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Abstract: Early detection of video game display corruption is essential to maintain the highest quality standards and to
reduce the time to market of new GPUs targeted for the gaming industry. This paper presents a Deep Learn-
ing approach to automate gameplay corruption detection, which otherwise requires labor-intensive manual
inspection. Unlike prior efforts which are reliant on synthetically generated corrupted images, we collected
real-world examples of corrupted images from over 50 game titles. We trained an EfficientNet to classify
input game frames as corrupted or golden using a two-stage training strategy and extensive hyperparameter
search. Our method was able to accurately detect a variety of geometric, texture, and color corruptions with a
precision of 0.989 and recall of 0.888.

1 INTRODUCTION

With high-performance GPUs being widely used in
the gaming community, it is crucial for graphics card
companies to rigorously test their products on a va-
riety of video games to ensure the highest standard
of user experience. The codebase behind graphics
drivers often comprises of several thousand lines of
code, which makes driver updates susceptible to in-
troducing bugs that lead to corruption in the graphics,
commonly known as ‘glitches’.

Catching such corruption entails test plans that
can easily span thousands of different configurations
on a multitude of game titles and test machines, mak-
ing manual gameplay testing time consuming and la-
bor intensive. Thus, automatically detecting corrup-
tion in the video games being tested is critical to ac-
celerating the time to market of graphics drivers.

Due to the scarcity of real corruption in rendered
video game graphics, previous work has focused on
generating synthetic corruption as a surrogate and de-
veloped methods to detect those artificially generated
malfunctions (C. Ling and Gisslén, 2020), (P. Davar-
manesh and Malaya, 2020). However, generating the
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synthetic data is a non-trivial task since it involves
writing generators for each type of corruption by do-
main experts. Substantial effort would be needed to
generate a synthetic dataset fully representative of
the corruption types and the variations observed in
the real world which makes this process both ex-
pensive and time consuming. Hence, in this paper,
we lay out a workflow for collecting real graphical
glitches from gameplay scenarios (shown in Fig. 1)
and demonstrate that Deep Convolutional Neural Net-
works (DCNN) can effectively detect such corruption
in actual video game images.

The main contributions of this paper are as fol-
lows:

• We propose a data collection workflow to collect
real corrupted images encompassing a variety of
corruption types from multiple game titles includ-
ing different genres, viewpoints, and modes.

• We propose a two-stage training mechanism com-
prising of transfer learning and finetuning and
highlight its efficacy over a single-stage training.

• We provide a detailed comparative study of sev-
eral neural network architectures to detect cor-
rupted images and show that EfficientNet (Tan
and Le, 2019) is better suited for this task.

• We demonstrate the use of Grad-CAM to interpret
the network’s predictions.
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Figure 1: Data collection workflow.

2 RELATED WORK

In recent years, there has been an increased interest
in applying deep learning to visual defect detection
tasks. This approach has the advantage of being able
to find defects that cannot be detected by traditional
computer vision algorithms (Y. Chen and Ho, 2019).
In (E. McLaughlin and Narasimhan, 2019), a neural
net is used for the pixel-wise segmentation of infra-
red images of concrete delamination, while (Y. Chen
and Ho, 2019) focused on the detection of surface
scratches on plastic housings.

In the context of optical defect detection in video
games, leveraging traditional methods would re-
quire specialized algorithms, such as corner detection
(A. Nantes and Maire, 2008), to find different types of
corruption. In contrast, (A. Nantes and Maire, 2013)
proposed to use the game’s internal state in addition to
the rendered game graphics and leveraged multi-layer
perceptrons (MLP) and self-organizing maps (SOM)
to predict the presence of glitches.

Departing from previous approaches, (C. Ling and
Gisslén, 2020) explored the use of DCNN to infer the
presence of graphical malfunctions directly from the
game’s visual output, without the need for specialized
pre-processing or extra information about the game
state. This approach, being agnostic of what game
is being tested and its internal mechanics, is highly
versatile. While (C. Ling and Gisslén, 2020) demon-
strated the effectiveness of DCNNs in detecting ar-
tificially generated corruption, our work focuses on

Figure 2: Distribution of corruption types.

collecting real graphical corruption from a large va-
riety of games and demonstrating the performance of
DCNNs in a real-world setting.

3 DATA

3.1 Data Collection Workflow

Collecting a large, labeled dataset is an essential step
towards training a DCNN. Though generating syn-
thetic corrupted images is an option (C. Ling and
Gisslén, 2020), (P. Davarmanesh and Malaya, 2020),
since there are a variety of corruption types, a large
effort is needed to generate corrupted images resem-
bling real counterparts. Hence, in this work, we pro-
pose a procedure to collect real corrupted images.
Since corruption rarely occurs in actual gameplay,
collecting a large dataset of real glitches is challeng-
ing and involves playing games repeatedly. Hence,
we designed a systematic data collection process in
which repeating the gameplay and recording the ren-
dered visual output is automated. The block diagram
of our Data Collection Workflow is shown in Fig. 1.
This process starts with selecting a test system with
suitable hardware and display configurations. Next,
the game client and the game under test are installed.
Then an automated script starts the actual gameplay.
To progress through the game, the script executes a
series of pre-recorded commands consisting of timed
keystrokes and mouse clicks. In parallel, the script
also captures screenshots of the gameplay at regular
intervals and stores them. At the end of the game,
saved images are manually evaluated for the pres-
ence of display corruption and each image is labeled
as corrupted or golden (not corrupted). Since the
corruption occurrences are independent of the hard-
ware or driver configurations, this process was re-
peated for different combinations of hardware config-
urations, driver versions, game titles, and game set-
tings to produce the labeled dataset required for this
work. In order to collect the data for multiple game
titles, separate sets of pre-recorded commands were
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(a) Shader artifacts. (b) Square patches. (c) Shape artifacts. (d) Missing texture.

(e) Screen stuttering. (f) Texture overlay. (g) Pixel corruption. (h) Discoloration.
Figure 3: Examples of corrupted images.

prepared for each game.

3.2 Corruption Types

Our dataset is comprised of 2,087 real corrupted im-
ages and 6,000 golden images. While different char-
acterizations of corruption exist, our categorization
is similar to that in (P. Davarmanesh and Malaya,
2020). The distribution of the corruption types within
our dataset is presented in Fig. 2. Broadly, glitches
manifesting in distinct geometric patterns were sub-
categorized as Shader Artifacts, Square Patches, and
Shape Artifacts. Similarly, texture malfunctions were
subdivided as Missing Texture, Screen Stuttering, and
Texture Overlay. Further, color rendering issues had
two subtypes: Pixel Corruption and Discoloration.

(a) Corrupted image. (b) Golden image pair.

(c) Corrupted image. (d) Golden image pair.

Figure 4: Examples of corrupted and golden image pairs.

Some examples of corrupted images are shown in Fig.
3. While some images had more than one corruption
types (Fig. 3g has both Pixel Corruption and Discol-
oration), others were random and were hard to cate-
gorize into any of the classes. Unclassifiable images
were aggregated as Other Corruptions (see Fig. 2).

3.3 Golden Images

We refer to uncorrupted images as golden. Unlike
corrupted images, we can generate an arbitrarily large
number of new golden images by rerunning different
game titles. However, these images are likely to be
quite similar to the earlier runs. Further, since the
screenshots are taken at a rate of one per second or
faster, adjacent frames of a gameplay run are likely
to be similar as well. To reduce this redundancy in
the dataset, for every image we computed its Struc-
tural Similarity Index Measure (SSIM) (Z. Wang and
Simoncelli, 2004) against the remaining images and
filtered out the those with SSIM greater than a thresh-
old. Of the filtered data points, we randomly selected
6,000 golden images.

Since the images of both classes were derived
from the same set of game titles, several of the cor-
rupted images had a corresponding golden counter-
part in the dataset. We believe this helped the net-
work learn the difference between the classes and to
produce more generalized model. Fig. 4 shows some
examples of these pairs.

3.4 Game Titles

The dataset consisted of images from over 50 differ-
ent game titles. Games included different genres (first
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(a) Game titles distribution categorized by genre, view type, and player type.

(b) Corrupted images distribution categorized by genre, view type, and player type.

Figure 5: Distribution of game titles and corrupted images.

Figure 6: Two-stage training.

person shooter, racing etc.), multiple viewpoints (first
person, third person, strategy, etc.), and modes (sin-
gle player, multiplayer, or both). The distribution of
the titles with respect to these properties is shown in
Fig. 5a. Additionally, the distribution of corrupted
images by game title categories is shown in Fig. 5b.
Though several corrupted samples were from the rac-
ing genre, these images exhibited a variety of corrup-
tion types.

3.5 Training, Validation, and Test Split

Prior to training, 6,000 golden images of our dataset
were randomly split into training, validation, and
holdout test sets in a 0.75 : 0.1 : 0.15 ratio. The same
ratio was applied to split the 2,087 corrupted images.

4 METHODOLOGY

Corruption in video games manifests in several forms,
impacting the image quality in varying degrees of
severity. While in some cases distortions are local-
ized to a small image region, in others the entire im-
age may be impacted. Hence, sophisticated scene-
understanding capabilities are needed to detect cor-
ruption accurately. To meet these challenges, we pro-
pose a DCNN binary classifier which will analyze
individual frames captured during gameplay for the
presence of corruption.

We decided to treat this task as a binary classifi-
cation rather than a multi-label classification problem
for two reasons. Firstly, in the GPU testing work-
flow, corruption seldom occurs and even so, any im-
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Table 1: High-performing models with hyperparameters and validation metrics.

Number of
Parameters Network Input size Class weights

(golden, corrupted)
Validation

Precision Recall F1-score Accuracy
3.5M MobileNetV2 512×512 1,1 0.994 0.871 0.928 0.962
8.1M DenseNet121 768×768 400,1 0.994 0.888 0.938 0.967
9.2M EfficientNetB2 768×768 1,1 0.994 0.899 0.944 0.970
14.3M DenseNet169 896×896 200,1 0.994 0.871 0.928 0.962
20.2M DenseNet201 512×512 400,1 0.994 0.865 0.925 0.961
25.6M ResNet50V2 1280×720 1,1 0.988 0.893 0.938 0.967
44.6M ResNet101V2 896×896 1,1 0.975 0.871 0.920 0.958
60.4M ResNet152V2 768×768 400,1 0.994 0.904 0.946 0.972
138.4M VGG16 896×896 1,1 0.987 0.880 0.930 0.964
143.7M VGG19 512×512 1,1 0.993 0.820 0.898 0.948

Table 2: Test set metrics for EfficientNetB2.

Network Test
Prec. Recall F1-score Acc.

EfficientNetB2 0.989 0.888 0.936 0.970

age flagged as corrupted will be manually inspected
by a human capable of distinguishing between vari-
ous corruption subtypes. Hence, the main objective
of the ConvNet for this application is to detect the
presence of corruption, regardless of which subtype
it belongs to. Secondly, training a multi-label clas-
sifier requires a large number of training samples for
each class. However, the distribution of the collected
images indicates a significant imbalance, with some
corruption subcategories comprising of much fewer
samples than others (Fig. 2).

4.1 Two-stage Training

Our method for detecting corrupted video game
frames relies on transfer learning and finetuning. We
propose to train the DCNN in two stages. In the first
stage, we initialize the network with ImageNet pre-
trained weights and train it for few epochs with the
entire network’s weights frozen, except the classifier
layer weights. In the second stage, we restart the
training with the trained weights from the first stage,
while bringing the following three changes. Firstly,
we train the network end-to-end allowing the train-
ing process to alter the weights of all the layers. Sec-
ondly, we reduce the learning rate to a much lower
value compared to the first stage. Finally, we signif-
icantly increase the number of training epochs. This
process is depicted in the block diagram shown in Fig.
6.

4.2 Network Selection and
Hyperparameter Tuning

Since the introduction of AlexNet (A. Krizhevsky and
Hinton, 2012), DCNNs have been employed in innu-
merable computer vision applications. Further, many

successful improvements of AlexNet also have been
proposed in the literature. In this work, we explored
several of these well-known architectures including
VGGNet (Simonyan and Zisserman, 2014), ResNet
(K. He and Sun, 2016), DenseNet (G. Huang and
Weinberger, 2017), MobileNet V2 (M. Sandler and
Chen, 2018), and EfficientNet (Tan and Le, 2019).

While the choice of the architecture was one of the
important hyperparameters, we trained a wide variety
of models by varying:

• number of layers in the classifier head;

• number of units in each layer;

• input image size;

• class weights;

• learning rate;

• batch size;

• alpha parameter controlling the width of Mo-
bileNet V2.

4.3 Model Selection

The process of testing GPUs involves running several
game titles on different hardware and driver config-
urations repeatedly. This process generates a large
number of images which are evaluated by the deep
learning model and the images flagged as corrupted
will be manually verified prior to further defect triag-
ing. In order to reduce this manual effort in triaging,
we prioritized reducing the number of false positives
(i.e., golden images predicted as corrupted). Hence,
we focused on improving the precision (1) of the
model over the recall (2).

Precision =
T P

T P+FP
(1)

Recall =
T P

T P+FN
(2)

We used the Adam optimizer (Kingma and Ba,
2014) and minimized the sigmoid cross-entropy loss
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(a) Precision-recall curve. (b) Receiver Operating Characteristic (ROC) curve.

Figure 7: Test set metrics for EfficientNetB2.

to train the model. During the first phase of training,
the model was optimized for the validation F1-score.
In the second phase, the optimizer maximized the pre-
cision to a predefined threshold (0.99) and then picked
a model with optimal recall such that the precision
remained higher than the aforementioned threshold.
The learning rate was lowered by a factor of 100 dur-
ing this step. During both phases of the training, to
achieve better generalization, data augmentation was
carried out on the dataset. However, the augmentation
was restricted to flipping images horizontally and ver-
tically. Other augmentation techniques, such as image
translation and shear resulted in images resembling
corrupted images and hence were excluded.

5 RESULTS

We conducted a wide range of experiments and sum-
marized our findings for high-performing models in
Table 1. Having focused on maintaining precision
above a threshold during training, we notice the pre-
cision on the validation set is significantly higher than
the recall.

Two models, EfficientNetB2 and ResNet152V2,
outperformed other architectures on the validation set.
Having 6× fewer parameters than ResNet152V2 (see
Table 1), EfficientNetB2 is lighter on memory and
faster at inference time. Hence, we find that Efficient-
NetB2 is better suited to the task at hand. For the

Figure 8: Validation F1-Score for single-stage and two-
stage training.

chosen EfficientNetB2 model, hyperparameter val-
ues were as follows: Image size of 768× 768, equal
class weights, learning rate of 0.001, batch size of 8,
and the classifier head comprised a single sigmoid-
activated unit.

We further evaluated EfficientNetB2 on the hold-
out test set comprising of 300 corrupted images and
900 golden images. From Table 2, we observe that the
model has successfully generalized to unseen data,
achieving a precision of 0.989 and recall of 0.888.
From Fig. 7a and Fig. 7b, the model also achieved
an Average Precision of 0.968, with the area under
its Receiver Operating Characteristic (ROC) curve at-
taining 0.978.

The main benefit of our two-stage training is that
it provides significantly higher accuracy compared
to single-stage training. In our experiments, with
single-stage training we noticed that model accuracy
plateaus beyond certain epochs. Training in two
stages instead yielded more accurate models. The val-
idation set F1-score progression for a typical train-
ing session for single-stage and two-stage training is
shown in Fig. 8.

Fig. 9 and 10 show the breakdown of correct and
incorrect predictions made by the model on corrupted
images in the test set. The model exhibits excellent
prediction capabilities on most of the corruption cate-
gories, except for Discoloration and ’Other Corrup-
tions’. We attribute the poor performance on im-
ages with Discoloration to the relatively small num-

Figure 9: Distribution of correct and incorrect predictions
across corruption types in the test set.
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Figure 10: Distribution of correct and incorrect predictions across game title categories in the test set.

ber of images with discoloration in the training set
(see Fig. 2). A similar argument can be applied to the
’Other Corruptions’ category as it consists of images
each displaying different subtypes of corruption, with
each subtype appearing less often. On the other hand,
game title category does not appear to have much im-
pact on the model performance (see Fig. 10).

Having established that the model performed bet-
ter for categories comprising of larger training sam-
ples, we conjecture that, given sufficient training data
for each corruption type, a DCNN can achieve very
high performance in detecting real display corruption.

Note that, in (C. Ling and Gisslén, 2020), authors
found that ShuffleNet V2 (N. Ma and Sun, 2018) pro-
vides optimal performance on their synthetic dataset.
To the best of our knowledge, a reliable implemen-
tation of (C. Ling and Gisslén, 2020) is not publicly

(a) Screen stuttering. (b) Grad-CAM heatmap.

(c) Pixel corruption. (d) Grad-CAM heatmap.

(e) Screen tearing. (f) Grad-CAM heatmap.
Figure 11: Corrupted images with corresponding Grad-
CAM heatmaps.

available. Hence, we have not included a compari-
son between ShuffleNet V2 and EfficientNetB2. Fur-
ther, the authors also state “MobileNet V2 (Sandler
et al. 2018) achieved similar performance as Shuf-
fleNet V2, although with slower training times”. Ad-
ditionally, the results in Table 1 indicate that Efficient-
NetB2 outperforms MobileNet V2 in terms of both
F1-score and accuracy. Hence, we conclude that Effi-
cientNetB2 is better suited for corruption detection in
images.

5.1 Interpretability

Interpretability plays a major role in the adoption of
machine learning solutions to provide actionable in-
sights in model predictions. In our work, we lever-
age Grad-CAM (Gradient-weighted Class Activation
Mapping) proposed by (R. Selvaraju and D.Batra,
2017) to produce a heatmap-like visualization that
highlights regions contributing to the prediction.

Fig. 11 shows heatmaps generated via Grad-CAM
on EfficientNetB2. We observe that the model cor-
rectly gives high importance to regions presenting ei-
ther (i) corruption (Fig. 11b and Fig. 11d) or (ii) a
transition from a non-corrupted to a corrupted area
(Fig. 11f).

A DCNN otherwise acting as a black-box, we
argue that providing this level of interpretability in-
creases the confidence of game testers in leveraging
deep-learning approaches to automate the detection of
display corruption. Further, Grad-CAM can be used
as a helpful tool to determine the reason for model’s
wrong predictions and further improve the model.

6 CONCLUSION

We have presented a deep learning approach to au-
tomatically detect real video game display corrup-
tion and trained an EfficientNet achieving precision
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of 0.989 and recall of 0.888 on this task.
While previous approaches focused on artificially

generated corruption, our study presents a workflow
for collecting real display corruption of various types
from a vast range of video games while using Struc-
tural Similarity Index Measure (SSIM) to ensure the
collected images are visually diverse. We presented
a two-stage training procedure and demonstrated its
effectiveness through a variety of neural networks
achieving high validation performance. We presented
the distribution of correct and incorrect predictions on
corrupted images for our top-performing model and
argued that, with sufficient training data per corrup-
tion type, a DCNN can be successfully trained to de-
tect a wide variety of graphical malfunctions. Finally,
we showed that Grad-CAM can be leveraged to pro-
vide interpretability in our neural net’s predictions.

7 FUTURE WORK

The main shortcoming of our pipeline is the gameplay
being highly scripted throughout the game tests. In
the future, we plan on extending our method to pro-
vide a gameplay testing experience close to human
behavior. This allows for more in-game exploration,
thus providing more visually varied gameplay scenar-
ios and a potentially diverse source of corrupted im-
ages.

Moreover, our current method detects corruption
in individual images without accounting for adja-
cent game frames. Incorporating video understanding
with Long-term Recurrent Convolutional Networks
(J. Donahue and Darrell, 2017) could provide valu-
able insights on the game context and potentially im-
prove the overall performance.

In this study, we treated the task at hand as a bi-
nary classification problem. Given sufficient data per
corruption category, a DCNN could be trained as a
multi-label classifier to effectively detect each corrup-
tion subtype separately. In GPU testing workflow, this
could further minimize the amount of manual triage
required upon the detection of visual corruption.
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