
Deep-Learning-based Fuzzy Symbolic Processing with Agents  
Capable of Knowledge Communication 

Hiroshi Honda a and Masafumi Hagiwara b 
Faculty of Science and Technology, Keio University, Yokohama, Japan 

Keywords: Deep Learning, Explainable Artificial Intelligence, Fuzzy, Prolog, Reinforcement Learning,  
Symbolic Processing. 

Abstract: The authors propose methods for reproducing deep learning models using a symbolic representation from 
learned deep reinforcement learning models and building agents capable of knowledge communication with 
humans. It is difficult for humans to understand the behaviour of agents using deep reinforcement learning, 
and to inform agents of the state of the environment and to receive actions from the agents. In this paper, 
fuzzified states of the environment and agent actions are represented by rules of first-order predicate logic, 
and models using symbolic representation are generated by learning such rules. By replacing deep reinforce-
ment learning models with models using a symbolic representation, it is possible for humans to inform the 
state of the environment and add rules to the agents. As a result of the experiments, the authors can reproduce 
trained deep reinforcement learning models with high match rate for two types of reinforcement learning 
simulation environments. Using reproduced models, the authors build agents that can communicate with hu-
mans that have yet be realized thus far. This proposed method is the first case of building agents capable of 
knowledge communication with humans using trained reinforcement learning models.  

1 INTRODUCTION 

In recent years, research on explainable artificial 
intelligence (XAI) (Lipton, 2018; Montavon et al., 
2018; Alejandro et al., 2020) modeled by white-box 
machine learning for interpretation by humans has 
been actively conducted. XAI research is also being 
conducted with a particular focus on reinforcement 
learning (Sequeira and Gervasio, 2019; Fukuchi et al., 
2017; Lee, 2019; Waa et al., 2018; Madumal et al., 
2019; Coppens et al., 2019). 

However, research on symbolic processing with 
neural networks (Cohen, 2016; Minervini et al., 2018; 
Rocktaschel and Riedel, 2017; Serani and d'Avila 
Garcez, 2016; Sourek et al., 2015; Minervini et al., 
2020; Dong et al., 2019; Cingillioglu and Russo, 
2018; Honda and Hagiwara, 2019) has been actively 
conducted. Symbolic processing has the advantage of 
being easy for humans to understand because it uses 
symbols for knowledge representation.It has become 
possible to use a large amount of data on the Web, 
and with the improved learning ability of neural 

 
a  https://orcid.org/0000-0002-9171-5663 
b  https://orcid.org/0000-0002-6171-0618 

networks through deep learning, research on 
symbolic processing with neural networks. 

It is difficult for humans to understand the 
behaviour of agents using deep reinforcement 
learning, and to inform agents of the state of the 
environment and to receive actions from the agents. 
Therefore, in this paper, we propose a method for 
reproducing deep learning models using a symbolic 
representation from trained reinforcement learning 
models and to build agents capable of knowledge 
communication with humans. Using symbolic 
representations for knowledge representation makes 
it easier for humans to understand models, and 
humans can also write rules. It is difficult for humans 
to interpret continuous values of states immediately, 
and humans express states ambiguously using 
language. In this paper, fuzzified states of 
environments and agent actions are represented by 
rules of first-order predicate logic, and models using 
symbolic representation are generated by learning 
them. Then, by replacing deep reinforcement learning 
models with models using symbolic representation, it  
 

172
Honda, H. and Hagiwara, M.
Deep-Learning-based Fuzzy Symbolic Processing with Agents Capable of Knowledge Communication.
DOI: 10.5220/0010796300003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 172-179
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 
Figure 1: Environment of MountainCar-v0. 

is possible for humans to inform the states of the 
environment and add rules to the agents. Since the 
fuzzy symbolic representations differ from person to 
person, we think that the learning cost will be lower 
if the trained reinforcement learning models are 
reproduced instead of symbolizing the training data in 
advance before performing reinforcement learning. 
Furthermore, the ability of symbolic processing using 
deep learning is so powerful that we believe that it can 
reproduce deep reinforcement learning models. 

This paper makes the following contributions: 
 Trained reinforcement learning models are re-

produced with models using symbolic represen-
tations that are easy for humans to understand. 

 Agents capable of knowledge communication 
with humans are built. 

This proposed method is the first case of building 
agents capable of knowledge communication with 
humans using trained reinforcement learning models. 
We believe that this proposal can contribute to 
practical applications, such as coaching for people 
using agents acquired through reinforcement 
learning. Specifically, an application that coaches 
driving a car or playing video games can be 
considered. 

We begin by reviewing related research in Section 
2. In Section 3, we describe the symbolic 
representation of the reinforcement learning model. 
In Section 4, we propose agents capable of knowledge 
communication. Finally, in Section 5, we report the 
experimental results of the proposed system. 

2 RELATED WORK 

2.1 Explainable Artificial Intelligence 

In the field of explainable reinforcement learning, 
research is being conducted to generate another 
model to explain the first model, with the aim of 
allowing humans to understand the output of both 
models (Sequeira and Gervasio, 2019; Fukuchi et al., 
2017; Lee, 2019; Waa et al., 2018; Madumal et al., 
2019; Coppens et al., 2019). Among them, there are 
studies using a structural causal model (Madumal et 
 

Table 1: Actions and statuses of MountainCar-v0. 

Action Accelerate to the left     : 0 
Do not accelerate           : 1 
Accelerate to the right   : 2 

Status Car position                   :  -1.2 – 0.6 
Car velocity                   :  -0.07 – 0.07 

al., 2019) and studies using soft decision trees 
(Coppens et al., 2019). However, such studies 
generate models for explanation, and it is difficult to 
use the generated models instead of reinforcement 
learning models. 

2.2 Symbolic Processing with Neural 
Networks 

After the emergence of deep learning, deductive and 
inductive inferences based on first-order predicate 
logic were studied using graph neural networks 
(Cohen, 2016; Minervini et al., 2018; Rocktaschel 
and Riedel, 2017; Serani and d'Avila Garcez, 2016; 
Sourek et al., 2015; Minervini et al., 2020). Further-
more, studies using feedforward networks (Dong et 
al., 2019) and recurrent neural networks (Cingillioglu 
and Russo, 2018; Honda and Hagiwara, 2019; Honda 
and Hagiwara, 2021) have been conducted. 

3 SYMBOLIC  
REPRESENTATION OF  
REINFORCEMENT LEARNING 
MODEL 

We use Prolog (Bratko, 1990), a subsystem of first-
order predicate logic for symbolic processing, to sym-
bolize the input and output of the reinforcement learn-
ing models described. Reinforcement learning as-
sumes a Markov property, which is the property in 
which the next states depend only on the current states 
and actions. Therefore, it can be explained that the ac-
tions at a certain point in time are the result of the 
models interpreting the states at a certain point in 
time. When these are represented by the rules of 
Prolog, the head of the rules is the action, and the 
body of the rules is the conjunction of the states. 

Figure 1 shows the environment of MountainCar-
v0, which is one of the simulation environments for 
reinforcement learning provided by OpenAI Gym 
(Brockman et al., 2016). MountainCar-v0 aims at 
learning the agent to move the car to the top of the 
mountain. Table 1 shows the actions and states of 
MountainCar-v0. The outputs are actions with 
discrete values of 0, 1, or 2. 

Deep-Learning-based Fuzzy Symbolic Processing with Agents Capable of Knowledge Communication

173



 
Figure 2: Example of variable B represented by a crisp 
membership function. 

The input and output of the reinforcement 
learning model of MountainCar-v0 can be 
represented by Prolog rules, as shown in Equation (1). 

action(X,A):-position(X,B),speed(X,C). (1)

In this equation, “action” indicates the action of the 
agent, “position” represents the position of the car, 
and “speed” is the speed of the car. The variable X is 
the number of trials, variable A is the type of action, 
variable B is the linguistic variable indicating the 
degree of the position, and variable C is a linguistic 
variable indicating the degree of the speed. Because 
an action is a discrete value, the variable A takes three 
types of values, i.e., “push_left,” “stay,” and 
“push_right.” The position and speed of the car are 
continuous values and are converted into linguistic 
variables B and C, respectively. 

The membership functions of the fuzzy theory are 
used to convert continuous values into linguistic 
variables. Figure 2 shows an example of variable B, 
represented by a crisp membership function. If the 
value of the car position is negative, the car is on the 
left, and if it is positive, it is on the right. If the car is 
on the left, variable B takes a value of “very left,” 
“left,” or “a little left.” The boundary of the crisp set 
on the left is the quantile of the observed negative car 
position. By contrast, Figure 3 shows an example of 
variable B, represented by a trapezoidal membership 
function. If the car is on the left, variable B takes the 
value of “very left,” “left,” or “a little left.” The 
apexes of the trapezoidal set on the left are the 
quantiles of the observed negative car positions. 
Variable C can also be represented using the 
membership functions in the same way as variable B.  

Equation (2) shows an example of a rule based on 
the input and output of the reinforcement learning 
model. 

action(10,push_right):- 
                position(10,very_left), 
                speed(10,slowly_to_the_left). 

(2)

 
Figure 3: Example of variable B represented by a trapezoi-
dal membership function. 

This rule indicates the car is pushed to the right if, 
during the 10th trial, the position of the car is “very 
left” and the speed of the car is “slowly to the left.” 

4 PROPOSED AGENTS  
CAPABLE OF KNOWLEDGE 
COMMUNICATION 

4.1 Generation of Models using  
Symbolic Representation 

This subsection describes the generation of models 
using symbolic representations. To generate a model 
using a symbolic representation, we use data that rep-
resent the input and output of the trained reinforce-
ment learning models. Here, the linguistic variables 
that are converted from the states of continuous val-
ues take up to five levels for both the positive and 
negative values. In the semantic differential (SD) 
(Osgood et al., 1957; Osgood et al., 1975) approach, 
which is a method of impression used in evaluation 
experiments, adjective pairs are expressed on a scale 
of five or seven levels. In addition, the Likert scale 
(Likert, 1932) often uses a 5-level scale. Therefore, in 
this paper, we assume that the scale of the degree of 
easy human discrimination reaches up to five levels. 
For example, in MountainCar-v0, if the position of 
the car is positive and is represented using 5-level val-
ues, the linguistic variables are “very small right,” 
“small right,” “right,” “large right,” and “very large 
right.” 

The recurrent neural network proposed in Honda 
and Hagiwara, 2019 was used to learn the symbolically 
represented data. They compared the recurrent neural 
network with the Transformer (Vaswani et al., 2017), 
and the recurrent neural network performed better. 
Therefore, the recurrent neural network is also used in 
our proposed system. In this paper, to infer the output 
from the input of the reinforcement learning model, the 

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

174



recurrent neural network is trained such that when the 
body of the Prolog rule is input, the head of the Prolog 
rule is output.  

Figure 4 shows the recurrent neural network 
proposed in this paper. First, in the input embedding 
layer, the word sequence of the body is converted into 
a one-hot vector. Second, the one-hot vector is passed 
to Seq2Seq with an attention mechanism (Bahdanau 
et al., 2015). The attention mechanism improves the 
performance of Seq2Seq by inferring which part of 
the input data is important. Seq2Seq with an attention 
mechanism also consists of an encoder and decoder. 
When the encoder receives an input sequence, it 
produces a compressed vector. The attention 
mechanism calculates the degree of attention given to 
each word in the input sequence based on the context 
of the output sequence. A weight that depends on the 
degree of attention is added to the compression 
vector. When the decoder receives vectors from the 
encoder and attention mechanism, it generates an 
output sequence. Long short-term memory (LSTM) 
(Hochreiter and Schmidhuber, 1997) was used for the 
encoder and decoder. We apply Bi-LSTM, which is 
capable of handling future and past information at the 
encoder. The Bi-LSTM consists of three layers and 
has a 128-dimensional output layer. A stateless 
LSTM that does not inherit short-term memory is 
applied to the decoder. The stateless LSTM has a 128-
dimensional output layer and uses Maxout 
(Goodfellow et al., 2013) as the activation function. 
Finally, the output of Seq2Seq with an attention 
mechanism is passed to the output embedding layer, 
embedded in one-hot layer, and thereafter produced 
as the word string of the head. 

For the learning used in this paper, the dropout 
rate was set to 0.1, the batch size was set to 128, and 
learning was conducted for 20 epochs. Using Adam 

(Kingma and Ba, 2014) as the optimizer, the 
parameters were set to α = 0.001, β1 = 0.9, β2 = 0.999, 
and eps = 1e-08. 

Taking the rule of Equation (2) as an example, the 
model is trained such that Equation (4) is output when 
Equation (3) is input. 

                position(10,very_left), 

              speed(10,slowly_to_the_left). 
(3)

action(10,push_right). (4)

4.2 Agents Capable of Knowledge 
Communication 

This subsection describes agents capable of 
knowledge communication incorporated into models 
using a symbolic representation. Agents capable of 
knowledge communication can reflect human inten-
tions on already trained models by inputting the rules 
described by humans. It is also possible for humans 
to interpret the states of the environment and convey 
them to the agents. 

Figure 5 shows agents capable of knowledge 
communication incorporated into models using a 
symbolic representation. The “Environment” in Fig-
ure 5 is a simulation environment for reinforcement  
 

 
Figure 4: Model using symbolic representation. 

 
Figure 5: Agents capable of knowledge communication. 

Deep-Learning-based Fuzzy Symbolic Processing with Agents Capable of Knowledge Communication

175



 
Figure 6: Translator and agent algorithm. 

Table 2: Actions and statuses of CartPole-v1. 

Action Push to the left               : 0 
Push to the right             : 1 

Status 

Cart position                  : -2.4 – 2.4 
Cart velocity                  : -Inf – Inf 
Pole angle                      :  -41.8 – 41.8 
Pole angular velocity     :  -Inf – Inf 

learning. The “Agent” in Figure 5 is an agent capable    
of knowledge communication. The “Translator” in 
Figure 5 converts the states of the “Environment” 
from numerical values into a symbolic representation, 
and converts the symbolically represented acts of the 
“Agent” into numerical values. The “Translator” can 
be realized programmatically, but when realized by 
humans, it becomes possible to directly convey the 
states of the environment to the agent. The 
“Maintainer” in Figure 5 is a human who adds rules 
to the “Agent.” The rules added by “Maintainer” take 
precedence over the rules generated by the model 
inside the “Agent.” 

Figure 6 shows the algorithm of the “Translator” 
and “Agent.” Here, CartPole-v1, which is a 
simulation environment for reinforcement learning 
provided by OpenAI Gym (Brockman et al., 2016), is 
described as an example. Figure 7 shows the 
environment of CartPole-v1. CartPole-v1 aims to 
move the cart to balance the pole and prevent it from 
tipping over. Table 2 shows the actions and states of 
CartPole-v1. 

When the “Translator” receives the states from the 
“Environment,” the “Translator” symbolizes them 
using the method described in Section 3 
(Symbolization in Figure 5, and line 1 in Figure 6). 
When the “Agent” receives the symbolized states, the 
“Agent” inputs them into the “model using symbolic 
representation” and outputs the symbolized action  
(Model Using Symbolic Representation in Figure 5, 
and line 2 in Figure 6). Next, a question and a rule are 
generated from the symbolized states and the 
symbolized action  (Rule Generator in Figure 5, and 
line 3 in Figure 6). If the symbolized states are as in 
Equation (5) and the symbolized action is as indicated 
in Equation (6), the generated rule is as shown in 
Equation (7) and the question is as indicated in 

Equation (8). The question is a conjunction of 
symbolized states and symbolic action. 

 
Figure 7: Environment of CartPole-v1. 

      position(12,a_little_left), 
      speed(12,fast_to_the_left), 
      angle(12,very_gentle_to_the_right), 
     angular_velocity(12,fast_to_the_right). 

(5)

 
     action(12,push_left). (6)

 
      action(12,push_left):- 
      position(12,a_little_left), 
      speed(12,fast_to_the_left), 
      angle(12,very_gentle_to_the_right), 
     angular_velocity(12,fast_to_the_right). 

(7)

 
     action(12,X),  position(12,a_little_left), 
     speed(12,fast_to_the_left), 
     angle(12,very_gentle_to_the_right), 
    angular_velocity(12,fast_to_the_right). 

(8)

 
The generated rules are added to the knowledge base 
(Knowledge Base in Figure 5, and line 4 in Figure 6), 
and the ”Maintainer” stores rules such as in Equation 
(9) in advance in the knowledge base. 
 
       action(X,push_right):- 
       position(X,a_little_left), 
       speed(X,fast_to_the_left), 
       angle(X,very_gentle_to_the_right), 
      angular_velocity(X,fast_to_the_right). 

(9)

 
For example, if the angle of the pole is greatly 

tilted to the left and the pole will fall regardless of 
how it is controlled with the cart, suppose you want 
to knock the pole down as soon as possible. In such a 
case, the “Maintainer” should store in advance the 
rules for moving the cart to the right when the angle 
of the pole increases to the left, as shown in Equation 
(9). 

Prolog processing refers to the knowledge base 
and answers the question  (Knowledge Base in Figure 
5, and line 5 in Figure 6). The rules generated by the 
“Agent” are added after the rules stored by the 
“Maintainer” in the knowledge base. Therefore, even 
if there are multiple answers to the question, the result  
 

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

176



Table 3: Dataset obtained from reinforcement learning 
models of MountainCar-v0. 

 DQN DDQN 
Training Data 124,753 99,937
Validation Data 16,219 12,436
Test Data 15,846 12,613

Table 4: Results of calculating the match rates from models 
using the symbolic representation of MountainCar-v0. 

Reinforce-
ment 
Learning 
Algorithm 

Member-
ship Func-
tion 

Number of Lin-
guistic Valua-
bles  

Match Rate 

DQN 

Crisp 

Pos.=1, Neg.=1 0.8565
Pos.=2, Neg.=2 0.9231
Pos.=3, Neg.=3 0.9598
Pos.=4, Neg.=4 0.9363
Pos.=5, Neg.=5 0.9773 

Trapezoid 

Pos.=2, Neg.=2 0.8942
Pos.=3, Neg.=3 0.9300
Pos.=4, Neg.=4 0.9539
Pos.=5, Neg.=5 0.9665 

DDQN 

Crisp 

Pos.=1, Neg.=1 0.9418
Pos.=2, Neg.=2 0.9390
Pos.=3, Neg.=3 0.9726
Pos.=4, Neg.=4 0.9742
Pos.=5, Neg.=5 0.9743 

Trapezoid 

Pos.=2, Neg.=2 0.9244
Pos.=3, Neg.=3 0.9386
Pos.=4, Neg.=4 0.9432 
Pos.=5, Neg.=5 0.9481 

Table 5: Dataset obtained from reinforcement learning 
models of CartPole-v1. 

 DQN DDQN 
Training Data 136,386 141,269
Validation Data 16,919 17,564
Test Data 17,190 17,933

of the rule stored by the “Maintainer” in the 
knowledge base is output first. Finally, the 
“Translator” de-symbolizes the answer received from 
the “Agent” such that it can be input into the 
“Environment” (De-symbolization in Figure 5, and  
line 6 in Figure 6) If the answer is Equation (10), it 
will be zero because it means “pushed to the right.” 

X=right. (10)

The de-symbolized act is passed to the 
“Environment.” 

5 EVALUATION EXPERIMENTS 

The models were trained using two types of reinforce-
ment learning simulation environments, and the 
agents incorporating them were built. In this section, 
we discuss the experimental results. 

5.1 Experiments using  
MountainCar-V0 

Agents were built by reproducing models using sym-
bolic representations from the reinforcement learning 
models of MountainCar-v0. Two types of reinforce-
ment learning algorithms were used: deep Q network 
(DQN) (Mnih et al., 2013) and double deep Q net-
work (DDQN) (Hado et al., 2016). Both DQN and 
DDQN models were trained until the average reward 
for one episode exceeded 160. The maximum number 
of trials per episode was 200. DQN spent 7,800 epi-
sodes and DDQN spent 3,200 episodes to learn 
MountainCar-v0. 

Table 3 shows the dataset obtained from the 
trained reinforcement learning models. We repeated 
trials with the trained models to build the dataset. The 
dataset contained the states and acts for each number 
of trials. The dataset was randomized and divided into 
training data, validation data, and test data. Table 4 
shows the results of calculating the match rates from 
the model using the symbolic representation trained 
from the dataset in Table 3. To generate models using 
a symbolic representation, we created multiple data 
from the dataset in Table 3 using membership 
functions that varied the number of linguistic 
variables for the position and speed of the car. Two 
types of membership functions, i.e., the crisp type and 
the trapezoid type described in Section 3, were used. 
The continuous values of the states were converted 
into linguistic variables by the method described in 
Subsection 4.1. Here, the match rate is the rate at 
which the output obtained by inputting the state of the 
test data into the models using the symbolic 
representation exactly matches the behavior of the 
test data. 

5.2 Experiments using CartPole-V1 

Agents were built by reproducing models using sym-
bolic representations from the reinforcement learning 
models of CartPole-v1. Two types of reinforcement 
learning algorithms were used: DQN and DDQN. 
Both DQN and DDQN models were trained until the 
average reward for one episode exceeded 200. The 
maximum number of trials per episode was 200. DQN 
spent 2,187 episodes and DDQN spent 820 episodes 
to learn CartPole-v1. 

Table 5 shows the dataset obtained from the 
trained reinforcement learning models. We repeated 
trials with the trained models to build the dataset. The 
dataset contained states and acts for each number of 
trials. The dataset was randomized and divided into 
training data, validation data, and test data. Table 6 

Deep-Learning-based Fuzzy Symbolic Processing with Agents Capable of Knowledge Communication

177



shows the results of calculating the match rates from 
the model using the symbolic representation trained 
from the dataset in Table 5. To generate models using 
a symbolic representation, we created multiple data 
from the dataset in Table 5 using membership 
functions that varied the number of linguistic 
variables for the position and speed of the cart, and 
the angle and angular velocity of the pole. Two types 
of membership functions, i.e., the crisp type and 
trapezoid type described in Section 3, were used. The 
continuous values of the states were converted into 
linguistic variables by the method described in 
Subsection 4.1. 

5.3 Discussion 

In the experimental results of both MountainCar-v0 
and CartPole-v1, the reinforcement learning algo-
rithm showed high match rates for both DQN and 
DDQN. Therefore, our proposed method is consid-
ered effective, regardless of the reinforcement learn-
ing algorithm applied. Furthermore, since the dataset 
was randomized, the reproduced models have Mar-
kov property the same as reinforcement learning 
models. 

The experimental results of both MountainCar-v0 
and CartPole-v1 tended to increase the match rates as 
the number of linguistic variables increased. This is 
thought to be because a larger number of linguistic 
variables resulted in a greater number of rules that can 
be represented. By contrast, when the crisp 
membership functions were used, the match rate of 
MountainCar-v0 was 0.9773 and the match rate of 
CartPole-v1 was 0.9123 within the range of up to five 
linguistic variables. When the trapezoid membership 
functions were used, the match rate of MountainCar-
v0 was 0.9665 and the match rate of CartPole-v1 was 
0.9080 within the range of up to five linguistic 
variables. Within the range of up to five linguistic 
variables, which are assumed to be easy for humans 
to distinguish, all match rates were high. 

Furthermore, the experimental results of both 
MountainCar-v0 and CartPole-v1 showed high match 
rates for both the crisp membership functions and the 
trapezoidal membership functions. When humans 
observe the states of the environment and represent 
symbols, ambiguity occurs, and thus it is considered 
practical to use trapezoidal membership functions. In 
the case of the trapezoidal membership functions, the 
match rates were almost the same as those of the crisp 
functions, even though the linguistic variables were 
stochastically selected. 

 
 

Table 6: Results of calculating the match rates from models 
using the symbolic representation of CartPole-v1. 

Reinforcement 
Learning 
Algorithm 

Membership 
Function 

Number of  
Linguistic  
Valuables  

Match Rate 

DQN 

Crisp 

Pos.=1, Neg.=1 0.8593
Pos.=2, Neg.=2 0.8850
Pos.=3, Neg.=3 0.8934
Pos.=4, Neg.=4 0.8921
Pos.=5, Neg.=5 0.8901

Trapezoid 

Pos.=2, Neg.=2 0.8697
Pos.=3, Neg.=3 0.8700
Pos.=4, Neg.=4 0.8789
Pos.=5, Neg.=5 0.8753

DDQN 

Crisp 

Pos.=1, Neg.=1 0.9002
Pos.=2, Neg.=2 0.8991
Pos.=3, Neg.=3 0.9063
Pos.=4, Neg.=4 0.9048
Pos.=5, Neg.=5 0.9123

Trapezoid 

Pos.=2, Neg.=2 0.9012
Pos.=3, Neg.=3 0.9001
Pos.=4, Neg.=4 0.9026
Pos.=5, Neg.=5 0.9080

6 CONCLUSION 

We proposed methods for reproducing deep learning 
models using symbolic representations from deep re-
inforcement learning models and for building agents 
capable of knowledge communication with humans. 
In this paper, fuzzified states of environments and 
acts of agents are represented by rules of first-order 
predicate logic, and models using symbolic represen-
tation are generated by learning them through recur-
rent neural networks. Then, by replacing deep rein-
forcement learning models with models using sym-
bolic representations, it is possible for humans to in-
form the states of the environment and add rules to 
the agents.  

We believe that this proposal can contribute to 
practical applications of coaching such as driving a 
car and playing video games. Our proposal suggests 
that agents will be able to develop human skills. 

Future work will consider applying our proposal 
to various reinforcement learning simulation 
environments, such as when the agent's actions take 
continuous values, when the states are represented by 
images, and when the rules are required negative 
literals. 

REFERENCES 

Alejandro, A., Natalia, D., Javier, S., Adrien, B., Siham, T., 
Alberto, B., Salvador, G., Sergio, G., Daniel, M., Ri-

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

178



chard, B., Raja, C., and Francisco, H., (2020). Explain-
able Artificial Intelligence (XAI): Concepts, taxono-
mies, opportunities and challenges toward responsible 
AI,  Information Fusion, volume 58, pages 82-115. 

Bahdanau, D., Cho, K., and Bengio, Y., (2015). Neural ma-
chine translation by jointly learning to align and trans-
late, in ICLR, San Diego, CA, USA. 

Bratko I., (1990). Prolog Programming for Artificial Intel-
ligence. 2nd ed., Addison-Wesley Publishing Company, 
USA, pages 597. 

Brockman, G., Cheung, V., Pettersson, L., Schneider, 
Schulman, J., Tang, J., J., and Zaremba, W., (2016). 
Openai gym, arXiv preprint arXiv: 1606.01540. 

Cingillioglu, N. and Russo, A., (2018). DeepLogic: To-
wards end-to-end differentiable logical reasoning, 
arXiv preprint arXiv: 1805.07433. 

Cohen, W., (2016). Tensorlog: A differentiable deductive 
database, arXiv preprint arXiv: 1605.06523. 

Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowe, A., Mil-
ler, T., Weber, R., and Magazzeni, D., (2019). Distilling 
deep reinforcement learning policies in soft decision 
trees, in Proc. of the IJCAI 2019 Workshop on Explain-
able Artificial Intelligence, pages 1-6. 

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D., 
(2019). Neural logic machines, in Proc. of International 
Conference on Learning Representations, New Orle-
ans, Louisiana, USA. 

Fukuchi, Y., Osawa, M., Yamakawa, H., and Imai, M., 
(2017). Autonomous selfexplanation of behavior for in-
teractive reinforcement learning agents, in Proc. of the 
5th International Conference on Human Agent Interac-
tion - HAI ’17. ACM Press. 

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., 
and Bengio, Y., (2013). Maxout networks, in Proc. of 
the 30th International Conference on Machine Learn-
ing, Atlanta, Georgia, USA. 

Hado, H., Arthur, G., and David, S., (2016). Deep rein-
forcement learning with double Q-learning, Thirtieth 
AAAI Conference on Artificial Intelligence, volume 30, 
number 1. 

Hochreiter, S. and Schmidhuber, J., (1997). Long short-
term memory, Neural Computation, volume 9, number 
8, pages 1735-1780. 

Honda, H. and Hagiwara, M., (2019). Question answering 
systems with deep learning-based symbolic processing, 
in IEEE Access, volume 7, pages 152368-152378. 

Honda, H. and Hagiwara, M., (2021). Analogical Reason-
ing With Deep Learning-Based Symbolic Processing, 
in IEEE Access, volume 9, pages 121859-121870. 

Kingma, D. and Ba, J., (2014). Adam: A method for sto-
chastic optimization, arXiv preprint arXiv: 1412.6980. 

Lee, J. H., (2019). Complementary reinforcement learning 
towards explainable agents, arXiv preprint arXiv: 
1901.00188. 

Likert, R., (1932). A technique for the measurement of atti-
tudes, Archives of Psychology, volume 140, number 55. 

Lipton, Z.C., (2018). The mythos of model interpretability, 
Communications of the ACM, volume 61, number 10, 
pages 36-43. 

Madumal, P., Miller, T., Sonenberg, L., and Vetere, F., 
(2019). Explainable reinforcement learning through a 
causal lens, arXiv preprint arXiv: 1905.10958. 

Minervini, P., Bosnjak M., Rocktschel, T., and Riedel, S., 
(2018). Towards neural theorem proving at scale, arXiv 
preprint arXiv: 1807.08204. 

Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., and 
Rocktäschel, T., (2020). Learning Reasoning Strategies 
in End-to-End Differentiable Proving, in Proc. of the 
37th International Conference on Machine Learning, 
PMLR 119, pages 6938-6949. 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Anto-
noglou, I., Wierstra, D., and Riedmiller, M. (2013). 
Playing Atari with deep reinforcement learning, arXiv 
preprint arXiv:1312.5602. 

Montavon, G., Samek, W., and Muller, K.R., (2018) Meth-
ods for interpreting and understanding deep neural net-
works, Digital Signal Processing, volume 73, pages 1-
15. 

Osgood, C. E., Suci, G., and Tannenbaum, P., (1957). The 
measurement of meaning, Urbana, IL: University of Il-
linois Press. 

Osgood, C. E., May, W. H., and Miron, M. S., (1975). 
Cross-Cultural Universals of Affective Meaning, Ur-
bana, IL: University of Illinois Press. 

Rocktaschel, T. and Riedel, S., (2017). End-to-end differ-
entiable proving, in Proc. of the NIPS 30, pages 3788-
3800. 

Sequeira, P. and Gervasio, M., (2019). Interestingness ele-
ments for explainable reinforcement learning: Under-
standing agents, capabilities, and limitations, arXiv pre-
print arXiv: 1912.09007. 

Serani, L. and d'Avila Garcez, A. S., (2016). Logic tensor 
networks: Deep learning and logical reasoning from 
data and knowledge, in Proc. of the 11th International 
Workshop on Neural-Symbolic Learning and Reason-
ing (NeSy’16) co-located with the Joint Multi-Confer-
ence on Human-Level Artificial Intelligence (HLAI 
2016), New York City, NY, USA. 

Sourek, G., Aschenbrenner, V., Zelezny, F., and Kuzelka, 
O., (2015). Lifted relational neural networks, in Proc. 
of the NIPS Workshop on Cognitive Computation: Inte-
grating Neural and Symbolic Approaches co-located 
with the NIPS 29, Montreal, Canada. 

Vaswani,A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 
L., Gomez, A., Kaiser, L., and Polosukhi, I., (2017). At-
tention Is All You Need, in Proc. of the NIPS 31, pages 
5998–6008. 

Waa, J., Diggelen, J., Bosch, K., and Neerincx, M., (2018). 
Contrastive explanations for reinforcement learning in 
terms of expected consequences, IJCAI-18 Workshop 
on Explainable AI (XAI), volume 37. 

Deep-Learning-based Fuzzy Symbolic Processing with Agents Capable of Knowledge Communication

179


