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Abstract: Part-to-part and image-to-image variability pose a great challenge to automatic anomaly detection systems; 
an additional challenge is applying deep learning methods on high-resolution images. Motivated by these 
challenges together with the promising results of transfer learning for anomaly detection, this paper presents 
a new approach combing the autoencoder-based method with one class deep feature classification. 
Specifically, after training an autoencoder using only normal images, we compute error images or anomaly 
maps between input and reconstructed images from the autoencoder. Then, we embed these anomaly maps 
using a pre-trained convolutional neural network feature extractor. Having the embeddings from the anomaly 
maps of training samples, we train a one-class classifier, k nearest neighbor, to compute an anomaly score for 
an unseen sample. Finally, a simple threshold-based criterion is used to determine if the unseen sample is 
anomalous or not. We compare the proposed algorithm with state-of-the-art methods on multiple challenging 
datasets: one representing zipper cursors, acquired specifically for this work; and eight belonging to the 
recently introduced MVTec dataset collection, representing various industrial anomaly detection tasks. We 
find that the proposed approach outperforms alternatives in all cases, and we achieve the average precision 
score of 94.77% and 96.35% for zipper cursors and MVTec datasets on average, respectively. 

1 INTRODUCTION 

Anomaly detection (AD) can be defined as the 
identification of items or events that do not comply 
with an expected pattern or to other items in a dataset.  

For visual inspection tasks in the manufacturing 
industry, often there are a few examples of defective 
samples or it is unclear what kinds of defects may 
appear. Therefore, it is a challenge to provide a large 
enough dataset in which each sample is labeled as 
either "normal" or "abnormal", as it is needed for 
traditional supervised classification techniques 
(Saeedi et al., 2021). Many relevant applications must 
rely on semi-supervised algorithms for identifying 
anomalous samples. Semi-supervised techniques 
construct a model given only normal training samples 
representing normal behavior and then test the unseen 
sample by the learned model. 

The objective of the project presented in this 
paper is to automate the inspection process of zipper 
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cursors in the production lines using an image 
acquisition system (IAS) and dedicated software 
based on the semi-supervised pipeline. Here, we 
assume that the object for inspection has a rigid shape 
and we use a reference image for image registration 
and alignment as a pre-processing step.  

With the recent advances in deep neural networks, 
reconstruction-based methods deploying autoencoder 
(AE) have shown great potential for AD tasks. These 
methods assume that normal and anomalous samples 
could lead to significantly different embeddings and 
therefore the corresponding reconstruction errors can 
be used to distinguish normal and anomalous samples 
(Jinwon and Sungzoon, 2019; Kingma and Welling, 
2014). An AE is a neural network that is trained to 
learn reconstructions that are close to its original 
input. 

The state-of-the-art methods based on deep 
learning applying AE and its variations (Chao-Qing 
et al., 2019), mostly considering public data-set with 
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small dimensions for evaluation, e.g. MNIST 
(LeCun, 1998) (28×28), Fashion-MNIST (Xiao et al., 
2017) (28×28), CIFAR-10 (Krizhevsky and Hinton, 
2009) (32×32), ImageNet (Deng et al., 2009) 
(224×224). However, the image dimension is rather 
high in industrial inspection scenarios, e.g. MVTec 
dataset (Bergmann et al., 2019a) (1024 ×1024). 
Designing a proper AE with high-resolution images 
results in a large network size. Training such a large 
network is very time-consuming and there is a risk of 
network overfitting due to the small number of 
training samples in some cases.  

Downsizing (Bergmann et al., 2019a), and patch-
wise inspection (Matsubara et al., 2018) are the two 
pre-processing methods that have been applied to 
address the size issue in the past, while both 
approaches could be problematic for AD. In some 
cases, the defect or anomaly is very small that could 
be lost after downsizing. In addition, by applying 
patches for inspection, we could miss defects that are 
larger than the patch size. In this paper, we proposed 
a new framework based on conditional patch-based 
convolutional autoencoder (CPCAE) to address the 
size issue. The proposed method applies both 
downsizing and patch extraction to avoid the 
aforementioned problems. Specifically, overlapping 
patches are extracted from downsized images to train 
the AE. Together with the patches, we give the 
network the index of the patches in the image (i.e. the 
patches’ location) as an auxiliary input. In this way, 
each patch remembers where it is coming from in the 
image. The idea comes from the recently developed 
conditional variational autoencoder (VAE) (Pol et al., 
2019), in which the method was used for MNIST data 
AD, and class labels (from 0 to 9) were considered as 
a condition for training the VAE. For anomaly map 
and score calculation for a test image, the procedure 
is to apply the reverse of patch extraction and 
upsizing for the AE’s output. The anomaly map is 
then obtained using the difference of the input and 
reconstructed images.  

The AE-based methods detect anomalies by 
comparing the input image to its reconstruction in 
pixel space. This can result in poor AD performance 
due to simple per-pixel comparisons and imperfect 
reconstructions (Bergmann et al., 2019b, Nalisnick et 
al., 2018). In this study, we have proposed a new 
approach to incorporate transfer learning with the 
AE-based AD method to avoid computing anomaly 
scores using AE’s reconstruction error. Specifically, 
we apply a one-class classifier to the anomaly maps 
generated by AE to compute anomaly scores. One-
class classification using deep feature extracted from 
a pre-trained convolutional neural network (CNN) is 

a new trend in recent years for AD (Perera and Patel, 
2019; Oza and Patel, 2019; Bergman et al., 2020), 
which suggest that these feature spaces generalize 
well for AD task and even simple baselines 
outperform deep learning approaches (Kornblith et 
al., 2019).  

Motivated by the challenges mentioned for AD in 
industrial inspection, shortcomings related to AE-
based method together with promising results with 
transfer learning reported in recent works (Perera and 
Patel, 2019; Oza and Patel, 2019; Ruff et al., 2018; 
Bergman et al., 2020; Burlina et al., 2019), this paper 
presents a new framework combining AE-based 
method with one class deep feature classification. 
Specifically, instead of computing anomaly scores 
from anomaly maps obtained from a trained AE, we 
embed the anomaly maps using a pre-trained CNN 
(on Imagenet dataset) feature extractor. Having the 
embedding from the anomaly maps of training 
samples, we train a one-class classifier, e.g. k nearest 
neighbor (k-NN) to compute anomaly score for 
unseen samples. In this way, we leverage transfer 
learning together with AE using a hybrid framework 
to avoid problems due to simple per-pixel 
comparisons or imperfect reconstructions of the AE-
based method.  

We evaluate the proposed method extensively on 
different datasets, including the zipper cursor dataset, 
which has been acquired and introduced specifically 
for this study, and a recently introduced MVTec AD 
dataset which involves different types of industrial 
inspection (Bergmann et al., 2019a). We show that 
AE outperforms the state-of-the-art techniques when 
combined with one-class deep feature classification 
using the proposed framework. 

Our main contributions are summarized as 
follows:  
• We propose a novel concept using CPCAE for 

AD to tackle the challenges related to the high-
resolution images in industrial inspection 
scenarios.  

• We propose a hybrid framework based on 
transfer learning to calculate anomaly scores 
instead of AE’s reconstruction error. This new 
method embeds anomaly maps computed by AE 
using a pre-trained CNN feature extractor to train 
a one-class classifier.  

• We demonstrate state-of-the-art performance on 
different datasets including zipper cursor and 
MVTec anomaly detection datasets. 

The remainder of this paper is organized as 
follows. After a review of related work in Section 2, 
the proposed method based on CPCAE and transfer 
learning is discussed in Section 3. Section 4 
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demonstrates experimental results and discussion. 
Finally, the conclusions and future works are given in 
Section 5. 

2 RELATED WORK 

AD methods can be broadly categorized into 
probabilistic, proximity-based, boundary-based, 
reconstruction-based, and hybrid approaches, which 
are shortly discussed in the following: 
Probabilistic approaches, such as Gaussian mixture 
models (Eskin, 2000) and kernel density estimation 
(Xu et al., 2012) assume that the normal data follow 
some statistical model. During the training, a 
distribution function is being fitted on the features 
extracted from the normal samples. Then, during the 
test, those samples which are mapped to different 
statistical representations are considered anomalous 
(Kingma and Welling, 2014).  
Proximity-based algorithms assume that the 
proximity of an anomalous object to its nearest 
neighbors significantly deviates from its proximity to 
most of the other objects in the dataset. Given a set of 
objects in feature space, a distance measure can be 
used to compute the similarity between objects, and 
then objects that are far from others can be regarded 
as anomalies. These methods depend on the well-
defined similarity measure between two data points. 
The basic proximity-based methods are the local 
outlier factor (Breunig et al., 2000) and its variants 
(Tang and He, 2017). 
Boundary-based approaches, mainly involving 
one-class support vector machines (SVM) (Scholkopf 
et al., 2001) and support vector data description 
(SVDD) (Tax et al., 2004), usually try to define a 
boundary around the normal samples. Anomaly 
sample is determined by their location to the 
boundary. A recent trend in the boundary-based AD 
methods is to utilize transfer learning techniques 
using a pre-trained CNN network to extract 
discriminative embedding vectors for classification 
(Burlina et al., 2019; Andrews et al, 2016; Nazaré et 
al., 2018; Napoletano et al., 2018) 
Reconstruction-based approaches assume that 
anomalies cannot be compressed and therefore cannot 
be efficiently reconstructed from their low 
dimensional embeddings. In this category, principal 
component analysis (Olive, 2017) and its variations 
(Harrou et al., 2015; Baklouti et al., 2016) are widely 
used. Besides, AE and VAE based methods also 
belong to this category (Jinwon and Sungzoon, 2019; 
Kingma and Welling, 2014).  

Hybrid approaches utilize both reconstruction and 
classification-based methods in a hybrid framework. 
Specifically, these methods use AE to generate 
feature embedding for training a one-class classifier 
in which the latent space variables act as the 
embedding. Kawachi et al. (2018) proposed an 
assumption that the anomaly prior distribution is a 
complementary set of the prior distribution of normal 
samples in latent space. Based on this assumption, the 
anomalous and the normal data have complementary 
distributions which means that they can be separated 
in the latent space, then it is possible to apply a one-
class classifier to detect anomalies. Similarly, Guo et 
al. (2018) used the compressed hidden layer vector of 
a trained AE on normal data to train a k-NN for AD.  

In this paper, we aim to propose a better 
discriminative embedding as compared to the AE’s 
latent space variables for one-class classification. The 
proposed method presented in this paper can be 
considered as a hybrid approach as we utilize both AE 
and classification-based approaches, which is fully 
discussed in the next section.  

3 PROPOSED METHOD 

This section describes the core principles of our 
proposed CPCAE method which is shown in Figure 
1. We operate in a semi-supervised setup, where 
examples of anomalous instances are not available. 
Therefore, we train a model using only normal 
samples which are initially registered and aligned. 
The proposed method consists of two parts including 
anomaly map generation using AE and anomaly score 
calculation using deep feature one class classification 
as shown in Figure 1. Using this hybrid framework, 
we deploy both AE as well as transfer learning 
combined with one class classification to improve the 
AD results as compared to each method individually. 

In the following sub-sections, we discuss the 
proposed CPCAE method, and deep feature one-class 
classification. 

3.1 Conditional Patch-based 
Convolutional Autoencoder 

Autoencoders attempt to reconstruct an input image x ∈  ℝେ×ୌ×୛  through a bottleneck, mapping the 
input image into a lower-dimensional space which is 
called the latent space (Chao-Qing et al., 2019; 
Bergmann et al., 2019b). An AE consists of an 
encoder, 𝐸 : ℝେ×ୌ×୛ → ℝୢ, and a decoder, 𝐷 :  ℝୢ →  ℝେ×ୌ×୛, where d indicates the latent space’s 
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Figure 1: Block diagram of the proposed anomaly detection method (dashed lines show the steps involved in the training 
step). 

dimensionality and C, H, W represent the channels, 
height, and width of the input image, respectively. 
The overall process can be written as follows: 𝑥ො = 𝐷൫𝐸(𝑥)൯ = 𝐷(𝑧) (1)

where z is the latent vector and 𝑥ො the reconstruction 
of the input. The functions 𝐸  and 𝐷  are 
parameterized by CNNs.  

For simplicity and computational speed, a per-
pixel error measure such as the Lଶ loss is chosen to 
force the AE to reconstruct its input: 

𝐿ଶ(x, 𝑥ො) = ෍ ෍ ෍൫x(𝑐, ℎ, 𝑤)ௐ
௪ୀ଴

ு
௛ୀ଴

஼
௖ୀ଴ − 𝑥ො(𝑐, ℎ, 𝑤)൯ଶ 

(2)

where x(𝑐, ℎ, 𝑤) denotes the intensity value of image x at the pixel (𝑐, ℎ, 𝑤). During evaluation, the per-
pixel ℓଶ-distance of x and 𝑥ො  is compute to obtain a 
residual map R(x, 𝑥ො) ∈  ℝେ×ୌ×୛. 

For the AD task, AE is only trained on defect-free 
samples. During the test, the AE is failed to 
reconstruct defects that have not been seen during the 
training. The reconstruction error, 𝐿ଶ , of each test 
data is then regarded as the anomaly score. Finally, 
the data with a high anomaly score is defined as 
anomalies.  

There are two main issues for deploying AE for 
the AD task in an industrial inspection scenario 
including the high-resolution images and poor 
performance due to simple per-pixel comparisons and 
imperfect reconstructions (Bergmann et al., 2019b; 
Nalisnick et al., 2018). In this paper, we address the 
high resolution image issue by applying overlapping 
patches along with conditional learning for AE, 
which is discussed in this sub-section. In addition, we 
propose a new approach to incorporate transfer 
learning with the AE to avoid computing anomaly 

scores using simple per-pixel comparisons, which is 
discussed in the next sub-section. 

We use downsizing and patch extraction to 
resolve the high-resolution image problem for AE 
modeling. It is assumed here that by downsizing the 
input image to some extent, its normality (i.e. the 
image details that represent normal class) are 
preserved. After downsizing the input image, 
overlapping patches are extracted to train the AE. 
Together with the patches, the number of the patches 
in the image (i.e. the patches’ location) is given to the 
network as a conditional variable. The idea is to feed 
both local (patches) and global (conditions) 
information at the same time to the AE. The 
conditional variables help the AE network to train 
more efficiently and also to avoid reproducing small 
defects given a defective test image to the network. 
For anomaly map calculation given a test image, the 
procedure is to apply the patch reprojection and 
upsizing of the AE’s output. The anomaly map is then 
obtained using the difference of the input and 
reconstructed image.  

The most common architecture utilized for AE in 
AD is the convolutional layers followed by the 
pooling layers and the fully connected layers in the 
encoder side, and fully connected layers followed by 
the convolutional layers and up-sampling in the 
decoder side (Ribeiro et al., 2018). It is not 
recommended to use convolutional layers without 
dense layers for the AD task, because this type of 
network is able to memorize the spatial information 
of input and is somehow able to reconstruct the 
defects given the test image. AE deploying only 
convolutional layers fits better for other applications 
like image segmentation and compression in which 
detailed spatial information is very important for 
encoding (Badrinarayanan et al., 2017; Yildirim et al., 
2018).  
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The proposed architecture for CPCAE is shown in 
Figure 2. We utilize convolutional layers with the 
stride in the encoder side and convolutional transpose 
layers with the stride on the decoder side. The 
convolutional (transpose) layers with the stride allow 
the network to learn spatial subsampling (up-
sampling) from data, leading to a higher capacity of 
transformation. In addition, we use concatenation in 
the encoder part of AE to incorporate the new 
conditional variable (the index of the patches, i.e. 
patches’ number divided by total number of patches) 
into our model. Similarly, the decoder is also 
concatenated with the conditional vector. 

 The proposed CPCAE generates anomaly maps 
to be used for training a one-class classifier in the 
second step of the proposed hybrid method. The 
challenge here is how to train the one-class classifier 
using the training set already applied for the AE 
training. One way to address this issue is to split the 
training set into two parts to be separately used for 
each step. However, since the training set in some 
cases including the current project is too small, 
splitting would decrease AE’s capability to learn 
normal behavior. Another way is to train an AE using 
sparse information of the training set to avoid 
network overfitting and to preserve enough 
information in anomaly maps for the classifier 
training.  

For a sparse autoencoder, in most cases, the loss 
function is constructed by penalizing activations of 
hidden layers so that only a few nodes can activate 
when a single sample is fed into the network. 𝐿ଵ and 𝐿ଶ regularizations are widely used in deep learning, 
and the main difference between them is that 𝐿ଵ 
regularization tends to reduce the penalty 

 

Figure 2: The architecture of proposed CPCAE for anomaly 
map generation.  

coefficients to zero, while 𝐿ଶ  regularization would 
move coefficients near zero. More details can be 
reached here (Chang et al., 2019). The loss function 
using 𝐿ଵ regularization is selected here as follows: 𝐿𝑜𝑠𝑠 = 𝐿ଶ(x, 𝑥ො) + 𝜆 ෍ห𝑎௜(௛)ห௜   (3)

the second term penalizes the absolute value of the 
vector of activations 𝑎  in layer ℎ  for sample 𝑖 . A 
hyperparameter 𝜆  is also used to control its effect on 
the whole loss function.  

3.2 Deep Feature-based  
One-class Classification 

In this sub-section, the second step of the proposed 
method which involves feature extraction using a pre-
trained CNN model followed by a one class classifier 
is explained. Specifically, the anomaly maps 
generated using AE in the first step, are used to train 
a one class classifier as shown in Figure 1. Using the 
binary classification on top of the AE result, we 
would like to leverage the transfer learning through 
feature extraction via a pre-trained CNN network and 
to avoid computing anomaly scores using simple per-
pixel comparisons of AE. The performance of many 
supervised computer vision algorithms is improved 
by transfer learning (Kornblith et al., 2019; Burlina et 
al., 2019), i.e. by using discriminative embeddings 
from the pre-trained networks. This is also true for 
semi-supervised AD tasks as recent works suggest 
that these feature spaces together with a one class 
classifier outperform AE-based approaches (Nazaré 
et al., 2018). 

The second step of the proposed AD method takes 
a set of anomaly maps generated by AE, 𝑋௧௥௔௜௡ = 𝑥ଵ, 𝑥ଶ … 𝑥ே . It uses a pre-trained feature extractor 
pre-trained on the Imagenet dataset, 𝐹  to extract 
features from the entire training set, 𝑓௜ = 𝐹(𝑥௜). The 
training set is now summarized as a set of embeddings 𝐹௧௥௔௜௡  =  𝑓ଵ, 𝑓ଶ … 𝑓ே. The choice of deep network and 
its depth are data-related and should be selected 
experimentally. In this study, we use Xception 
network just before the global pooling layer (Chollet, 
2017). Xception can be considered as an extreme 
Inception architecture (Szegedy et al., 2016), which 
introduces the idea of depthwise separable 
convolution. More mathematical details can be 
reached here (Chollet, 2017). The global max pooling 
layer is usually used on top of the last convolutional 
layer of pre-trained networks to generate feature 
embedding (Nazaré et al., 2018). Here, we apply a 
new pooling layer to generate final image embedding 
as shown in Figure 3. Since we feed the input image 
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Figure 3: Proposed pooling layer used on top of the pre-
trained CNN network for feature extraction. 

without downsizing into the pre- trained network, the 
number of features after a global max-pooling layer are 
very small to represent a high-resolution image. Using 
the new pooling layer which consists of parallel and 
cascade pollings along with concatenation, we have 
three times more features as compared to the traditional 
way to generate final embedding. 

Having the image embedding after normalization 
(mean removal and variance scaling), a suitable one-
class classifier such as one-class SVM (Scholkopf et 
al., 2001), SVDD (Tax et al., 2004), or k-NN 
(Bergman et al., 2020), can be trained on the 
embeddings. In this study, k-NN is chosen as the 
classifier which is widely applied for AD tasks 
(Bergman et al., 2020; Nazaré et al., 2018; Guo et al., 
2018). The advantage of k-NN-based approaches is 
that they do not need an assumption for the data 
distribution and can be applied to different data types. 

To detect if a new sample 𝑦 is anomalous, we first 
extract its feature embedding using (7) and normalize 
it. We then compute its k-NN distance and use it as 
the anomaly score as follows: 𝑑(𝑦) = 1𝑘 ෍ ฮ𝑓 − 𝑓௬ฮଶ

௙∈ேೖ൫௙೤൯  (4)

𝑁୩൫𝑓୷൯ denotes the 𝑘 nearest embeddings to 𝑓௬ in the 
training set 𝐹୲୰ୟ୧୬. Euclidean distance is used here that 
often achieves superior results on features extracted 
by deep networks (Bergman et al., 2020), but other 
distance measures can be similarly used. We 
determine if an image 𝑦 is normal or anomalous by 
confirming if the distance 𝑑(𝑦)  is larger than a 
threshold. 

4 EXPERIMENTAL RESULTS 
AND DISCUSSION 

In this Section, the results of the proposed method for 
the AD task is presented. In addition, it is discussed 
how to collect data for zipper cursors and evaluate the 
proposed framework as well as several state-of-the-
art approaches. In the following sub-sections, we 

discuss the following: experimental setup, dataset, 
evaluation metrics, evaluated methods, and AD 
results. 

4.1 Experimental Setup 

The IAS used here is a CV-X series vision system 
from KEYENCE, which is a multi-modes IAS. The 
model for the camera, lens, and lighting system are as 
follows: CA-H200MX, CA-LHR50, and CA-
DRM10X. We use a 2-megapixel camera that 
generates images with 1600×1200 size. In the current 
IAS system setup, we use a diffused ring light system 
near to the object in which the object is illuminated 
from a low angle by uniform diffuse light through the 
light conduction plate. The IAS together with the 
camera and lighting stand with fixture and holder is 
shown in Figure 4. 

4.2 Dataset 

The zipper cursor dataset including six different types 
selected here is summarized in Table 1. The 
anomalies manifest themselves in the form of bubble, 
residue, halo, and scratches. In addition to zipper 
cursor dataset, we evaluate the proposed method on 
the MVTec dataset (Bergmann et al., 2019a). The 
MVTec dataset comprises 15 categories, however, we 
only consider 8 of 15 categories, which have rigid 
shapes that can be registered. Table 2 gives an 
overview of each object’s category. The anomalies 
consist of different types of defects such as scratches, 
dents, contaminations, and various structural 
changes. For all datasets, pixel values of all images 
are normalized to [0, 1], and the images are cropped 
to maximize the field of view. Figure 5 shows 
different sets of zipper cursors and different 
categories of MVTec datasets used for the analysis. 

 
Figure 4: Image acquisition setup, (a) CV-X series vision 
system from KEYENCE, (b) Lighting system, and (c) 
Holder and fixture. 
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Figure 5: Anomaly detection dataset, first row, left to right: 
zipper cursor dataset sets. #1 to #6. bottom row, left to right: 
“Bottle”, “Cable”, “Capsule”, “Hazelnut”, “Metal Nut”, 
“Pill”, “Toothbrush”, and “Transistor”. 

Table 1: Statistical overview of the zipper cursor dataset. 

Set # Train # Test 
(normal) 

# Test 
(defective) 

# 1 60 55 148 
# 2 60 47 84 
# 3 49 33 14 
# 4 40 39 36 
# 5 44 19 31 
# 6 28 23 18 

Table 2: Statistical overview of the MVTec AD dataset. 

Set # Train # Test 
(normal) 

# Test 
(defective) 

Bottle 209 20 63 
Cable 224 58 92 

Capsule 219 23 109 
Hazelnut 391 40 70 
Metal Nut 220 22 93 

Pill 267 26 141 
Toothbrush 60 12 30 
Transistor 213 60 40 

4.3 Evaluation Metrics 

Receiver operator characteristic (ROC) and 
precision-recall (PR) curves are common metrics for 
AD tasks which are defined over all possible decision 
thresholds. It is also useful to quantitatively evaluate 
the model performance using a single value rather 
than comparing curves. The area under the ROC 
curve (AUC) and average precision (AP) are the 
common metrics that are obtained using ROC and PR 
curves, respectively. AP summarizes a PR curve by a 
sum of precisions at each threshold, multiplied by the 
increase in recall, which is an approximation of the 
area under the PR curve. Since AD task always has a 
large skew in the class distribution, AP gives a more 
accurate assessment of an algorithm’s performance 
(Davis and Goadrich, 2006). In our experiments, 
ROC curve, AUC, and AP were used to evaluate the 
performance. 

4.4 Evaluated Methods 

We compare the proposed AD method with four 
different approaches including AE (Bergmann et al., 
2019a), deep feature one class classifier (Perera and 
Patel, 2019), variation (Steger et al., 2018) and 
nearest neighbor (NN) approaches (Vaikundam et al, 
2016). For the evaluation of the AE method, we use 
the same AE architecture described in the paper for 
the proposed method. For deep feature one classifier, 
we use the implementation proposed in (Perera and 
Patel, 2019), which applied a pre-trained CNN 
network to the image and extract features using global 
max pooling. After normalization, k-NN is used to 
generate anomaly scores ( 𝑘 = 15  is used for 
classifier). The variation is a baseline method, which 
is based on statistics, mean and standard deviation, 
computed from the normal training set. Anomaly 
maps are then obtained by computing the distance of 
each test pixel’s gray value to the computed pixel 
mean relative to the computed standard deviation. 
The anomaly score is obtained using the sum of 
squares of pixels in the anomaly map. NN is another 
baseline method in which the anomaly score is 
obtained by computing the distance (usually 𝑙ଶ ) 
between the test sample and its most similar image 
inside the normal training set. It should be mentioned 
that parameters tuning is performed for different 
models included in the comparison to find the best 
solution for them. Apart from the methods that have 
been implemented for comparison, we also report 
AUC results for the MVTec dataset from recently 
published deep-learning-based methods consisting of 
GeoTrans (Golan et al., 2018), GANomaly (Akcay et 
al., 2018), VAE (Jinwon and Sungzoon, 2019), 
AnoGAN (Schlegl et al., 2017), and AE applying 
structural similarity index measure (SSIM) 
(Bergmann et al., 2019b), taken directly from (Chao-
Qing et al., 2019) and (Bergmann et al., 2020). 

4.5 Anomaly Detection Results 

The first experiment is the two-dimensional tSNE 
visualizations of the extracted features from the 
anomaly maps as compared to the AE’s latent space 
variables for normal and anomalous images in the test 
set (Van der Maaten and Hinton, 2008). AE’s latent 
space variables are also being used as image 
embedding for AD in recent years (Kawachi et al., 
2018; Guo et al., 2018; Amarbayasgalan et al., 2018). 
The tSNE visualizations are shown in Figure 6 for 
zipper cursor and MVTec datasets. Qualitatively, 
features extracted by the proposed method facilitate 
better distinction between normal and anomalous 
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images as compared to the AE’s latent space 
variables. 

The second experiment presents the AD results of 
the proposed method as well as the baselines and 
deep-learning based approaches for zipper cursors 
and MVTec datasets. Tables 3 and 4 show AUC and 
AP metrics, and Figures 7 and 8 show the ROC 
curves. It can be seen from the results that the 
proposed hybrid framework outperformed state-of-
the-art methods in terms of different metrics, 
specifically PR, which gives a more accurate picture 
of an algorithm’s performance when there is a large 
skew in the class distribution (Davis and Goadrich, 
2006). The second best method on average is AE for 
the zipper cursor dataset and deep feature 
classification for the MVTec dataset. This is because 
AE is able to generalize better on the zipper cursor 
dataset which has simpler appearances as compared 
to the MVTec dataset. The baseline approaches 
including variation and NN methods could not 
produce reliable results. In addition, the proposed 
method outperformed recently published deep 
learning-based methods in terms of AUC metric for 
the MVTec dataset as shown in Table 4. 

 
(a) 

 
(b) 

Figure 6: 2D t-SNE plots of the feature embedding obtained 
using (a) the AE’s latent space representation and (b) 
proposed embedding for different datasets, which are 
mentioned in the corner of each plot. 

Table 3: Anomaly detection results for the zipper cursor dataset. 
Methods Metrics Set #1 Set #2 Set #3 Set #4 Set #5 Set #6 Mean 

Proposed 
 

AUC 95.67 96.90 95.20 88.08 94.64 96.10 94.43 
AP 98.35 98.16 90.90 88.81 96.00 96.43 94.77 

AE (L2) 
 

AUC 87.81 95.59 92.21 77.54 78.48 91.11 87.12 
AP 95.24 97.05 87.88 83.01 82.47 90.17 89.30 

Deep Feature 
 

AUC 85.32 95.77 80.81 74.97 62.15 93.77 82.13 
AP 93.78 96.99 51.10 74.75 73.47 93.31 80.56 

NN 
 

AUC 91.06 94.14 90.69 82.72 76.31 91.58 87.75 
AP 96.36 96.50 86.51 85.94 79.88 92.83 89.67 

Variation 
 

AUC 91.32 93.45 91.13 77.06 73.53 81.76 84.70 
AP 96.18 95.47 86.37 83.33 77.11 81.06 86.58 

Table 4: Anomaly detection results for the MVTec dataset. 
Methods Metrics Bottle Cable Capsule Hazelnut Metal Nut Pill Toothbrush Transistor Mean

Proposed 
 

AUC 99.71 87.73 86.39 95.87 79.28 86.74 100.0 93.06 91.09
AP 99.90 92.54 96.71 97.90 94.88 97.23 100.0 91.68 96.35

AE (L2) 
 

AUC 89.77 82.70 54.89 85.23 59.45 79.85 76.68 86.35 75.31
AP 96.83 89.70 87.12 91.74 87.36 95.59 91.03 85.72 91.39

Deep Feature AUC 96.71 83.61 88.37 90.29 68.93 71.71 91.67 85.33 83.27
AP 98.90 90.45 96.40 95.01 90.21 92.38 96.85 85.51 93.89

NN 
 

AUC 81.02 81.30 69.78 52.83 60.16 63.66 95.84 81.12 68.12
AP 93.78 88.11 91.09 74.29 87.76 88.71 98.46 78.64 87.29

Variation 
 

AUC 79.25 68.20 46.05 49.13 42.95 62.86 86.48 73.09 58.07
AP 93.12 77.88 83.08 70.93 79.20 87.56 94.36 75.15 81.96

GeoTrans AUC 74.4 78.3 67.0 63.0 35.9 63.0 97.2 86.9 63.60
AP * * * * * * * * *

GANomaly AUC 89.2 75.7 73.2 74.3 78.5 74.3 65.3 79.2 77.53
AP * * * * * * * * *

VAE AUC 89.7 65.4 52.6 87.8 57.6 76.9 69.3 62.6 71.66
AP * * * * * * * * *

AnoGAN AUC 62.0 38.3 30.6 69.8 32.0 77.6 74.9 54.9 51.71
AP * * * * * * * * *

AE (SSIM) AUC 83.4 47.8 86.0 91.6 60.3 83.0 78.4 72.5 75.35
AP * * * * * * * * *
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Figure 7: Comparison of ROC curves obtained for different methods and datasets, (top row, left to right): sets #1-3, (bottom 
row, left to right): sets #4-6 of zipper cursor dataset. 

 

Figure 8: Comparison of ROC curves obtained for different methods and datasets, (top row, left to right): Bottle, Cable, 
Capsule, Hazelnut, (bottom row, left to right): Metal Nut, Pill, Toothbrush, Transistor of MVTec dataset. 

For the zipper cursor dataset where there are not 
enough samples for training, e.g. sets #4-6, the 
performance of the proposed method along with other 
approaches decline. For the MVTec dataset, good 
performance can be observed on the “bottle”, 
“toothbrush”, “hazelnut”, and “transistor”, while it 
yields comparably poorer results for “metal nut”, 
“cable”, and “pill”. This is because the latter objects 
contain certain random variations on the objects’ 
surfaces, which prevents the model from learning 
detailed information for most of the image pixels. 

For the final experiment, we demonstrate the 
reconstructed images and anomaly maps generated 
using the proposed CPCAE method for some samples 
of zipper cursor shown in Figure 9, and MVTec 

datasets illustrated in Figure 10. For the zipper cursor 
dataset, anomalies manifest themselves in the 
different types of defects such as bubble, residue, 
scratch, and halo as shown in Figure 9 (b), and for the 
MVTec dataset, anomalies are consisting of broken, 
crack, cut, color, contamination, and misplaced as 
illustrated in Figure 10 (b). It can be seen from the 
results that the proposed method fails to reconstruct 
the defected regions, while it can generalize well to 
reconstruct the normal unseen images within normal 
specification ranges. 
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(a) 

 
(b) 

Figure 9: Anomaly detection results for (a) normal and (b) 
defected samples, top to bottom: input image, reconstructed 
image using AE, and anomaly map; left to right, sets #1 to 
#6 of zipper cursor dataset. 

 
(a) 

 
(b) 

Figure 10: Anomaly detection results for (a) normal and (b) 
defected samples, top to bottom: input image, reconstructed 
image using AE, and anomaly map; left to right, “Bottle”, 
“Capsule”, “Hazelnut”, “Pill”, “Toothbrush” and 
“Transistor” of MVTec dataset. 

 

5 CONCLUSIONS AND FUTURE 
WORKS 

A novel framework for the semi-supervised anomaly 
detection tasks is proposed here to introduce a method 
for zipper cursors’ visual inspection. The proposed 
method uses a conditional path-based convolutional 
autoencoder to tackle the challenges related to the 
high-resolution images in industrial inspection 
scenarios. In addition, we use a binary classification 
on top of the autoencoder result to leverage the 
transfer learning through feature extraction via a pre-
trained CNN network and to avoid computing 
anomaly scores using the simple per-pixel 
comparisons of autoencoder. We demonstrate state-
of-the-art performance on different datasets, 
including the zipper cursor dataset and the recently 
introduced MVTec dataset.  

For future work, we investigate other types of 
deep learning frameworks, e.g. variational 
autoencoder and generative adversarial network 
instead of autoencoder applied in the proposed 
method. In addition, regarding deep feature one-class 
classification, we would like to explore different one-
class classifiers to improve the results. 
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