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Abstract: While the potential of deep learning(DL) for automating simple tasks is already well explored, recent research 
has started investigating the use of deep learning for creative design, both for complete artifact creation and 
supporting humans in the creation process. In this paper, we use insights from computational creativity to 
conceptualize and assess current applications of generative deep learning in creative domains identified in a 
literature review. We highlight parallels between current systems and different models of human creativity as 
well as their shortcomings. While deep learning yields results of high value, such as high-quality images, their 
novelty is typically limited due to multiple reasons such a being tied to a conceptual space defined by training 
data. Current DL methods also do not allow for changes in the internal problem representation, and they lack 
the capability to identify connections across highly different domains, both of which are seen as major drivers 
of human creativity. 

1 INTRODUCTION 

The year 2019 can be seen as the year when artificial 
intelligence(AI) made its public debut as a composer 
in classical music. On February 4th, Schubert’s 
unfinished 8th Symphony was performed in London 
after being completed by an AI system developed by 
Huawei (Davis, 2019). Later in April, the German 
Telekom announced their work on an AI to finish 
Beethoven’s 10th Symphony for a performance 
celebrating the 250 years since the birth of the famous 
German composer (Roberts, 2019). While the quality 
of the AI’s composition has been under scrutiny 
(Richter, 2019), it is nevertheless remarkable and 
resulted in the public and corporations' large interest 
in using AI for such creative fields. 

For a long time, creating and appreciating art was 
believed to be unique to humans. However, 
advancements in the field of computational creativity 
and increased use of artificial intelligence in creative 
domains call this belief into question. At the core of 
the current rise of AI is deep learning (DL), fuelled 
by increasing processing power and data availability. 
Deep learning went quickly beyond outperforming 
previous solutions on established machine learning 
tasks to enable the automation of tasks that could 
previously only be performed with high-quality 
outcomes by humans, like image captioning (You et 
al., 2016), speech recognition (Amodei et al., 2016), 

and end-to-end translation (Johnson et al., 2016). At 
the same time, advanced generative models were 
developed to generate images and sequences of text, 
speech, and music. Such models proved to be a 
powerful tool for creative domains like digital 
painting, text- and music generation, e.g., AI-
generated paintings have been sold for almost half a 
million USD (Cohn et al., 2018). But while these 
examples point to a high potential of DL in creative 
domains, there is so far no comprehensive analysis of 
the extent of its creative capabilities. A better 
understanding of the creative capabilities of deep 
learning is not only of general public interest, but it 
helps improve current generative DL systems towards 
more inherent creativity. It also helps companies 
better assess the suitability of adopting the 
technology. For example, it could be beneficial to 
integrate deep learning technology into creative 
human workflows, e.g., to provide suggestions for 
improvement to humans (Schneider, 2020). As any 
technology can be abused as well, an understanding 
of the creative potential is also relevant to anticipate 
and protect against malicious intent, e.g., in the form 
of deception (Schneider, Meske et al., 2022). We, 
therefore, pose the following research question:   
 
To what extent does deep learning exhibit elementary 
concepts of human creativity? 
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To shed light on this question, we derive a 
conceptualization of human creativity based on 
computational creativity works and conduct a 
literature review on creative AI and applications of 
deep learning models. We also assess these works 
concerning creativity according to our 
conceptualization. 

We observe that generative DL models mimic 
several processes of human creativity on an abstract 
level. However, the architecture of these models 
restricts the extent of creativity far beyond that of a 
human. Their creative output is also heavily 
constrained by the data used to train the model 
resulting in relatively low novelty and diversity 
compared to the data. Furthermore, while in some 
domains creative solutions are of high value, e.g., 
generated images are of high quality, in other 
domains that require multiple sequential reasoning 
steps, they are limited in value, e.g., in storytelling, 
where they fail to capture a consistent theme across 
longer time periods. 

2 METHODOLOGY 

We first derive a conceptualization of human 
creativity consisting of 6 dimensions, based on 
established concepts from the computational 
creativity domain (Wiggins et al., 2006; Boden et al., 
1998). The concepts are rooted in human creativity. 
Therefore, they are not limited to a specific family of 
AI algorithms. They allow us to draw analogies to 
humans more easily. We conduct a qualitative 
literature review (Schryen et al., 2015) that focuses on 
creative AI and applications of DL models. We use 
the literature to refine our conceptualization and to 
build a concept matrix (Webster & Watson, 2002). 
We then support the validity of our framework by 
showing parallels with other theories of human 
creativity and investigating how DL ranks on each 
dimension of creativity of our conceptualization. 
For the literature review, we performed a keyword 
search on the dblp computer science bibliography 
(Ley et al., 2009), focusing on articles published in 
journals and conference proceedings. To capture an 
extensive overview of the literature on computational 
creativity the keywords “computational creativity” 
alongside combinations of the keywords “creativity 
AND (AI OR Artificial Intelligence OR ML or 
Machine Learning OR DL OR deep learning OR 
Neural Network)” were used. We limited our search 
to papers after 2010 as this was at the offset of the rise 
of deep learning (Goodfellow et al., 2016). From 
these, all papers that describe a creative design 

process that applied DL were manually selected. This 
left us with a list of 18 papers. It was enhanced 
through forward- and backward searches based on the 
18 identified papers. All in all, this process left us 
with a selection of 34 papers describing generative 
applications of DL.  

3 FRAMEWORK 

3.1 Creativity 

Boden et al. (1998) define a creative idea as “one 
which is novel, surprising, and valuable”. The two 
key requirements for creativity, novelty and value, are 
found in one way or another in most definitions of 
creativity. Thus, we define creativity as a process that 
generates an artifact that is both novel and valuable. 
In other words, creative artifacts must differ from 
previous artifacts in the same domain (novelty) while 
still fulfilling the purpose they were intended for 
(value). A random combination of shapes and colors 
in itself is, for example, not a creative piece of art, if 
the art’s purpose is to show an abstraction of an actual 
object or to elicit an emotional or aesthetic response 
in the observer. On the other hand, adding a few new 
lines to provide more details to an existing painting 
might change its aesthetic. However, it would hardly 
be considered novel. 

One can further categorize creativity by their 
output as mini-c, little-c, pro-c, and Big-C creativity 
(Kaufman & Beghetto, 2009). Mini-c and little-c 
creativity are concerned with everyday creativity. 
Little-c creativity is concerned with creative 
processes that generate tangible outputs, whereas 
mini-c only requires a novel interpretation of certain 
stimuli like experiences or actions. Big-C creativity is 
concerned with creative outputs that have a 
considerable impact on a field and are often 
connected with the notion of genius. Pro-c creativity 
is concerned with outputs by professionals 
recognized as being novel to a domain but without 
revolutionizing or strongly influencing the domain. 

3.2 Dimensions of Creativity 

Boden et al. (1998) define three types of creativity: 
combinational, explorational, and transformational 
creativity. All three mechanisms operate in a 
conceptual space. This conceptual space can be 
interpreted as the cognitive representation or neural 
encoding of a person's understanding of the problem 
domain. Wiggins et al. (2006) further clarify the 
definition of a conceptual space by introducing a 
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search space and a boundary. The boundary is a meta 
description that defines the boundary of possible 
search spaces. It contains all ideas of boundary 
definitions that a person can conceive of based on 
their problem or domain understanding. The search 
space defines all ideas that a creative person (or AI) 
can conceive of using a specific method of ideation. 
The search space is a subset of the conceptual space, 
while the boundary defines the extent of the 
conceptual space. For example, for playing chess, the 
boundary might be the number of rounds considered 
for the current board, e.g., player A moves a figure, 
player B moves a figure, etc. The search space would 
be the total number of moves. The left panel Figure 1 
shows our model of creativity based on the 
aforementioned computational creativity works. The 
problem (understanding) informs the boundary of the 
conceptual space, limiting the extent of all possible 
search spaces. Generic methods of ideation on a 
specific search space, i.e., the forming of concepts 
and ideas, result in creative solutions to the problem.  

3.3 Creativity Models: A Human and 
DL Perspective 

While the left panel in Figure 1 shows our model of 
creativity based on the computational creativity 
works, the right panel in Figure 1 shows a related 
model of creativity based on common concepts in 
machine learning. While we shall focus on 
computational creativity, since it is closer to a human 
notion of creativity, it is also insightful to derive a 
model of creativity inspired by machine learning.  

While computational creativity might be said as 
moving from more abstract, broad, non-
mathematically described human concepts of 
creativity towards a more concise computational 
perspective. The machine learning-based model 
might move from a mathematically well-defined, 
more narrow computational perspective of creativity 
towards human concepts. Therefore, the matching 
elements in both models, such as search space and 
parameters, are not identical.   Parameters are 
typically a set of real numbers within a DL model 
optimized in the training process using a well-known 
method, e.g., stochastic gradient descent in DL. In 
contrast to this mathematically sound but narrow 
view, the search space in computational creativity is 
vaguer and broader. The same logic for distinction 
applies when comparing the boundary restricting and 
defining the search space and the meta-parameters 
defining the DL model (and its parameters). We 
discuss this in more detail, focusing on generative 

deep learning, which we view as a key technology for 
creativity within DL. 

 
Figure 1: Creative process model as found in computational 
creativity inspired from humans (left) and a model inspired 
from machine learning (right); recursive connections are 
not shown. 

3.4 Parallels to Generative Deep 
Learning 

A key element of deep learning is representation 
learning (Bengio et al., 2013). Data is represented 
through a hierarchy of features, where each feature 
constitutes a frequent pattern in the data. Typically, 
for classification networks, layers closer to the input 
resemble simpler, less semantically meaningful 
samples than layers closer to the output. Generative 
deep learning networks are trained to approximate the 
underlying latent probability distribution of the 
training data with the learned representation. New 
outputs are generated by sampling from this 
distribution.  

By drawing parallels between generative DL and 
our framework, it becomes evident that the problem 
representation, which is encoded by the network 
parameters, can be seen as an equivalent to the search 
space in the creativity framework by (Boden et al., 
1998), where sampling from this distribution to 
generate new outputs can be seen as a process to 
generate new creative outputs. 

We can use meta-learning to find an equivalent to 
the boundary (Hospedales et al., 2020). Meta-learning 
differentiates between the model parameters θ and 
meta knowledge ω, which incorporates all factors that 
cannot directly be trained by training methods such as 
gradient descent, like the network architecture and 
models hyperparameters (Huisman et al., 2021). 
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Figure 2: Elements of the conceptualization expand the creative process model in Figure 1. 

 
Figure 3: (a) Interpolation and (b) Recombination in 2d feature space; Divergent and convergent (c) Exploration, (d) Search 
space transformation and (e) Boundary transformation. 

Meta-learning itself requires a concise, 
mathematical description, which limits the possible 
boundaries. Furthermore, this description originates 
from humans. The search space in Figure 1, from 
which solutions can be generated, relates to the 
network, i.e., its feature representation being 
equivalent to the fixed parameters of the model. The 
network features originate from the boundary using a 
training process and the training data. The network 
takes inputs and provides outputs. The search space 
corresponds to the set of all possible inputs that the 
network can process. 

3.5 Creative Processes 

Next, we introduce the dimensions, which describe 
the creative process and categorize existing works on 
DL for creative domains. A summary is shown in 
Figure 2.  

Exploration: Explorational creativity describes 
the process of generating novel ideas by exploring a 
known search space.  Solutions that are hard to access 
in a specific search space are generally more novel, 
especially considering the perspective of other 
creators that work in the same search space (Wiggins 
et al., 2006). Therefore, this category can include any 

search strategy if it does not manipulate the search 
space. In theory, the most creative solution might be 
found by investigating all possibilities, but this is 
computationally infeasible due to the size of the 
search space. A good strategy can narrow the search 
space to more novel and more valuable sub-spaces. 

Combination: Combinational creativity 
describes the process of combining two or more 
known ideas to generate novel ideas. Ideas can be 
combined, if they share inherent conceptual structures 
or features (Boden et al., 1998). Low creativity is 
indicated by combining similar ideas. High creativity 
is indicated by combining diverse ideas (Ward & 
Kolomyts, 2010). As the specific combination 
process is left general, this can include several 
processes that interpolate between features (Figure 
3a) or recombine features (Figure 3b) of known 
solutions. Identifying a solution using “analogies” is 
an example of combinational creativity (Ward & 
Kolomyts, 2010). 

Combination and transformation are not 
exclusive. In fact, in the geneplore model conceptual 
combinations and analogies are considered as one 
way to explore new ideas (Ward & Kolomyts, 2010). 

Transformation: Transformational creativity 
describes the process of transforming the conceptual 
space of a problem. This change of the conceptual 
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space can be achieved by “altering or removing one 
(or more) of its dimensions or by adding a new one” 
(Boden et al., 1998). Wiggins et al. (2006) further 
differentiate between transformations of the search 
space, which we call Search Space Transformation, 
and transformations of the boundary of the conceptual 
space, which we denote as Boundary Transformation. 
More fundamental changes to the conceptual space, 
like the change of several dimensions or bigger 
changes in one dimension, lead to the possibility of 
more varying ideas and, thus, have a higher potential 
for creative outputs (Boden et al., 1998). Therefore, 
boundary transformations have a higher potential to 
lead to a paradigm shift (Wiggins et al., 2006). 

Based on our definition, a creative solution has to 
be both novel and valuable. We introduce two related 
dimensions to analyze how these two requirements 
can be met by existing DL systems. One emphasizes 
covering the entire space (diversity) and the other 
moving towards the best, locally optimal solution.  

Divergence is based on the concept of divergent 
thinking, which describes the ability to find multiple 
different solutions to a problem (Cropley et al., 2006). 
Divergence increases the chance of finding more 
diverse and thus novel solutions.  

On the other hand, convergence is concerned 
with finding one ideal solution and is based on the 
concept of convergent thinking (Cropley et al., 2006). 
Convergence increases the value of the solution. We 
apply these two dimensions to the categories based on 
(Boden et al., 1998). 

Figure 3c) visualizes how convergent exploration 
is guided towards a local optimum, while divergent 
exploration covers a wider search area, potentially 
leading towards the global optimum. Figures 3d) and 
e) visualize convergent and divergent search space 
and boundary transformation.  

In the following chapters, we will discuss how 
and to what extent these different types of creativity 
have been achieved in generative deep learning 
systems. 

4 FINDINGS  

The findings based on our literature review indicate 
that generative DL is a valuable tool for enabling 
creativity. DL is aligned with basic processes 
proposed in models of human creativity. However, 
while human and AI creativity depends on problem 
understanding and representation, contextual 
understanding is far more limited in current DL 
systems (Marcus et al., 2018). The network is 
constrained by its training data, lacking the ability to 

leverage associations or analogies related to concepts 
not contained in the data itself. The boundary is much 
more narrow for DL systems than for humans.   

Combination: The most common way to 
combine the latent representation of two objects is by 
using autoencoders. In this case, the latent low 
dimensional representation of two known objects is 
combined by vector addition or interpolation. This 
new latent vector has to be fed back into the decoder 
network to generate a novel object. An example of 
this is (Bidgoli & Veloso, 2018), where an 
autoencoder is trained to learn a latent representation 
to encode 3D point clouds of a chair. A user can then 
combine two chairs by interpolating between their 
latent representations. Several cases in molecule 
design are also based on autoencoders (Gómez-
Bombarelli et al., 2018; Kusner et al., 2017; 
Polykovskiy et al., 2018). These types of 
combinations only achieve convergence as they only 
generate one combination of the two objects. 
Divergence can be achieved by changing the degree 
to which the latent dimensions of each input vector 
contribute to the combined. Human operators can 
manually control the former. 

Combining a trained representation with an 
unknown input is mostly used in recurrent networks. 
Here the network is trained to predict the next element 
in a sequence. This method is mostly used in the 
language and music domain. Thus, a sequence often 
consists of letters, words, or musical notes. By 
providing a new initial sequence for the network to 
base its prediction on, the contents of this sequence 
are combined with the representation the network has 
learned of its training set. One example of this is 
(Mathewson & Mirowski, 2017), where human actors 
give the input for a network trained on dialogues. 
Another prominent example is botnik, a comedy 
writing support system, which uses a sequence 
network to learn a specific writing style. The system 
then combines this style with text input provided by 
human operators, generating new texts in the 
provided style. While this technique converges 
towards texts of the trained style, interfaces that let 
human operators choose between the most likely next 
elements of the sequence can introduce divergence to 
the process. Another way to use recurrent networks 
for combinational creativity is to use the entire 
network for encoding sequential objects. For 
example, Wolfe et al. (2019) use this technique to 
encode sequences of gears as recurrent neural 
networks. By recombining the parameters of different 
networks, they generate novel sequences. A more 
complex type of combination is achieved by using 
style transfer (Gatys et al., 2016). Here a network is  
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Table 1: Concept matrix of the reviewed literature. 

 
 

trained in a way that allows it to contain a separate 
representation for the style and the content of an 
image. These separate representations can be used to 
combine the content of one image with the style of 
another one. The most common application of these 
networks is to combine the contents of photographs 
with the style of paintings to generate paining like 

images of a real-world scene (DiPaola & McCaig, 
2016). Similar architectures as for style transfer have 
also been used for numerous other problems, e.g., for 
unsupervised domain adaptation and even domain 
prediction (Schneider, 2021). In this case, a DL 
network might learn to generate samples by 
identifying and relating concepts from different 
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domains evolving and anticipating their future 
evolution. 

 Both autoencoders (Bidgoli & Veloso, 2018) 
and recurrent networks (Wolfe et al., 2019) can be 
used to achieve conceptual combinations within a 
narrow domain, i.e., characteristics (or features) 
found in the training data. Combinations across 
domains, i.e., from two (very) different training 
datasets, were only done using style transfer networks 
(Gatys et al., 2016). However, these are still restricted 
to similar domains (e.g., photographs and paintings). 
This shows that combinational creativity in DL is 
limited to similar concepts and domains, while 
humans can form analogies between more different 
domains. 

While many of these instances are limited to 
combinations of objects in the same or familiar 
domains, style transfer is an example of combining 
two different frames of reference as proposed by 
conceptual combination theory (Ward & Kolomyts, 
2010). 

Exploration: In generative neural networks, 
explorational creativity can be achieved by searching 
for new elements in the latent representation learned 
by the network. The most common way this 
exploration is implemented in deep learning systems 
is by introducing an element of randomness. For 
autoencoders, random samples from the learned latent 
distribution are fed into the decoder network. 
Generative Adversarial Networks (GANs) usually 
use the same process by sampling from the input 
distribution to the generator network. For sequential 
data, recurrent neural networks (RNNs) can be 
trained to predict the next elements in a sequence. 
Using randomly initialized sequences, new sequences 
can be generated (Graves et al., 2013). The initial 
element of a sequence is randomly generated and 
used to predict the most likely consecutive elements 
under the data representation learned by the model. 
This sampling process from a latent space can be 
interpreted as an instance of random search (Solis and 
Wets 1981). However, instead of searching the 
problem space, the lower-dimensional representation 
learned by the network is searched. Due to the use of 
random search, these methods do not converge 
towards an optimal output and can only ensure 
divergence. 

Convergence can be added to the exploration of 
the search space by applying more complex search 
algorithms. Examples are using gradient search 
(Bidgoli & Veloso, 2018) or even reinforcement 
learning (Olivecrona et al., 2017). A special case of 
exploration that takes the novelty of the generated 
example into account is the application of 

evolutionary algorithms in combination with neural 
networks. This shows that, while most baseline 
instances of explorational creativity in DL are limited 
to simple random search processes, more complex 
search strategies are possible in the search space 
defined by the network’s features. Thus, the extent of 
creativity achieved via exploration is mostly limited 
by transformational creativity. 

Search Space Transformation: Autoencoders 
are initially trained to learn a latent data 
representation. The decoder ensures that the 
reconstructions from this latent space belong to the 
same distribution as the training data, thus ensuring 
convergence towards the training data set while 
leaving divergence to the exploration of the trained 
latent representation. For sequential data, recurrent 
neural networks (RNNs) can be trained to predict the 
next elements in a sequence, thus enabling a 
convergent search space transformation (Graves et 
al., 2013). 

Generative Adversarial Networks (GANs) are 
trained to generate outputs from the same distribution 
as the training data out of random inputs. In addition 
to the generator network, a discriminator network is 
trained to differentiate the generator's output from 
real data. In this way, the performance of the 
discriminator improves the quality of the generators’ 
outputs (Goodfellow et al., 2014). In contrast to 
autoencoders, GANs already contain divergent 
processes in the training phase. Already during 
training, the generator is passed randomly sampled 
inputs, adding a divergent element to the parameter 
training. The convergence of these outputs is 
achieved by training the generator to produce outputs 
indistinguishable from the training data. Still, it is 
very difficult for GANs to produce realistic diverse 
images such as natural images. According to Wang et 
al. (2021), achieving this “Mode Diversity” is one of 
the most challenging problems for GANs.  SAGAN 
and BigGAN address this issue with specific model 
architectures, while SAGAN and BigGAN apply 
CNNs with self-attention mechanisms to increase 
diversity. 

Elgammal et al. (2017) make use of theories on 
creativity to extend GANs to creative GANs. They 
added network loss, penalizing outputs that fit well 
into a known class structure expected to encode 
different styles. By optimizing the GAN to generate 
outputs with a high likelihood perceived as art but 
with a low likelihood fit in any given artistic style, 
they aim to optimize the arousal potential of the 
resulting image for human observers. 

In reinforcement learning, where an agent 
interacts with the environment based on rewards, 
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exploration is explicitly encoded in the agents’ 
behavior. This is done to prevent the agent from 
learning suboptimal strategies due to limited 
knowledge of the environment (Sutton & Barto, 
2011). In reinforcement learning, the interaction 
between convergence and divergence can be seen as 
equivalent to the tradeoff between exploration and 
exploitation. 

 We can see that convergent search space 
transformation is achieved in almost all examples by 
the standard training mechanisms of neural networks. 
To achieve divergence, more complex architectures 
or loss regularizations are required. However, in most 
cases, convergence is limited to ensuring similarity 
with the training data. The only example we could 
find that actively trained a network towards novelty 
of the outputs and can therefore be considered as 
divergent search space transformation was achieved 
using an alternative training mechanism for neural 
networks based on evolutionary algorithms (Wolfe et 
al., 2019). 

Boundary Transformation: Honing theory 
describes a recursive process in which the problem 
domain is reconsidered through creation, which in 
turn is based on the current understanding of the 
problem domain (Gabora et al., 2017). In GANs the 
interaction of the generator and the discriminator can 
be interpreted in the same way. The understanding of 
the problem domain is given by the discriminator's 
ability to decide between a true and a fake object. The 
generator's goal is always to generate realistic objects 
under the model of the problem domain. By using 
feedback of the discriminator based on the generated 
objects, the domain model, i.e., the generator, is 
altered. In deep reinforcement learning, a similar 
effect can be observed as the loss of the policy or 
value network changes with discovering additional 
states and rewards. However, on a higher level, the 
overall task of the network still stays the same, 
whether it is generating realistic outputs for GANs or 
maximizing the rewards for reinforcement learning. 
Segler et al. (2017) introduce a mechanism similar to 
Honing to the task of sequence learning. They first 
train an RNN to generate molecule sequences using a 
large and general training set of molecules for 
training. They then use an additional classification 
system to filter all highly likely molecules to show a 
required attribute from all randomly generated 
examples. For Honing their generator, they fine-tune 
the RNN only on this set of selected molecules. This 
process is iteratively repeated several times.  

However, as these mechanisms only impact the 
training mechanism by generating new training data, 
they can only impact one aspect of the boundary. 

Additionally, both these mechanisms only transform 
the boundary in a convergent fashion. They further 
restrict the conceptual space towards containing 
valuable solutions at the cost of novelty. More 
complex boundary transformations still require either 
a human operator's choices or can be achieved 
through meta-learning. 

Convergence/Divergence: Divergence in a given 
search space relies heavily on random inputs. While 
there are complex methods to achieve convergence in 
a given search space (Olivecrona et al., 2017), few 
applications use them. Transformation of the search 
space is mostly limited to convergence. This holds 
even more for transformations of the boundary. DL 
techniques do not enforce divergent transformations. 
While this might be achieved by adding 
regularization terms to the training loss, divergent 
boundary transformations seem harder to achieve in 
contemporary DL models. 

5 DISCUSSION AND FUTURE 
WORK 

The findings based on our literature review indicate 
that generative DL is a valuable tool for enabling 
creativity. DL is aligned with basic processes 
proposed in models of human creativity. However, 
while human and AI creativity depends on problem 
understanding and representation, contextual 
understanding is far more limited in current DL 
systems (Marcus et al., 2018). That is, the network is 
constrained by its training data, lacking the ability to 
leverage associations or analogies related to concepts 
that are not contained in the data itself. The boundary 
is much more narrow for DL systems than for 
humans. DL techniques do not enforce divergent 
transformations. While this might be achieved by 
adding regularization terms to the training loss, 
divergent boundary transformations seem harder to 
achieve in contemporary DL models. 

 So far, all these transformations are limited to 
small incremental changes in the representation and 
are heavily dependent on the training data. More 
fundamental changes, that take other domains into 
account are still left to the humans designing the 
models, as can be seen in the decision to use a text 
like representation for complex three-dimensional 
molecule structures, which allowed the use of models 
previously successful in text generation (Segler et al., 
2017).  

Many domains highly depend on human 
creativity. They either completely lack large amounts 
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of data for training generative DL systems or a 
creative solution might rely on characteristics that 
rarely occur in the data. This means that the results 
are highly dependent on the quality and even more so 
the quantity of the training data. This can also be seen 
by the fact that creative applications are mostly found 
in domains, where DL already performs well on non-
creative tasks, like images (e.g., Gatys et al., 2016) or 
(short) texts (e.g., Dean & Smith, 2018). At the same 
time, it is still an open problem for a DL system to 
generate long continuous texts that tell a coherent, 
novel story, just as it is a hard problem, to 
automatically summarize longer stories and answer 
complex questions that require contextual 
knowledge. 

Concerning the level of creativity in the observed 
literature, most models can produce only everyday 
creativity (little-c). One could argue that the examples 
of de-novo drug design constitute an example of pro-
c creativity. However, because the final selection and 
synthetization of the promising molecules still require 
human experts, they merely support pro-c creativity. 
The only example that could be argued to possess 
Big-C creativity is Alpha-Go (Silver et al., 2017). It 
achieved the level of a world champion in its domain 
and could generate strategies that humanize expert 
players later adopted. A creative capability that is 
currently beyond AI, is the ability to identify the 
existence of a problem or the lack of creative 
solutions in the first place. Thus, creative AI is still 
far from the capabilities covered by problem-finding 
theories of creativity.   

While our findings indicate that the creativity of 
DL is highly limited, DL has a key advantage 
compared to humans: It can process large amounts of 
data. Given that DL systems are currently trained on 
very narrow domains, their creative capabilities might 
increase merely because of more computational 
power, allowing them to explore a larger space of 
possible creative solutions than today. Furthermore, 
many DL systems are simple feedforward networks. 
Advances in reasoning of neural networks, such as 
reflective networks (Schneider and Vlachos, 2020), 
could also enhance creativity. Even more, meta-
learning might adjust the boundary, which is not 
commonly done in existing work. However, even 
given that more training data and meta-learning are 
used, human creativity is likely not reached: Humans 
must define the framework for meta-learning. In the 
end, they must be creative in the first place to derive 
new methods, also allowing for longer chains of 
reasoning and models that allow for more 
sophisticated transformations of the conceptual 
space. 

In future research, we plan to compare the 
creative capabilities of DL with computational 
creativity systems based on other models like 
evolutionary algorithms and cognitive models. Not 
only can this help to compare the capabilities of 
different models, but it might also lead to new ways 
to improve DL’s creative capabilities by adapting 
concepts from other models. We also want to study 
applications of human-AI interaction for creative 
tasks and enhance our conceptualization accordingly 

6 CONCLUSION  

Deep learning shows a large potential for enabling the 
automation and assistance of creative tasks. By 
linking the functionality of generative deep learning 
models with theories of human creativity, we provide 
an initial step in better understanding the creative 
capabilities of these systems and the shortcomings of 
current models. Our analysis showed that deep 
learning possesses many traits of computational 
creativity, such as combinatorial or Darwinian 
exploration, but novelty is strongly constraint by the 
training data. We hope that this knowledge helps 
practitioners and researchers to design even better 
systems for supporting humans in performing 
creative tasks and to assess the suitability of deep 
learning for creative applications for businesses and 
the social good. 
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