)
Core(TM) Duo CPU T5800 @ 2.00 GHz 64-bit
system with 4 GB of RAM running on Windows 10.
For each matrix less than one second was required
for computing all typical testors. This illustrative
example shows that our proposed strategy based on
typical Testors for computing NDRs, introduced in
section 3, obtains the same NRDs reported in (Valev,
2014).

We also derive NRDs for problem with faulty dis-
plays, where we distinguish Arabic numerals from
non-numeral patterns. The data matrix is given in Ta-
ble 5 and the corresponding NRDs and features in Ta-
ble 6. These calculations were carried out on an In-
tel(R) Core(TM) i7-3630QM CPU @ 2.40 GHz 64-
bit system with 8 GB of RAM running on Windows
10.

5 CONCLUSIONS

The main purpose of the research reported in this pa-
per is presenting a theoretical study of the connec-
tion between the concepts of typical testor and non-
reducible descriptor, which come from two different
problems of pattern recognition.

Table 5: Training matrix for the Arabic numerals in Fig.2
and non-numeral patterns.

T M128,7,2 =



x1 x2 x3 x4 x5 x6 x7 class
1 1 1 0 1 1 1 0
0 0 1 0 0 1 0 1
1 0 1 1 1 0 1 2
1 0 1 1 0 1 1 3
0 1 1 1 0 1 0 4
1 1 0 1 0 1 1 5
1 1 0 1 1 1 1 6
1 0 1 0 0 1 0 7
1 1 1 1 1 1 1 8
1 1 1 1 0 1 1 9
0 0 0 0 0 0 0 non-digit
. . . . . . .
. . . . . . .
1 1 1 1 1 1 0 non-digit


Given a training matrix where the objects are de-

scribed by Boolean features, in this paper, we charac-
terize under what conditions a testor is a descriptor.
Even more, we provide a procedure to build a sub-
matrix of the training matrix that allows characteriz-
ing when a typical testor is a non-reducible descrip-
tor. As an example of the usefulness of the relation
found, we provide a typical-testor-based strategy for
computing all the non-reducible descriptors of a train-
ing matrix. We illustrate the usefulness of the pro-
posed strategy by applying it in the problem of Ara-
bic numerals recognition and we show that the results
obtained by our approach are the same that those pre-
viously reported by applying an algorithm for com-
puting NRDs.

From this study, we conclude that indeed there is
a relation between the concepts of typical testor and
non-reducible descriptor. Moreover, we show that this
relation is useful, in first instance, for taking advan-
tage of typical testor algorithms for computing non-
reducible descriptors. However, our study opens sev-
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Table 6: Non-reducible descriptors and corresponding features for Arabic numerals and non-numerals.

Non-reducible descriptors Corresponding features

0 {1,1,1, .,1,1,1} {x1,x2,x3,x5,x6,x7}
1 {.,0,1,0,0,1,0} {x2,x3,x4,x5,x6,x7}
2 {1,0,1,1,1,0,1} {x1,x2,x3,x4,x5,x6,x7}
3 {1, .,1,1,0,1,1} {x1,x3,x4,x5,x6,x7}
4 {0,1,1,1,0,1,0} {x1,x2,x3,x4,x5,x6,x7}
5 {1,1, .,1, .,1,1} {x1,x2,x4,x6,x7}
6 {1,1, .,1, .,1,1} {x1,x2,x4,x6,x7}
7 {.,0,1,0,0,1,0} {x2,x3,x4,x5,x6,x7}
8 {1,1,1, .,1,1,1},{1,1, .,1, .,1,1} {x1,x2,x3,x5,x6,x7},{x1,x2,x4,x6,x7}
9 {1,1, .,1, .,1,1},{1, .,1,1,0,1,1} {x1,x2,x4,x6,x7},{x1,x3,x4,x5,x6,x7}

non-digit each non-digit string is NRD itself {x1,x2,x3,x4,x5,x6,x7}

eral other study possibilities to research.
Among open problems we can mention, for ex-

ample, comparison of computational cost of the algo-
rithms for computing NDRs with the algorithm pro-
posed by us for computing NRDs by means of all typ-
ical testors. Since any algorithm for computing typ-
ical testors can be used in our algorithm for comput-
ing NDRs, determining the best one in terms of effi-
ciency is another interesting future work. The design
of algorithms for computing all the NRDs of a train-
ing matrix with a new perspective based on the con-
cept of typical testor is another interesting problem
worth considering. Another research problem that
deserves close scrutiny is an extension of the results
presented in this paper to non-Boolean training matri-
ces or other types of descriptors, e.g., visual descrip-
tors (Ohm et al., 2000). Finally, we conclude that all
research directions mentioned above and some oth-
ers, can lead to interesting theoretical developments
in which both concepts, in a synergic manner, could
be applied to solve practical pattern recognition prob-
lems.
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