
Text-To-Model (TeToMo) Transformation Framework to Support
Requirements Analysis and Modeling

Gayane Sedrakyan1,2, Asad Abdi1, Stéphanie M. Van Den Berg2, Bernard Veldkamp2 and
Jos Van Hillegersberg1

1Faculty of Behavioral, Management and Social Sciences, Section Industrial Engineering and Business Information
Systems (IEBIS), University of Twente, Enschede, The Netherlands

2Faculty of Behavioral, Management and Social Sciences, Section Cognition, Data & Education (CODE),
University of Twente, Enschede, The Netherlands

{g.sedrakyan, s.abdiesfandani, stephanie.vandenberg, b.p.veldkamp, J.vanHillegersberg}@ utwente.nl

Keywords: Requirements Engineering, Requirements Analysis, Conceptual Modeling, Text Mining, Natural Language
Processing, Requirement Analysis Automation, Model Generation.

Abstract: Requirements analysis and modeling is a challenging task involving complex knowledge of the domain to be
engineered, modeling notation, modelling knowledge, etc. When constructing architectural artefacts experts
rely largely on the tacit knowledge that they have built based on previous experiences. Such implicit
knowledge is difficult to teach to novices, and the cost of the gap between classroom knowledge and real
business situations is thus reflected in further needs for post-graduate extensive trainings for novice and junior
analysts. This research aims to explore the state-of-the art natural language processing techniques that can be
adopted in the domain of requirements engineering to assist novices in their task of knowledge construction
when learning requirements analysis and modeling. The outcome includes a method called Text-To-Model
(TeToMo) that combines the state-of-the-art natural language processing approaches and techniques for
identifying potential architecture element candidates out of textual descriptions (business requirements). A
subsequent prototype is implemented that can assist a knowledge construction process through (semi-)
automatic generation and validation of Unified Modeling Lnaguage (UML) models. In addition, to the best
of our knowledge, a method that integrates machine learning based method has not been thoroughly studied
for solving requirements analysis and modeling problem. The results of this study suggest that integrating
machine learning methods, word embedding, heuristic rules, statistical and linguistic knowledge can result in
increased number of automated detection of model constructs and thus also better semantic quality of outcome
models.

1 INTRODUCTION

Our current ICT-driven world of economies depends
hugely on information systems. A tiny failure in an
interconnected web of information systems of various
organizations may result in significant and sometimes
disastrous consequences. The quality of information
systems and thus the process of designing and
producing high quality systems becomes critical. The
process of designing information systems is a highly
complex and challenging task that requires rigorous
analytical skills and experience. The first step in this
process includes externalizing business requirements
into formal model representations that serve the first
artefact for formal evaluation of quality. With the
growing importance of compliance between business

strategy and ICT realizations, as well as
popularization of low/no code platforms that allow
business and citizen developers to design and produce
business applications, conceptual models gain
relevance. Conceptual models use highly abstract
representations and can significantly reduce the
complexity of a problem domain, thus making it
easier to integrate business domain and ICT expertise
in the system design process. Conceptual models also
contain the critical information for designing and
applying effective organizational strategies and a
necessary foundation for constructing an
organization’s information system. Important key
factors affecting the quality of a conceptual model are
knowledge of modeling concepts, of the modeling
language and of the domain to be modelled. Teaching

Sedrakyan, G., Abdi, A., Van Den Berg, S., Veldkamp, B. and Van Hillegersberg, J.
Text-To-Model (TeToMo) Transformation Framework to Support Requirements Analysis and Modeling.
DOI: 10.5220/0010771600003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 129-136
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

129

such knowledge and skills to novice modelers is a
challenging task considering that system analysis is
by nature an inexact skill (Sedrakyan, 2016). Good
modelers rely mainly on their personal experience,
and the tacit knowledge that they have developed
over time, which is difficult to transfer to junior
modelers. Transferring the academic knowledge and
skills to real world businesses is yet another concern
as the classroom and real-world situations are not
identical. As stated by Schenk, Vitalari, and Davis
(1998), in their early careers novice modelers produce
incomplete, inaccurate, ambiguous, and/or incorrect
information requirements. Several reasons make
conceptual modeling skills very difficult to teach. For
instance, studies on comparing model quality
checking approaches of novices and experts indicate
the poorly adapted cognitive schemata of novice
modelers to identify relevant triggers for verifying the
quality of models. Previous research on observing the
differences in modeling process indicates the linear
problem-solving pattern of novices focusing on one
task at a time vis-a-vis experts’ frequent switches
between modeling activities and simultaneous cross-
validation cycles (80% of their design activity)
(Wang & Brooks, 2007). Tools that assist a modeling
and verification process include techniques that
provide support at the level of modeling outcome,
such simulation for verifying and validating the
semantic quality of models as well as automated
feedback facilitating the interpretation of the results
and/or model verification. However, there is little
support in the process of making design choices when
transferring requirements into models, such as the
choice of candidate components and their
relationships in a model. Our research aims to explore
state-of-the-art text mining techniques and
capabilities in supporting requirements analysis and
modeling task for novices. We start with mapping
existing text mining concepts and techniques with the
modeling technique (such as diagram type) and the
constructs (e.g. elements supported by the diagram
type) to come up with a framework that can guide the
design and development of text-to-model (semi-)
automated generation instrument. Testing the
capabilities with respect to the most standard
modeling techniques used in designing information
systems constitutes a future research direction,
however initial results (as a demo) from a pilot study
is included which compares model constructs
extracted by an experienced human modeler and
those produced by using different text mining
approaches. The remainder of the paper is structured
as follows. Section 2 describes the research
methodology used for the work. Section 3 gives an

overview of related work. Section 4 describes the
proposed method for text-to-model construction
support. Our system evaluation is explained in
Section 5. Finally, section 6 concludes the work with
a discussion of results as well as proposing some
future research directions.

2 RESEARCH METHOD

Theories are based on a systematic view of
phenomena. Kerlinger (1979) proposes a method
based on specifying relations among variables that
use a set of interrelated constructs, variables,
definitions, and propositions. Conceptualizations in
the form of a framework guide research by providing
a visual representation of theoretical constructs,
variables of interest, and their relationships as
suggested by Creswell (1994). Based on such
frameworks, concrete applications can be developed
Morgan (2018). In this paper, we aim to derive a
framework based on earlier literature and previous
empirical research, to guide the design and
development of text-to-model transformation
application to support (semi-)automatic requirements
analysis and conceptual modeling process. This is
achieved by conducting a literature study of existing
text mining and/or machine learning techniques and
further mapping these techniques with corresponding
concepts in a modeling process, such as diagram
types used for conceptual modeling task and their
corresponding constructs such as class, attribute,
association.

3 LITERATURE REVIEW

3.1 Teaching and Learning Context

In a teaching context, model comprehension
difficulties, in addition to the lack of modeling
knowledge, are also associated with the insufficient
level of experience of novices and as a result their
limited cognitive resources to identify relevant
triggers for model verification. Unified Modeling
Language (UML) is a standard language that is used
to document and model business requirements.
According to a complexity analysis by Siau and Cao
(2001) UML (Unified Modeling Language) class
diagram ranks the highest in complexity among the
structural diagrams followed by state chart among the
dynamic diagrams because of their high cognitive
and structural complexity (Cruz-Lemus, Maes,

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

130

Genero, Poels, & Piattini, 2010). In a Delphi study by
Erickson and Siau (2007) identifying the kernel of
“essential” UML class diagram use cases, sequence
and state chart are found to have the highest usability
ranks by practitioners and educators from software
industry and academic field. Furthermore, these are
also among the top used diagrams present in the
context of educational material such as books, tools,
courses and tutorials, with percentages of 100% (class
diagram, use case, sequence) and over 96% (State
chart), while also being among the top diagramming
techniques that support conceptual modelling.

3.2 Text Mining Techniques Applied
for Requirements Engineering

Requirements analysis (RA) has a key role in the
process of development of information systems. It is
a challenging task that requires complex knowledge
and skills. The quality of a requirements analysis
affects the quality of the information systems to be
engineered. Nowadays models are largely used for
constructing an organization’s information system
thus also serving the first artefact the quality of which
can be formally tested. UML uses a graphical notation
that can represent both the structure and business
logic of the system to be engineered. Usually,
requirements documents and domain descriptions are
provided in natural language. Processing these
documents using text mining applications (TMA) can
help to extract information that may be useful in a
learning context (e.g. by hinting candidate model
constructs) to assist novices, or in the context of
processing large requirement documents by experts
(e.g. by identifying potential constructs that can be
confirmed or discarded by a human modeler). For
instance, TMA can assist transforming an
unstructured data set into a structured format or a
medium that can be used to generate business model
constructs. Finally, a formal diagram can be drawn
for the system from business requirements
automatically. Earlier research proposed various
methods to draw UML diagrams from using text
mining approach. We will briefly discuss some of
those we consider to be of particular interest.

Montes, Pacheco, Estrada, and Pastor (2008)
presented a natural language processing based
method to generate UML diagrams using a plain text
as an input. The method analyses the given script/text
to extract relevant information, based on which UML
diagrams are drawn. The process of creating,
arranging, labeling and finalizing the UML diagrams
is performed using the following steps: 1. Text input
acquisition, to read and obtain input text scenario, 2.

Syntactic Analysist, to categorize words into various
classes as verbs, helping verbs, nouns, pronouns,
adjectives, prepositions, conjunctions, etc. 3. Text
understanding to infer the meanings of the given text
by using semantic rules (Malaisé, Zweigenbaum, &
Bachimont, 2005), 4. Knowledge extraction, which
extracts required data attributes using a set of rules
(Van Rijsbergen, 1977), 5. UML diagram generation
uses UML notation symbols to draw a UML diagram.
Shahzadi, Ahmad, Fatima, Sarwar, and Mahmood
(2013) proposed a method to identify domain entities
and their relationships from text documents that can
be transformed into a UML diagram. The method
performs a linguists processing on a given text using
open source tool named GATE (Cunningham et al.,
2009) It allows marking entities and relationships
between entities. Their system includes the following
steps: 1. document acquisition, 2. document
processing, 3. XML modeling. Document
Acquisition step obtains an input from a textual
document. Document processing step applies
linguistic processing (e.g., sentence splitter,
tokenizer, part-of-speech tagger). XML modeling is
used to convert a textual data into a formal data-
model. Harmain and Gaizauskas (2000) developed a
method which produces an object-oriented model
from textual documents. Montes et al. (2008) present
a method of generating an object-oriented conceptual
model (e.g., UML class diagrams) from natural
language text. Hasegawa, Kitamura, Kaiya, and Saeki
(2009) also introduced a tool that extracts
requirements models from natural language texts.
Gelhausen, Derre, and Geiß (2008) and Gelhausen
and Tichy (2007) presented a method to create UML
domain models directly from a textual document. The
authors employ a graph technique as an intermediate
representation of a text. The nodes in the graph
represent sentences and words. Edges indicates
thematic roles and are the core component of the
method as they represent the semantic information in
the text. Graph transformation rules are then used to
build a UML representation. Mala and Uma (2006)
use an NLP pipeline to create a model without the
intervention of a domain expert. The authors claim
that the yielded results are at least as good as or
exceeding human-made class diagrams. Bajwa and
Choudhary (2006) extract nouns and verb
combinations from input texts and map the nouns and
verbs to UML class elements and relations,
respectively. However, to our knowledge, little is
known about how these text mining techniques and
applications can support the task of deriving business
requirements and automatic generation of formalized
requirements documents, such as UML models, from

Text-To-Model (TeToMo) Transformation Framework to Support Requirements Analysis and Modeling

131

a theoretical point of view that builds on evidences
from prior studies in the domain. In addition, methods
that integrate machine learning-based method, word
embedding, heuristic rules, statistical and linguistic
knowledge also included in this method, have not
been thoroughly studied for solving requirements
analysis and modeling problem. This research aims to
propose a method that 1. builds on the analysis and
summary of the literature on the applications of text
mining in the domain of requirements analysis and
modeling and 2. generalizes to the next level by
introducing the gaps in this domain for future
research needs. We argue that, while the application
of text mining in the business domain is still not
mature enough to produce requirements documents
and models that are of high semantic quality (such as
accurate, complete, etc.) there is a good potential for
these techniques to assist a human analyst/modeler to
facilitate some steps in the process, but also assist a
learning/training process of a novice analyst. The
latter can be achieved not only by automated
discovery and proposal of candidate constructs such
as entities, attributes, (mandatory and optional)
relationships, activities, sequences, etc., but also
learning from expert analysis and modeling
process/behavior, or a business domain document
generate recommendations and feedback for a
learning context.

Summing up, the problem in the domain discussed
in the literature so far deals with the fact that there is
a need for supporting techniques that can assist the
analysts for routine tasks of systematically producing
a model appropriately representing the expected
structure and functionality of a system with less
effort. To achieve this, most of the earlier works used
shallow linguistic techniques, while the method
proposed in this work aims to in addition solve and
address some of the complex linguistic problems
applied within the domain of business requirements.
The contribution of this work can be thus addressed
as follows:
1) The work is the first attempt of integrating a
machine learning-based method, word embedding,
heuristic rules, statistical and linguistic knowledge,
which has not been thoroughly studied for solving
software requirements analysis.
2) The TeToMo based implementation employs
several meaningful resource-information latent in a
sentence to a) learn a better sentence representation;
b) create augmented vector; c) obtain significant
performance. A hybrid vector is created to represent
each sentence using the statistical, linguistic
knowledge-based and word embedding-based feature
vectors.

3) The TeToMo based implementation generates an
XMI file (Specification, 2006) as output (currently
limited to modeling constructs of class and state chart
models) that is generic enough to allow to be
imported and visualized in any UML modeling tool.
Furthermore, a human analyst can interfere in the
generation process and/or further refine and extend
them.
4) Finally, we conduct experiments for performance
evaluation and comparison. We report our results on
the benchmark dataset. In the other words, we
measure the performance of the TeToMo against
human judgment to confirm the suitability of the
proposed method for analysing software
requirements documents.

4 TeToMo FRAMEWORK

Models of a system-to-be often combine structural
and behavioral views. This can be achieved by
combining different diagrams such as class diagram,
process flows represented as business process
models, flowcharts, activity diagrams, state chart, etc.
Potential elements that a modeler may need to
tag/derive from business requirements during early
stages of analysis (which we will further refer to as
model constructs) include for instance:
- Entities (class diagram).
- Attributes (class diagram).
- Relationships/associations between entities (class
diagram).
- Type of relationship/association, e.g. mandatory vs.
optional (class diagram).

o wording like may, can, … show modality,
wording like must, should,… may denote
mandatory relationship.

- Events (activity diagram, state chart).
- Sequences of events (activity diagram, state chart).

o event A may occur after or before event B, etc.,
event X is a starting event, event Y is an ending
event.

- States (state chart) that are usually verbs in passive
form (e.g. approved, blocked, ended, started, etc.).
The architecture of TeToMo based implementation of
model extraction is displayed in Figure 1. It illustrates
the steps and functionality of the system to transform
user requirements such as user stories into UML
diagrams. There are six main modules in the TeToMo
system. It is worth noting, because of space limitation,
we explain each of them in summary: Input document
includes the document with business requirements for
processing. The Natural Language Analysis (NLA)

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

132

module is applied to the document and the processed
information is sent to the Relationship, Object,
Method, Attribute (ROMA) module to extract
modeling constructs such as the attributes,
object/concepts and relationships between objects
using both NLP module, heuristic rules and machine
learning-based method. The findings are further
proposed to the user as candidate model constructs
through the Interference Human Interface which can
be used to approve, discard, make duplicate constructs
based on e.g. synonyms, etc. Model Generator Module
is used to compose a model and subsequent structural
and dynamic views such as a class diagram and state
charts. XMI format is employed to store the
information of finalized model constructs and
relationships. Finally an XMI file can be imported to
a UML modeling tool to draw the required diagram.
Detailed explanation of these modules is as follows:

Figure 1: The Architecture of the method.

Input Document: The goal of this module is to collect
a textual document (business requirements articulated
in natural language either in unstructured or
structured medium format) as an input to the system.
Natural Language Analysis (NLA) Module: This
module uses basic linguistic functions to analyse the
text syntactically and semantically, and stores all the
intermediate processing results for further analysis.
This stage includes the following tasks: The raw text
is first processed. Then, the document is decomposed
into several paragraphs. Next, the paragraphs are
further decomposed into sentences. Secondly, the
tokenization, a basic approach of the text pre-
processing, splits the sentences into words. We also
employ the stemming procedure to reduce a word to

its root form. Part of Speech (POS) tagging is also
used to classify the words of text on the basis of part
of speech category (‘noun’, ‘verbs’, ‘adverb’,
‘adjectives’) they belong. The POS tagging provides
useful lexical information.

The syntactic analysis is used to identify subject,
verbs, objects, adverbs, adjectives and various other
complements. The NLA also uses other basic
linguistic functions such as co-reference resolution,
stemming process, semantic role labeling (active &
passive sentences), semantic word similarity (word
embedding & statistical method), WordNet
dictionary to enhance the semantic analysis. The
results generated by the NLA is passed to the ROMA
module (see Figure 1).
Sentences segmentation function is used to split a
paragraph into sentences. Stemming technique is used
to reduce word to its stem form (e.g., ‘went’---> ‘go’).
Stanford Parser is used to produce a parse tree for
each sentence to identify the ‘phrases’, the object or
subject of a verb.
WordNet is an English language lexical database. It
can be employed to obtain semantically similar terms
and acquire synonyms. The synonyms are used to
extract words that are semantically related to each
other (e.g., term frequency (TF) method uses
synonym to find a word with high frequency in a text
file). Co-reference Resolution process is used to
determine linguistic expressions that refer to the same
entity in a text. This is useful to link pronominal
references (e.g., she, it) to earlier referent in the text.
ROMA module has two sub-modules for
identification of model constructs.: a) Objects,
attributes and methods identification: The main task
of the current sub-module is extracting the important
words that can be considered as a model construct
such as entity/concept, corresponding attributes
related to each concept, the method/operations and
involvement of entity instances using the calculation
of various measure parameters of the words (e.g., TF
(term frequency), TF*IDF (term frequency × inverse
document frequency), Entropy, C-value (Hasegawa
et al., 2009)), Heuristic rules and the basic linguistic
functions (e.g., parser). b) Relationship
identification: A machine learning-based method
employs word embedding method, various heuristic
rules (Narawita, 2017), specific words, various
measure parameters, statistical and linguistic
knowledge as input features to identify different types
of relationships.
Interference Human Interface: TeToMo provides an
interactive user interface that allows an end-user to
manage and analyze business requirements. S/he can
choose to interfere in the process of initial tagging as

Text-To-Model (TeToMo) Transformation Framework to Support Requirements Analysis and Modeling

133

well as the selection of the final model constructs out
of those proposed by the ROMA module. The system
presents a list of candidate constructs a user can make
a decision whether or not to include or exclude a
particular item (e.g., ‘redundant classes’, ‘irrelevant
classes’).
Model Generator Module: This module generates
different UML diagrams using pre-processed
requirements. It uses the extracted Information of
‘ROMA’ module and Interference Human interface
to extract model views such as class diagram and state
chart diagram. Algorithms are used to identify and
determine the class and State chart models elements
(e.g., concepts/objects/entities, attributes,
signal/operation/method, associations, relationships,
Is-a relationship (generalization), Has-a
(aggregation), multiplicities on relationships among
the objects, states, events, sequences).

Heuristic rules include a set of rules to identify
objects, attributes, method, the multiplicity of roles in
associations and relationship between the objects. To
do this, we collected several heuristic rules from
previous studies (Deeptimahanti & Sanyal, 2011)
such as syntactic reconstruction rules to split a
complex sentence into simple sentences to extract all
possible information from the requirements
document. An XMI file is produced as the final output
of the TeToMo. This file includes the information
about the identified concept/entity/object, their
attributes, and the relationships among them, their
typology and relations linked to UML notation at
meta-data level. It is used to visualize generated
models in any UML modeling tool which supports the
XMI import facility or XML compatible.

5 SYSTEM EVALUATION

The evaluation of TeToMo will be conducted through
the performance evaluation by comparing the output
of the TeToMo with the model generated manually
(by an expert). For this purpose different case studies
from different domains have been used. The aim of
the system evaluation is to assess the extracted
constructs and model views with respect to its
semantic quality measured by semantic conformance
with the business requirements, completeness, and
accuracy. Furthermore, this section aims to answer
the following question: how close the model
generated by the TeToMo is to the one produced by
an expert analyst.
Standard Data Set — to analyze the performance of
TeToMo, we also need a gold standard model (a set
of all correct results). For this purpose, an expert with

sufficient skill, experience and domain knowledge is
asked to produce the corresponding UML diagram for
each use case. The produced models are then
compared with the model generated by TeToMo at
the level of model constructs such as attribute,
relationship, object/concept. In other words, we
compare which parts of models generated by the
expert and TeToMo are the similar, complementary
or conflicting.
Evaluation Metrics — we use three standard metrics
to evaluate the performance of the TeToMo. These
metrics known as Recall (R), Precision (P) and
F_measure. Precision is a set of selected items that
are true, while recall is a set of correct items that are
selected. In this study, the model elements (e.g.,
attribute, relationship, object/concept) identified by a
human refers to a set of ideal items, and the model
elements identified by the TeToMo refers to a set of
system items. In other words, precision is used to
assess the fraction of the system items that the
TeToMo correctly identified and recall is used to
assess the fraction of the ideal items that the algorithm
identified. The precision is calculated using Eq. (1):
the division of identified model elements by TeToMo
and human expert over the number of model elements
identified by TeToMo only. The recall is calculated
using Eq. (2): the division of identified model
elements by TeToMo and human expert intersection
over the number of model elements identified by a
human expert.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑀𝑀

𝑀𝑀 + 𝑁𝑁
 (1)

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀
𝑀𝑀+𝐾𝐾

 (2)

Where, M = The number of model elements identified
by TeToMo and Human expert. N = The number of
model elements identified by TeToMo only. K = The
number of model elements identified by Human
expert only. Furthermore, the F-measure is used to
merge both precision and recall. It is computed as
follows:

𝐹𝐹_measure =
2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 (3)

Sample Case Study: Figure 2 presents a
conceptual model of simplified a ticket sale system
generated by an expert. “A company sells airline
tickets, for which customers can make reservations
either on a company’s online booking system or by
calling a phone operator. To meet customer demand
the company uses a flexible pricing policy based on
which a seat prices is decided during the reservation
by a manager. Furthermore, the price for a seat is not

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

134

fixed and can change depending on the changes of
several conditions, e.g. after a reservation is
cancelled, and there are not many seats available for
the flight while having a high demand (e.g. due to
popular vacation destination), the price for the seat
can increase”.

Figure 2: Sample intermediate diagram produced by
TeToMo (missing to detect elements noted in red).

Table 1: Precision, Recall and F-score results.

The model shows classes/concepts (e.g., ‘Customer’,
‘Seat’, ‘Reservation’, etc.). These concepts are linked
to each other through relationships. In addition, each
class includes several attributes, methods/operations.
On the other hand, a TeToMo produced sample of the
corresponding conceptual model from the above
problem statement produced the same output (with
the missed elements compared to human modeler
noted in red). To evaluate the method, we measure the
performance of the TeToMo against human judgment
on the level of the extracted model elements. For
instance, Table 1 presents the three main columns:
number of concepts/class name derived from Figures
2 (e.g., the expert extracted 7 concepts and the
TeToMo extracted 6 concepts). To calculate the P, R,
and F-measure, we determine the values of M, N, K.
Then, the equations of (1), (2) and (3) are applied to
get the value of each evaluation metric. The averages
of precision, recall and F-measure are considered as a
performance of the TeToMo. We also consider using
the same format presented in Table 1 to evaluate the

detection of other elements such as attributes,
methods, relationships. In this case, the column name
“Concepts/Class Name” is replaced by the
“Attribute”, “Method” or “Relationship”, etc.

6 CONCLUSION

The work proposes a method that can be used to
design and develop a text mining based support for
requirements analysis and modeling process. A
prototype solution was designed for a conceptual
modeling case using well-known standard diagrams
for designing structural and behavioral aspects of a
system. In this paper, we present a novel method that
integrates machine learning based-method, word
embedding, heuristic rules, statistical and linguistic
knowledge to solve requirements analysis and
modeling problem (called TeToMo).
The effectiveness will be evaluated by comparing
model solutions designed by human modeler and
those constructed with the help of the prototype, e.g.
based on the candidate constructs proposed by text
mining approach. In addition, we also aim to compare
the performance of TeToMo with those of the other
existing and well-known methods used for generating
UML diagram such as (Landhäußer, Körner, &
Tichy, 2014). While this work outlines some findings
on the method performance from a pilot study,
evaluating the effectiveness of the method with an
enhanced prototype and replication studies using a
larger corpus constitutes a further research direction.
Bi-directional verification of requirements from
models to text is yet another direction for further
work. Finally, discourse analysis module can be
added to the NLA to allow determining contextual
information. Addressing this points will lead to
improved versions of the TeToMo framework and
applications. While in this work the framework is
limited to two specific types of diagrams, expanding
the scope to experiment with more UML diagram
types will be a step towards a more generic approach.

REFERENCES

Bajwa, Imran Sarwar, & Choudhary, M Abbas. (2006).
Natural language processing based automated system
for uml diagrams generation. Paper presented at the
The 18th Saudi National Computer Conf. on computer
science (NCC18). Riyadh, Saudi Arabia: The Saudi
Computer Society (SCS).

Creswell, John W. (1994). Research design: Qualitative and
quantitative approach. London: Publications.

 Class name
The value of Evaluation metrics

Extracted By

C
as

e
st

ud
y

H
um

an

T
eT

oM
o

M N K P R

F_
m

ea
su

re

1 13 16 13 16 13 0.45 0.50 0.47

2 14 18 14 18 14 0.44 0.50 0.47

… … … … … … … … …

n 12 9 10 9 12 0.53 0.45 0.49

Average: 0.47 0.48 0.47

Text-To-Model (TeToMo) Transformation Framework to Support Requirements Analysis and Modeling

135

Cruz-Lemus, José A, Maes, Ann, Genero, Marcela, Poels,
Geert, & Piattini, Mario. (2010). The impact of
structural complexity on the understandability of UML
statechart diagrams. Information Sciences, 180(11),
2209-2220.

Cunningham, Hamish, Maynard, Diana, Bontcheva, Kalina,
Tablan, Valentin, Ursu, Cristian, Dimitrov, Marin, . . .
Li, Yaoyong. (2009). Developing Language Processing
Components with GATE Version 5:(a User Guide):
University of Sheffield.

Deeptimahanti, Deva Kumar, & Sanyal, Ratna. (2011).
Semi-automatic generation of UML models from
natural language requirements. Paper presented at the
Proceedings of the 4th India Software Engineering
Conference.

Erickson, John, & Siau, Keng. (2007). Can UML be
simplified? Practitioner use of UML in separate
domains. Paper presented at the proceedings EMMSAD.

Gelhausen, Tom, Derre, Bugra, & Geiß, Rubino. (2008).
Customizing grgen. net for model transformation.
Paper presented at the Proceedings of the third
international workshop on Graph and model
transformations.

Gelhausen, Tom, & Tichy, Walter F. (2007). Thematic role
based generation of UML models from real world
requirements. Paper presented at the International
Conference on Semantic Computing (ICSC 2007).

Harmain, Harmain Mohamed, & Gaizauskas, R. (2000).
CM-Builder: an automated NL-based CASE tool. Paper
presented at the Proceedings ASE 2000. Fifteenth IEEE
International Conference on Automated Software
Engineering.

Hasegawa, Ryo, Kitamura, Motohiro, Kaiya, Haruhiko, &
Saeki, Motoshi. (2009). Extracting conceptual graphs
from Japanese documents for software requirements
modeling. Paper presented at the Proceedings of the
Sixth Asia-Pacific Conference on Conceptual
Modeling-Volume 96.

Kerlinger, Fred N. (1979). Behavioral research: A
conceptual approach: Holt, Rinehart and Winston New
York.

Landhäußer, Mathias, Körner, Sven J, & Tichy, Walter F.
(2014). From requirements to UML models and back:
how automatic processing of text can support
requirements engineering. Software Quality Journal,
22(1), 121-149.

Mala, GS Anandha, & Uma, GV. (2006). Automatic
construction of object oriented design models [UML
diagrams] from natural language requirements
specification. Paper presented at the Pacific Rim
International Conference on Artificial Intelligence.

Malaisé, Véronique, Zweigenbaum, Pierre, & Bachimont,
Bruno. (2005). Mining defining contexts to help
structuring differential ontologies. Terminology.
International Journal of Theoretical and Applied Issues
in Specialized Communication, 11(1), 21-53.

Montes, Azucena, Pacheco, Hasdai, Estrada, Hugo, &
Pastor, Oscar. (2008). Conceptual model generation
from requirements model: A natural language
processing approach. Paper presented at the

International Conference on Application of Natural
Language to Information Systems.

Morgan, David L. (2018). Themes, theories, and models.
Qualitative health research, 28(3), 339-345.

Narawita, Chamitha Ramal. (2017). UML Generator-Use
Case and Class Diagram Generation from Text
Requirements. ICTer, 10(1).

Schenk, Karen D, Vitalari, Nicholas P, & Davis, K Shannon.
(1998). Differences between novice and expert systems
analysts: What do we know and what do we do? Journal
of management information systems, 15(1), 9-50.

Sedrakyan, Gayane. (2016). Process-oriented feedback
perspectives based on feedback-enabled simulation and
learning process data analytics, PhD Thesis, KU
Leuven.

Shahzadi, Iram, Ahmad, Qanita, Fatima, Kiran, Sarwar,
Imran, & Mahmood, Waqar. (2013). UMagic! THE
UML modeler for text documents. International
Journal of Computer Theory and Engineering, 5(1),
166.

Siau, Keng, & Cao, Qing. (2001). Unified modeling
language: A complexity analysis. Journal of Database
Management (JDM), 12(1), 26-34.

Specification, OMG Business Process Modeling Notation.
(2006). Object management group. Needham, MA, USA,
2(2).

Van Rijsbergen, Cornelis Joost. (1977). A theoretical basis
for the use of co‐ occurrence data in information
retrieval. Journal of documentation.

Wang, Wang, & Brooks, Roger J. (2007). Empirical
investigations of conceptual modeling and the modeling
process. Paper presented at the 2007 Winter Simulation
Conference.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

136

