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Abstract: This study focuses on noncommunicative multiagent learning with hetero-information where agents observe
each other in different resolutions of information. A new method is proposed for adapting the time dimen-
sion of the hetero-information from the observation by expanding the Asynchronous Advantage Actor–Critic
(A3C) algorithm. The profit minimizing reinforcement learning with oblivion of memory mechanism was the
previously used noncommunicative and cooperative learning method in multiagent reinforcement learning.
We then insert an long short-term memory (LSTM) module into the A3C neural network to adapt to the time
dimension influence of the hetero-information. The experiments investigate the performance of the proposed
method on the hetero-information environment in terms of the effectiveness of LSTM. The experimental re-
sults show that: (1) the proposed method performs better than A3C. Without the LSTM module, the proposed
method enabled the agents’ learning to converge. (2) LSTM can adapt the time dimension of the input infor-
mation.

1 INTRODUCTION

Multiagent Reinforcement Learning (MARL) con-
trols some agents in groups to learn cooperative ac-
tion, such as in warehouses where robot agents coop-
erate with each other to manage the delivery of sup-
plies. In this case, MARL must decrease the complex-
ity of communication to achieve the desired coopera-
tion and enable the robots to solve real-world prob-
lems. In previous work, Kim et al. discussed a practi-
cal scenario for each agent to communicate with other
agents in real-world reinforcement learning tasks and
proposed a multiagent deep reinforcement learning
(DRL) framework called SchedNet (Kim et al., 2019).
Du et al. expanded the focus to the dynamic na-
ture of communication and the correlation between
agents’ connections to propose a learning method to
obtain the topology (Du et al., 2021). Those works
are efficient and straightforward, but the agents them-
selves cannot do complex tasks based on real-world
problems, especially in a dynamic environment. In
contrast, Raileanu et al. proposed self–other model-
ing (SOM) method to enable agents to learn coopera-
tive policy through predicting others’ purpose or goals
based only on the observation (Raileanu et al., 2018).
Ghosh et al. argued that the premise of SOM requires
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the behaviors and types of all agents be presented as
a problem and proposed AdaptPool and AdaptDQN
as cooperative learning methods without using this
premise (Ghosh et al., 2020). However, these meth-
ods are based on static environment and require all
purposes to be given. Uwano et al. proposed a method
called profit minimizing reinforcement learning with
oblivion of memory (PMRL-OM) as a noncommu-
nicative and cooperative learning method in a mul-
tiagent dynamic environment (Uwano and Takadama,
2019).

In addition, by communicating with other agents
and predicting their behaviors, the agents can learn
appropriate and cooperative actions (Raileanu et al.,
2018; Ghosh et al., 2020). In MARL, however, agents
can observe the same resolution information, e.g.,
the environmental situation and other agents’ actions
(i.e., if some agents can observe high-resolution in-
formation, then the other agents can also observe the
same information). This can become an issue because
all agents cannot be guaranteed to observe the same
resolution of information about each other in the real
world. For example, all vehicles using car navigation
systems must cooperate (in planning routes) appro-
priately with each other because the optimal routes
are influenced by other vehicles’ route planning and
traffic jams; therefore, the vehicles cannot observe
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information with different resolutions. Uwano de-
scribed the different information resolutions as “het-
ero information” (Uwano, 2021), and discussed the
relationship between the network topology of DRL
and abstraction of input–output information. Al-
though they discuss the hetero-information in inputs,
the transition is important in MARL. Recently, the re-
sults for hetero-information did not converge; that is,
the agents could not stably learn cooperative actions
(Uwano, 2021).

Based on this background, this paper focuses
on the hetero-transition caused by the hetero-
information. Hetero-transition refers to the different
transitions between observations and the actual sit-
uation. Thus the problem expands from the hetero-
information to the hetero-transition. In addition, this
paper proposes a noncommunicative and cooperative
learning method using the unstable hetero-transition
in a dynamic environment. In particular, this pa-
per proposes a new method to expand the Asyn-
chronous Advantage Actor–Critic (A3C) algorithm to
adapt the hetero-information from observations us-
ing the PMRL-OM mechanism as the previous non-
communicative and cooperative learning method in
MARL. We then an LSTM module into the A3C neu-
ral network to adapt to the time dimension influence
on the hetero-information. In the experiment, this pa-
per employed a maze problem where the starting and
goal locations change after several steps in the grid
world and either of the agents sense only the hetero-
information and investigated the agents’ performance
in solving the problem.

This paper is organized as follows: A3C and
PMRL-OM are introduced in Sections 2 and 3, re-
spectively. The proposed new method combined both
A3C and PMRL-OM as explained in Section 4. Fur-
thermore, the problem and unstableness are explained
in Section 5. The experimental details and discussions
are described in Section 6. Finally, the conclusions
are presented in Section 7.

2 ASYNCHRONOUS ADVANTAGE
ACTOR–CRITIC

The A3C algorithm (Mnih et al., 2016) is a DRL
method where the system copies the agents and envi-
ronments, and then executes trials asynchronously to
acquire an optimal policy immediately. This paper ex-
plains the details of A3C based on (Fujita et al., 2019),
where the implementation is similarly employed in
the experimental section of this paper as described
previously (Mnih et al., 2016). The copied agents ex-
ecute backpropagation of the primary agent with the

loss of parameters as the learning result. They then
initialize themselves and synchronize the current pa-
rameters from that of the primary agent and repeat the
presented processes.

In DRL, state s or sensed information to detect the
state is input to the network and the policy π or state–
action value Q(s,a) is output from the network. DRL
approximates the true policy π or true state–action
value Q(s,a) and action a throughout the process to
learn by backpropagation from the loss between the
output and true value. As for A3C, the agent esti-
mates the appropriate values of the policy π(at |st ;θ)
and state value V (st ;θv) using the neural network, as
well as shares them to the copied agents, which calcu-
late the loss of the parameters θ and θv to update ones
of the neural network. A3C learns from the state s
or some information to detect s as input to output the
policy π(at |st ;θ) and state value V (st ;θv) as respec-
tively “Actor” and “Critic.”

The policy loss dθ and state value loss dθv are
defined as Equations (1) and (4), respectively.

dθ← dθ+∇θ′ logπ
(
ai|si;θ

′)A(si,ai;θ,θv)

+β∇θ′H(π
(
si;θ

′)), (1)

A(si,ai;θ,θv) =
k−1

∑
j=0

γ
jri+ j + γ

kV (si+k;θv)−V (si;θv).

(2)

R← ri + γR, (3)

dθv← dθv +
∂(R−V (si;θ′v))

2

∂θ′v
. (4)

Where the losses θ′ and θ′v are for the copied agent.
In a certain steps i, the state, action and reward are
denoted by si, ai, and ri, respectively. Updating θ′

uses the entropy function H(π(si;θ′)) multiplied by
the factor β. In the advantage function A(si,ai;θ,θv),
the calculation includes the future reward multiplied
by the discount factor γ. The copied agents update the
original parameter using Equations (1) and (4).

3 PROFIT-MINIMIZING
REINFORCEMENT LEARNING
WITH OBLIVION OF MEMORY

To learn multiagent cooperation without communica-
tion in an environment of dynamic change, Uwano
et al. proposed the PMRL-OM mechanism (Uwano
and Takadama, 2019), which is based on Q-learning
and enables cooperation by managing the reward in
dynamic change environments. The agents can iden-
tify the largest spent steps when they reach all goals
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through the optimal steps, e.g., the PMRL-OM mech-
anism enables all agents to reach the farthest goals in
the maze problem. While that might result in each
agent crashing into each other, the agent that reached
the goal first yield it to other agents by trying to reach
other goals and avoiding crashing and managing the
goals whenever accidents occur.

Figure 1: Overview of PMRL-OM.

The PMRL-OM mechanism updates the agent’s
memory as the environment changes and controls the
reward values for each agent to reach all goals in the
shortest time (Figure 1). In this figure, Agents A
and B are learning to reach the appropriate goals with
each other by tuning their own reward values. Thus,
Agents A and B reached goals X and Y, respectively.
Using an internal reward design as the reward tuning
mechanism and updating the goal values as the goal
selection are explained in the next subsection.

3.1 Internal Reward Design

Generally, an agent learns based on environmental re-
wards or a reward signal communicated by the agent
when it achieves its purpose. However, the internal
reward design can remake the reward, or the reward
signal is used as the internal reward in the agents’
learning process. PMRL-OM estimates the internal
reward to enable agents to reach the appropriate goals
by learning. The next subsection, “goal value updat-
ing,” explains how to decide the appropriate goals.
Let the goal g be the appropriate goal, then the inter-
nal reward is calculated using Equation (5) as follows:

irg = max
g′∈G,g′ ̸=g

rg′γ
tg′−tg +δ, (5)

where irg is the internal reward of the goal g, γ is the
discount rate in Q-learning, g′ is the certain goal in
the goal set G in which all goals are included, and
rg′ is the external reward of the goal g′. The vari-
ables tg and tg′ are the minimum number of steps until
the agent has reached the goals g and g′, respectively.
Note that the internal reward is calculated for only the
appropriate goal g and those of the other goals are set
by the external rewards.

Equation (5) calculates discounted expected re-
wards as Q-values to each goal in the Q-learning pro-
cess and sets the internal reward of the appropriate
goal to be larger than any other goal. For example,

Figure 2 shows three goals denoted by the money
pouches, the arrows show the actions to achieve the
goals, and the variables indicate the Q-values. An in-
ternal reward irg is set by the agent to facilitate other
agents to achieve the goal g. Thus, irg should be set
as follows:

irgγ
tg > max

{
r2γ

t2 ,r3γ
t3
}

(6)

Let the difference between the left- and right-hand
sides be δ; thus, the equation can be transformed as
follows:

irgγ
tg = max

{
r2γ

t2 ,r3γ
t3
}
+δ (7)

irg = max
{

r2γ
t2−tg ,r3γ

t3−tg
}
+δ (8)

Let the arbitrary goal be g′ and Equation (8) is the
same as Equation (5). Therefore, the internal reward
design can lead the agent to the appropriate goal.

3.2 Goal Value Updating

The goal value can be used by agents to select the
appropriate goal. The value is converged to the mini-
mum number of steps for each goal to achieve the goal
that takes the longest time to achieve (i.e., the farthest
goal in the maze problem). The agent then learns how
to reach the goal with the maximum value using this
internal reward. Equation (9) denotes the goal value
update functions. Let tg and ξ be the minimum num-
ber of steps for the appropriate goal g and constant
value. Note that ξ is a positive integer value greater
than 0 and ξ indicates how much emphasis is given
to the current minimum number of steps in the goal
value: if ξ is small, the minimum numbers of steps are
emphasized; otherwise an increased minimum num-
bers of steps is emphasized in the goal value. At the
end of every iteration, if the agent has received the
reward, the goal value is updated by the top function;
otherwise, it is updated by the bottom function. Using
these equations, all agents aim to reach the farthest
goal. After that the agents set their internal rewards to
reach that goal:{

bidg =
ξ−1

ξ
bidg +

tg
ξ

i f received rewards

bidg =
ξ−1

ξ
bidg +

0
ξ

otherwise
(9)

Figure 2: Internal reward design.
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3.3 Memory Management

To use the minimum number of steps, PMRL-OM
counts the steps to each goal throughout the entire it-
eration. However, PMRL-OM stores the steps in or-
der because its memory is finite and older data might
degrade. Figure 3 shows the memory management
using PMRL-OM. The word balloon and the human
figure at its tail denote the memory and agent, re-
spectively. The bottom arrow indicates the continu-
ous iterations using the iteration e to e+1. Given the
memory length e, the agent repeats the actions of stor-
ing the current iteration, counting the current number
of steps, and when it reached the goal until the stack
length of the data is less than the memory length e. If
the stack length is over e, the agent removes the oldest
data from its memory.

Figure 3: Memory management of PMRL-OM.

4 PROPOSED METHOD

The proposed method is expanded from A3C in
the hetero-observation and hetero-transition using the
PMRL-OM mechanism. The goal value and inter-
nal reward design are added to the A3C algorithm,
which is modified to adapt to the hetero-observations.
The A3C neural network is replaced with the LSTM-
based network to adapt to the hetero-transitions. This
section explains the presented three modifications
and describes the shared parameters in the proposed
method: that is, the goal values and minimum num-
bers of steps, which can promote learning and prevent
any influence of the hetero-information by helping the
agents to ervise their own information from the shared
data.

4.1 Modification of Goal Value Design

The A3C is a policy-based algorithm, where the agent
performs actions based on the policy π. Thus, the goal
value function must be expanded in the case when the
memory (explained in Subsection 3.3) is empty. In
this situation, PMRL-OM sets the maximum number
of steps to tg in Equation (9) instead of the minimum
number. Thus, the agent is influenced to reach the un-
memorized goal. However, the maximum number of
steps is too large for the A3C algorithm to enable the
agent to avoid becoming absorbed in the goal because

Figure 4: Difference in the goal value updating.

the algorithm does not employ ε-greedy action selec-
tion, unlike PMRL-OM. Thus, the proposed method
modifies the goal value update function from Equa-
tion (9) to Equation (10) as follows:

bidg =
ξ−1

ξ
bidg +

φ

ξ
, (10)

φ =

 maxg′ bidg′ i f memory is empty
tg else i f received rewards
0 otherwise

(11)

This modification adds a process if the memory
is empty, and the goal value is updated by the max-
imum value of all goal values. Figure 4 shows the
effect of the proposed method when updating the goal
value when the data for Goal 2 is empty. The left- and
right-hand sides denote PMRL-OM and the proposed
method. The word balloons are inside the agents and
the graphs denote the goal values and their dynamics.
PMRL-OM helps the agent to reach Goal 2 even if
Goal 2 cannot be reached by overvaluation. The pro-
posed method sets the goal values at the same level;
thus, the goal value for Goal 2 cannot be greater than
or equal to the other goal values. If Goal 2 is not valu-
able, the proposed method can recover quickly. Oth-
erwise, the goal value for Goal 2 can exceed the goal
value for the other goals.

4.2 Modification of Internal Reward
Design

The internal reward design of the proposed method
uses the same function of PMRL-OM as follows;
however, the parameters differ:

irg = max
g′∈G,g′ ̸=g

rg′γ
tg′−tg +δ (12)

where the discount rate γ is used in the A3C algo-
rithm and the reward rg′ is the external reward. As
for A3C, the internal reward can maintain its ratio-
nality because of Equations (1) and (4). Equation
(1) finally converges to the advantage value shown in
Equation (2). Thus the internal reward can keep the
gradient and large–small relationship between select-
ing actions in its policy. Equation (4) is used in the
same manner.
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4.3 LSTM-based Network

The proposed method replaces the A3C neural net-
work to adapt the hetero-information from hetero-
observations and hetero-transitions. An LSTM layer
is then inserted into the network. Figure 5 shows the
overview of the modified network. In the network
model, the red line denotes an LSTM layer and the top
graphic shows the difference between an agent’s ob-
servation and the actual situation. Although the pre-
vious network comprises only dense layers, it can ab-
stract the hetero-information in its inputs, but it can-
not adapt to the hetero-information from the hetero-
transition. This hetero-transition is because of the dif-
ferent transitions between the hetero-observation and
the actual situation. At the top of this graphic, the
agent cannot observe the movement to the left and in-
puts the same information.

LSTM (Hochreiter and Schmidhuber, 1997) is a
kind of recurrent neural network used to learn about
the current situation using one-step-back inputs to
adapt to the time-sequential data. This paper replaces
a part of the network to adapt to the hetero-transition.
That is, the proposed method enables the agent to
catch up with the actual change in the situation using
LSTM to continuously learn the same input.

5 PROBLEM AND
UNSTABLENESS

5.1 Maze Problem

In this paper, the agents train and practice on grid
world mazes. The maze problems in the grid worlds
are shown in Figure 6. On the left-hand side, the
agent departs from the “Start” square to reach the

Figure 5: Vertical and horizontal abstraction in modifica-
tion.

“Goal” square based on the available rewards. On
the right-hand side, the two agents depart from the
squares labeled “Start A” and “Start B” to reach the
goals named “Goal X” and “Goal Y.” Although the
agents can acquire the same reward value for each
goal, the reward values accumulate when both agents
reach different goals. The agents attempt to avoid hit-
ting each other by avoiding being in the same square,
including the goal square. The agents input informa-
tion with one-hot vector using five dimensions: road,
wall, goal, agent on road, and other in the even case,
but only Agent A departs from “Start A.”

Figure 6: Environment.

5.2 Unstableness

There are two kinds of unstableness: hetero-
information and the dynamic environment. This pa-
per focuses on maze problems that include both kinds
of unstableness.

5.2.1 Hetero-information

Hetero-information denotes the situation where
agents have different input resolutions because of
their individual sensor differences and different sen-
sors in the same situation, among others. For vehi-
cle navigation, each vehicle senses different resolu-
tion information; i.e., the same environmental states
might be divided and the example becomes more dif-
ficult.

Figure 7 represents an example of hetero-
information, with sensing in basic MARL on the
right-hand side and sensing hetero-information on
the left-hand side. The blue agent can move front,
back, left, and right to reach the light-red goal square
in the grid world. Although the agent can be given
any information for all states in basic MARL, it
uses one-fourth of all states because four states are
observed as one state in the hetero-information case.
Figure 7 shows that the agent can observe the back
right-hand goal but cannot observe the front left-hand
goal. Therefore, the hetero-information case means
that agents cannot sense with low resolution, but can
sense that something includes their goals.
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Figure 7: Hetero information observation.

Figure 8: Dynamic environment.

5.2.2 Dynamic Environment

This paper focuses on the dynamics of the start and
goal locations for the environmental change, which
influence the state transition function. Figure 8 shows
an example of the dynamic change. The location of
agents and goals are changed after some steps and the
reward is not changed. The environmental change oc-
curred once in a trial and the modified method aims to
learn a cooperative policy based on the environmental
change.

6 EXPERIMENT

6.1 Experimental Setup

To investigate the effectiveness, this paper compared
the proposed methods where the network has an
LSTM module or not using the A3C algorithm in the
maze problem (Figure 8). The environmental change
happened after half of all the steps and Agent B only
senses the hetero-information. The network topology
differs for each agent: that is, Agent A has a hid-
den and dense layer of 16 nodes, while Agent B has
256 nodes in the proposed method without the LSTM
module. The hidden layer of Agent B is replaced by
an LSTM layer in the proposed method. Note that the
A3C algorithm is based on (Fujita et al., 2019). The
evaluation criteria are the spent step until all agents
have reached the goal and the agents’ acquired re-
wards.

6.2 Parameters

The setting parameters are summarized on Table 1.
The total number of steps is 20 million (first line) and

the copied agent learns every 25 steps as a maximum
until 250 steps (second and third lines). The number
of copied agents is 32 (fourth line). The parameters
α,γ, and β are set by 0.0007, 0.99, and 0.01 (i.e., the
fifth, sixth, and seventh lines, respectively). Finally,
the internal reward gap δ is 1, and the number of ex-
ternal reward values is 10 for all goals (last lines).

Table 1: Experimental parameters.

Horizon of steps 20,000,000
Horizon of steps for copied agent 250
Horizon of steps in an iteration 25

Processes 32
Learning rate α 0.0007
Discount rate γ 0.99

Rate β 0.01
Internal reward gap δ 1
External reward value 10

6.3 Results

Figures 9, 10, and 11 show the spent steps until all
agents have reached the goal and the acquired re-
wards of both agents using A3C and the proposed
method, respectively. The vertical and horizontal axes
denote the results and episodes, respectively. The
blue, orange, and green lines indicate the resulting
trajectories of 100 moving episodes using the A3C
and the proposed methods (called “A3C,” “Proposed
method,” and “Proposed method (no LSTM)” in Fig-
ures 9, 10, and 11, respectively).

Although the results are not clearly different from
each other, they show that the proposed method is
slightly better than any other method before the en-
vironmental change. After the change, the proposed
method can converge to the minimum number of
steps. In particular, the variance of the results using
the A3C algorithm and the proposed method without
the LSTM module is larger than that of the proposed
method. As for the acquired rewards, the results are
obtained in the same manner as the spent step and the
convergence of the proposed method is better.

6.4 Discussion

Those results show that the proposed method per-
forms better than PMRL-OM to enable the agents to
learn optimal policies.

6.4.1 Effectiveness of LSTM

In this section, we discuss which layers should be in-
serted using LSTM through an experiment comparing
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Figure 9: Result of spent step. Figure 10: Result of profit (Agent A). Figure 11: Result of profit (Agent B).

Figure 12: Results of spent steps (in the experiment of
LSTM).

the agents’ performance with different LSTM posi-
tions in the proposed method. There are three cases:
(1) one is the proposed method; (2) another is which
network uses the inserted LSTM in the previous pol-
icy output; and (3) the other is for the value output.
Figure 12 shows the experiment results. The verti-
cal and horizontal axes denote the spent steps and
episodes, respectively. The blue, orange, and green
lines indicate the resulting trajectories of 100 mov-
ing episodes for the cases (1), (2), and (3) (“hidden,”
“policy,” and “value,” respectively). The hidden re-
sult is the best, while the policy result is better than
value. However, the value result is better than the
policy result after the environmental change, it is the
worst because the agents cannot learn a cooperative
policy. This finding is because the state value en-
ables the A3C algorithm for stable learning to con-
verge the agents’ learning results to the worst result.
Therefore, case (1) enables the agents to abstract the
hetero-transition information in their input. In case
(2), LSTM cannot abstract the policy output by insert-
ing the previous policy output. Because the environ-
mental change occurred according to the total number
of steps; this happened late during the situation where
the agents using the proposed method can achieve the
change using smaller steps than any other agents for
each episode.

6.4.2 Limitation of Hetero Information

In Figure 9, the convergence is different between be-
fore and after the environmental change because the
first maze is more difficult than the other mazes. In
particular, it is difficult for Agent A to reach Goal
Y for 14 translations using hetero-observation. Thus,
the proposed method has a limitation of scale when
using the hetero-transition. In this section, we ex-
amine the comparison of the proposed method and
that without the LSTM module in the different mazes
(Figure 13, where the setup is in the same manner as
subsections 6.1 and 6.2.)

Figure 13: Simple environment.

Figure 14 shows the result. The vertical and hor-
izontal axes denote the spent step and episodes, re-
spectively. The blue and orange lines indicate the
resulting trajectories of 100 moving episodes with
the proposed method and without the LSTM mod-
ule (called “LSTM” and “Dense”), respectively. From
these results, the result of the proposed method with-
out the LSTM module obtains some steps. On the
other hand, the agents cannot cooperate with each
other in some steps, e.g., in 0.75e + 6, before the
experimental change, and the result could not con-
verge to the minimum number of spent steps after
that. On the other hand, the proposed method enables
the agents to learn to cooperate and the optimal pol-
icy and convergence. The environmental change oc-
curred by the total number of steps, which happened
late in the situation where the agents using the pro-
posed method can reach the change with fewer steps
than any others for each episode.
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Figure 14: Spent step results (in the simple maze experi-
ment).

7 CONCLUSION

This paper proposed a method based on the previous
noncommunicative and cooperative learning method
(PMRL-OM) based on DRL (A3C) in a multiagent
system within an unstable environment in terms of
hetero-transitions using different transitions accord-
ing to the difference between observed and recent sit-
uations. The proposed method inserts an LSTM mod-
ule into the A3C neural network. The experiments
compared the proposed method with A3C and with-
out the LSTM module. The derived results were as
follows: (1) the proposed method performs better than
the A3C algorithm and without the LSTM module. In
particular, the proposed method enables the agents’
learning to converge; (2) LSTM can adapt the time
dimension of the input information.

This paper showed that the proposed method can
not only adapt the hetero-transition of input informa-
tion, but should also adapt the hetero-transition of out-
put information. In particular, the hetero-transition
should be assumed as a partially observable Markov
decision process (POMDP), but the proposed method
performs as a Markov decision process. Therefore,
we will expand the proposed method to POMDP to
adapt the hetero-observations in the future.
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