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Abstract: Requirements analysis and modeling is a challenging task involving complex knowledge of the domain to be 
engineered, modeling notation, modelling knowledge, etc. When constructing architectural artefacts experts 
rely largely on the tacit knowledge that they have built based on previous experiences. Such implicit 
knowledge is difficult to teach to novices, and the cost of the gap between classroom knowledge and real 
business situations is thus reflected in further needs for post-graduate extensive trainings for novice and junior 
analysts. This research aims to explore the state-of-the art natural language processing techniques that can be 
adopted in the domain of requirements engineering to assist novices in their task of knowledge construction 
when learning requirements analysis and modeling. The outcome includes a method called Text-To-Model 
(TeToMo) that combines the state-of-the-art natural language processing approaches and techniques for 
identifying potential architecture element candidates out of textual descriptions (business requirements). A 
subsequent prototype is implemented that can assist a knowledge construction process through (semi-) 
automatic generation and validation of Unified Modeling Lnaguage (UML) models. In addition, to the best 
of our knowledge, a method that integrates machine learning based method has not been thoroughly studied 
for solving requirements analysis and modeling problem. The results of this study suggest that integrating 
machine learning methods, word embedding, heuristic rules, statistical and linguistic knowledge can result in 
increased number of automated detection of model constructs and thus also better semantic quality of outcome 
models. 

1 INTRODUCTION 

Our current ICT-driven world of economies depends 
hugely on information systems. A tiny failure in an 
interconnected web of information systems of various 
organizations may result in significant and sometimes 
disastrous consequences. The quality of information 
systems and thus the process of designing and 
producing high quality systems becomes critical. The 
process of designing information systems is a highly 
complex and challenging task that requires rigorous 
analytical skills and experience. The first step in this 
process includes externalizing business requirements 
into formal model representations that serve the first 
artefact for formal evaluation of quality. With the 
growing importance of compliance between business 

strategy and ICT realizations, as well as 
popularization of low/no code platforms that allow 
business and citizen developers to design and produce 
business applications, conceptual models gain 
relevance. Conceptual models use highly abstract 
representations and can significantly reduce the 
complexity of a problem domain, thus making it 
easier to integrate business domain and ICT expertise 
in the system design process. Conceptual models also 
contain the critical information for designing and 
applying effective organizational strategies and a 
necessary foundation for constructing an 
organization’s information system. Important key 
factors affecting the quality of a conceptual model are 
knowledge of modeling concepts, of the modeling 
language and of the domain to be modelled. Teaching 
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such knowledge and skills to novice modelers is a 
challenging task considering that system analysis is 
by nature an inexact skill (Sedrakyan, 2016). Good 
modelers rely mainly on their personal experience, 
and the tacit knowledge that they have developed 
over time, which is difficult to transfer to junior 
modelers. Transferring the academic knowledge and 
skills to real world businesses is yet another concern 
as the classroom and real-world situations are not 
identical. As stated by Schenk, Vitalari, and Davis 
(1998), in their early careers novice modelers produce 
incomplete, inaccurate, ambiguous, and/or incorrect 
information requirements. Several reasons make 
conceptual modeling skills very difficult to teach. For 
instance, studies on comparing model quality 
checking approaches of novices and experts indicate 
the poorly adapted cognitive schemata of novice 
modelers to identify relevant triggers for verifying the 
quality of models. Previous research on observing the 
differences in modeling process indicates the linear 
problem-solving pattern of novices focusing on one 
task at a time vis-a-vis experts’ frequent switches 
between modeling activities and simultaneous cross-
validation cycles (80% of their design activity) 
(Wang & Brooks, 2007). Tools that assist a modeling 
and verification process include techniques that 
provide support at the level of modeling outcome, 
such simulation for verifying and validating the 
semantic quality of models as well as automated 
feedback facilitating the interpretation of the results 
and/or model verification. However, there is little 
support in the process of making design choices when 
transferring requirements into models, such as the 
choice of candidate components and their 
relationships in a model. Our research aims to explore 
state-of-the-art text mining techniques and 
capabilities in supporting requirements analysis and 
modeling task for novices. We start with mapping 
existing text mining concepts and techniques with the 
modeling technique (such as diagram type) and the 
constructs (e.g. elements supported by the diagram 
type) to come up with a framework that can guide the 
design and development of text-to-model (semi-) 
automated generation instrument. Testing the 
capabilities with respect to the most standard 
modeling techniques used in designing information 
systems constitutes a future research direction, 
however initial results (as a demo) from a pilot study 
is included which compares model constructs 
extracted by an experienced human modeler and 
those produced by using different text mining 
approaches. The remainder of the paper is structured 
as follows. Section 2 describes the research 
methodology used for the work. Section 3 gives an 

overview of related work. Section 4 describes the 
proposed method for text-to-model construction 
support. Our system evaluation is explained in 
Section 5. Finally, section 6 concludes the work with 
a discussion of results as well as proposing some 
future research directions. 

2 RESEARCH METHOD 

Theories are based on a systematic view of 
phenomena. Kerlinger (1979) proposes a method 
based on specifying relations among variables that 
use a set of interrelated constructs, variables, 
definitions, and propositions. Conceptualizations in 
the form of a framework guide research by providing 
a visual representation of theoretical constructs, 
variables of interest, and their relationships as 
suggested by Creswell (1994). Based on such 
frameworks, concrete applications can be developed 
Morgan (2018). In this paper, we aim to derive a 
framework based on earlier literature and previous 
empirical research, to guide the design and 
development of text-to-model transformation 
application to support (semi-)automatic requirements 
analysis and conceptual modeling process. This is 
achieved by conducting a literature study of existing 
text mining and/or machine learning techniques and 
further mapping these techniques with corresponding 
concepts in a modeling process, such as diagram 
types used for conceptual modeling task and their 
corresponding constructs such as class, attribute, 
association. 

3 LITERATURE REVIEW 

3.1 Teaching and Learning Context 

In a teaching context, model comprehension 
difficulties, in addition to the lack of modeling 
knowledge, are also associated with the insufficient 
level of experience of novices and as a result their 
limited cognitive resources to identify relevant 
triggers for model verification. Unified Modeling 
Language (UML) is a standard language that is used 
to document and model business requirements. 
According to a complexity analysis by Siau and Cao 
(2001) UML (Unified Modeling Language) class 
diagram ranks the highest in complexity among the 
structural diagrams followed by state chart among the 
dynamic diagrams  because of their high cognitive 
and structural complexity (Cruz-Lemus, Maes, 
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Genero, Poels, & Piattini, 2010). In a Delphi study by 
Erickson and Siau (2007) identifying the kernel of 
“essential” UML class diagram use cases, sequence 
and state chart are found to have the highest usability 
ranks by practitioners and educators from software 
industry and academic field. Furthermore, these are 
also among the top used diagrams present in the 
context of educational material such as books, tools, 
courses and tutorials, with percentages of 100% (class 
diagram, use case, sequence) and over 96% (State 
chart), while also being among the top diagramming 
techniques that support conceptual modelling. 

3.2 Text Mining Techniques Applied 
for Requirements Engineering 

Requirements analysis (RA) has a key role in the 
process of development of information systems. It is 
a challenging task that requires complex knowledge 
and skills. The quality of a requirements analysis 
affects the quality of the information systems to be 
engineered. Nowadays models are largely used for 
constructing an organization’s information system 
thus also serving the first artefact the quality of which 
can be formally tested. UML uses a graphical notation 
that can represent both the structure and business 
logic of the system to be engineered. Usually, 
requirements documents and domain descriptions are 
provided in natural language. Processing these 
documents using text mining applications (TMA) can 
help to extract information that may be useful in a 
learning context (e.g. by hinting candidate model 
constructs) to assist novices, or in the context of 
processing large requirement documents by experts 
(e.g. by identifying potential constructs that can be 
confirmed or discarded by a human modeler). For 
instance, TMA can assist transforming an 
unstructured data set into a structured format or a 
medium that can be used to generate business model 
constructs. Finally, a formal diagram can be drawn 
for the system from business requirements 
automatically. Earlier research proposed various 
methods to draw UML diagrams from using text 
mining approach. We will briefly discuss some of 
those we consider to be of particular interest. 

Montes, Pacheco, Estrada, and Pastor (2008) 
presented a natural language processing based 
method to generate UML diagrams using a plain text 
as an input. The method analyses the given script/text 
to extract relevant information, based on which UML 
diagrams are drawn. The process of creating, 
arranging, labeling and finalizing the UML diagrams 
is performed using the following steps: 1. Text input 
acquisition, to read and obtain input text scenario, 2. 

Syntactic Analysist, to categorize words into various 
classes as verbs, helping verbs, nouns, pronouns, 
adjectives, prepositions, conjunctions, etc. 3. Text 
understanding  to infer the meanings of the given text 
by using semantic rules (Malaisé, Zweigenbaum, & 
Bachimont, 2005), 4. Knowledge extraction, which 
extracts required data attributes using a set of rules 
(Van Rijsbergen, 1977), 5. UML diagram generation 
uses UML notation symbols to draw a UML diagram. 
Shahzadi, Ahmad, Fatima, Sarwar, and Mahmood 
(2013) proposed a method to identify domain entities 
and their relationships from text documents that can 
be transformed into a UML diagram. The method 
performs a linguists processing on a given text using 
open source tool named GATE (Cunningham et al., 
2009) It allows marking entities and relationships 
between entities. Their system includes the following 
steps: 1. document acquisition, 2. document 
processing, 3. XML modeling. Document 
Acquisition step obtains an input from a textual 
document. Document processing step applies 
linguistic processing (e.g., sentence splitter, 
tokenizer, part-of-speech tagger). XML modeling is 
used to convert a textual data into a formal data-
model. Harmain and Gaizauskas (2000) developed a 
method which produces an object-oriented model 
from textual documents. Montes et al. (2008) present 
a method of generating an object-oriented conceptual 
model (e.g., UML class diagrams) from natural 
language text. Hasegawa, Kitamura, Kaiya, and Saeki 
(2009) also introduced a tool that extracts 
requirements models from natural language texts. 
Gelhausen, Derre, and Geiß (2008) and Gelhausen 
and Tichy (2007) presented a method to create UML 
domain models directly from a textual document. The 
authors employ a graph technique as an intermediate 
representation of a text. The nodes in the graph 
represent sentences and words. Edges indicates 
thematic roles and are the core component of the 
method as they represent the semantic information in 
the text. Graph transformation rules are then used to 
build a UML representation. Mala and Uma (2006) 
use an NLP pipeline to create a model without the 
intervention of a domain expert. The authors  claim 
that the yielded results are at least as good as or 
exceeding human-made class diagrams. Bajwa and 
Choudhary (2006) extract nouns and verb 
combinations from input texts and map the nouns and 
verbs to UML class elements and relations, 
respectively. However, to our knowledge, little is 
known about how these text mining techniques and 
applications can support the task of deriving business 
requirements and automatic generation of formalized 
requirements documents, such as UML models, from 
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a theoretical point of view that builds on evidences 
from prior studies in the domain. In addition, methods 
that integrate machine learning-based method, word 
embedding, heuristic rules, statistical and linguistic 
knowledge also included in this method, have not 
been thoroughly studied for solving requirements 
analysis and modeling problem. This research aims to 
propose a method that 1. builds on the analysis and 
summary of the literature on the applications of text 
mining in the domain of requirements analysis and 
modeling and 2. generalizes to the next level by 
introducing the gaps in this domain for future 
research needs. We argue that, while the application 
of text mining in the business domain is still not 
mature enough to produce requirements documents 
and models that are of high semantic quality (such as 
accurate, complete, etc.) there is a good potential for 
these techniques to assist a human analyst/modeler to 
facilitate some steps in the process, but also assist a 
learning/training process of a novice analyst. The 
latter can be achieved not only by automated 
discovery and proposal of candidate constructs such 
as entities, attributes, (mandatory and optional) 
relationships, activities, sequences, etc., but also 
learning from expert analysis and modeling 
process/behavior, or a business domain document 
generate recommendations and feedback for a 
learning context. 

Summing up, the problem in the domain discussed 
in the literature so far deals with the fact that there is 
a need for supporting techniques that can assist the 
analysts for routine tasks of systematically producing 
a model appropriately representing the expected 
structure and functionality of a system with less 
effort. To achieve this, most of the earlier works used 
shallow linguistic techniques, while the method 
proposed in this work aims to in addition solve and 
address some of the complex linguistic problems 
applied within the domain of business requirements.  
The contribution of this work can be thus addressed 
as follows: 
1) The work is the first attempt of integrating a 
machine learning-based method, word embedding, 
heuristic rules, statistical and linguistic knowledge, 
which has not been thoroughly studied for solving 
software requirements analysis. 
2) The TeToMo based implementation employs 
several meaningful resource-information latent in a 
sentence to a) learn a better sentence representation; 
b) create augmented vector; c) obtain significant 
performance. A hybrid vector is created to represent 
each sentence using the statistical, linguistic 
knowledge-based and word embedding-based feature 
vectors. 

3) The TeToMo based implementation generates an 
XMI file (Specification, 2006) as output (currently 
limited to modeling constructs of class and state chart 
models) that is generic enough to allow to be 
imported and visualized in any UML modeling tool. 
Furthermore, a human analyst can interfere in the 
generation process and/or further refine and extend 
them. 
4) Finally, we conduct experiments for performance 
evaluation and comparison. We report our results on 
the benchmark dataset. In the other words, we 
measure the performance of the TeToMo against 
human judgment to confirm the suitability of the 
proposed method for analysing software 
requirements documents. 

4 TeToMo FRAMEWORK 

Models of a system-to-be often combine structural 
and behavioral views. This can be achieved by 
combining different diagrams such as class diagram, 
process flows represented as business process 
models, flowcharts, activity diagrams, state chart, etc. 
Potential elements that a modeler may need to 
tag/derive from business requirements during early 
stages of analysis (which we will further refer to as 
model constructs) include for instance: 
- Entities (class diagram). 
- Attributes (class diagram). 
- Relationships/associations between entities (class 
diagram). 
- Type of relationship/association, e.g. mandatory vs. 
optional (class diagram). 

o wording like may, can, … show modality, 
wording like must, should,… may denote 
mandatory relationship. 

- Events (activity diagram, state chart). 
- Sequences of events (activity diagram, state chart). 

o event A may occur after or before event B, etc., 
event X is a starting event, event Y is an ending 
event. 

- States (state chart) that are usually verbs in passive 
form (e.g. approved, blocked, ended, started, etc.). 
The architecture of TeToMo based implementation of 
model extraction is displayed in Figure 1. It illustrates 
the steps and functionality of the system to transform 
user requirements such as user stories into UML 
diagrams. There are six main modules in the TeToMo 
system. It is worth noting, because of space limitation, 
we explain each of them in summary: Input document 
includes the document with business requirements for 
processing. The Natural Language Analysis (NLA) 
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module is applied to the document and the processed 
information is sent to the Relationship, Object, 
Method, Attribute (ROMA) module to extract 
modeling constructs such as the attributes, 
object/concepts and relationships between objects 
using both NLP module, heuristic rules and machine 
learning-based method. The findings are further 
proposed to the user as candidate model constructs 
through the Interference Human Interface which can 
be used to approve, discard, make duplicate constructs 
based on e.g. synonyms, etc. Model Generator Module 
is used to compose a model and subsequent structural 
and dynamic views such as a class diagram and state 
charts. XMI format is employed to store the 
information of finalized model constructs and 
relationships. Finally an XMI file can be imported to 
a UML modeling tool to draw the required diagram. 
Detailed explanation of these modules is as follows: 

 
Figure 1: The Architecture of the method. 

Input Document: The goal of this module is to collect 
a textual document (business requirements articulated 
in natural language either in unstructured or 
structured medium format) as an input to the system.  
Natural Language Analysis (NLA) Module: This 
module uses basic linguistic functions to analyse the 
text syntactically and semantically, and stores all the 
intermediate processing results for further analysis. 
This stage includes the following tasks: The raw text 
is first processed. Then, the document is decomposed 
into several paragraphs. Next, the paragraphs are 
further decomposed into sentences. Secondly, the 
tokenization, a basic approach of the text pre-
processing, splits the sentences into words. We also 
employ the stemming procedure to reduce a word to 

its root form. Part of Speech (POS) tagging is also 
used to classify the words of text on the basis of part 
of speech category (‘noun’, ‘verbs’, ‘adverb’, 
‘adjectives’) they belong. The POS tagging provides 
useful lexical information. 

The syntactic analysis is used to identify subject, 
verbs, objects, adverbs, adjectives and various other 
complements. The NLA also uses other basic 
linguistic functions such as co-reference resolution, 
stemming process, semantic role labeling (active & 
passive sentences), semantic word similarity (word 
embedding & statistical method), WordNet 
dictionary to enhance the semantic analysis. The 
results generated by the NLA is passed to the ROMA 
module (see Figure 1). 
Sentences segmentation function is used to split a 
paragraph into sentences. Stemming technique is used 
to reduce word to its stem form (e.g., ‘went’---> ‘go’). 
Stanford Parser is used to produce a parse tree for 
each sentence to identify the ‘phrases’, the object or 
subject of a verb.  
WordNet is an English language lexical database. It 
can be employed to obtain semantically similar terms 
and acquire synonyms. The synonyms are used to 
extract words that are semantically related to each 
other (e.g., term frequency (TF) method uses 
synonym to find a word with high frequency in a text 
file). Co-reference Resolution process is used to 
determine linguistic expressions that refer to the same 
entity in a text. This is useful to link pronominal 
references (e.g., she, it) to earlier referent in the text. 
ROMA module has two sub-modules for 
identification of model constructs.: a) Objects, 
attributes and methods identification: The main task 
of the current sub-module is extracting the important 
words that can be considered as a model construct 
such as entity/concept, corresponding attributes 
related to each concept, the method/operations and 
involvement of entity instances using the calculation 
of various measure parameters of the words (e.g., TF 
(term frequency), TF*IDF (term frequency × inverse 
document frequency), Entropy, C-value (Hasegawa 
et al., 2009)), Heuristic rules and the basic linguistic 
functions (e.g., parser). b) Relationship 
identification: A machine learning-based method 
employs word embedding method, various heuristic 
rules (Narawita, 2017), specific words, various 
measure parameters,  statistical and linguistic 
knowledge as input features to identify different types 
of relationships. 
Interference Human Interface: TeToMo provides an 
interactive user interface that allows an end-user to 
manage and analyze business requirements. S/he can 
choose to interfere in the process of initial tagging as 
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well as the selection of the final model constructs out 
of those proposed by the ROMA module. The system 
presents a list of candidate constructs a user can make 
a decision whether or not to include or exclude a 
particular item (e.g., ‘redundant classes’, ‘irrelevant 
classes’). 
Model Generator Module: This module generates 
different UML diagrams using pre-processed 
requirements. It uses the extracted Information of 
‘ROMA’ module and Interference Human interface 
to extract model views such as class diagram and state 
chart diagram. Algorithms are used to identify and 
determine the class and State chart models elements 
(e.g., concepts/objects/entities, attributes, 
signal/operation/method, associations, relationships, 
Is-a relationship (generalization), Has-a 
(aggregation), multiplicities on relationships among 
the objects, states, events, sequences).  

Heuristic rules include a set of rules to identify 
objects, attributes, method, the multiplicity of roles in 
associations and relationship between the objects. To 
do this, we collected several heuristic rules from 
previous studies (Deeptimahanti & Sanyal, 2011) 
such as syntactic reconstruction rules to split a 
complex sentence into simple sentences to extract all 
possible information from the requirements 
document. An XMI file is produced as the final output 
of the TeToMo. This file includes the information 
about the identified concept/entity/object, their 
attributes, and the relationships among them, their 
typology and relations linked to UML notation at 
meta-data level. It is used to visualize generated 
models in any UML modeling tool which supports the 
XMI import facility or XML compatible. 

5 SYSTEM EVALUATION 

The evaluation of TeToMo will be conducted through 
the performance evaluation by comparing the output 
of the TeToMo with the model generated manually 
(by an expert). For this purpose different case studies 
from different domains have been used. The aim of 
the system evaluation is to assess the extracted 
constructs and model views with respect to its 
semantic quality measured by semantic conformance 
with the business requirements, completeness, and 
accuracy. Furthermore, this section aims to answer 
the following question: how close the model 
generated by the TeToMo is to the one produced by 
an expert analyst.  
Standard Data Set — to analyze the performance of 
TeToMo, we also need a gold standard model (a set 
of all correct results). For this purpose, an expert with 

sufficient skill, experience and domain knowledge is 
asked to produce the corresponding UML diagram for 
each use case. The produced models are then 
compared with the model generated by TeToMo at 
the level of model constructs such as attribute, 
relationship, object/concept. In other words, we 
compare which parts of models generated by the 
expert and TeToMo are the similar, complementary 
or conflicting.  
Evaluation Metrics — we use three standard metrics 
to evaluate the performance of the TeToMo. These 
metrics known as Recall (R), Precision (P) and 
F_measure. Precision is a set of selected items that 
are true, while recall is a set of correct items that are 
selected. In this study, the model elements (e.g., 
attribute, relationship, object/concept) identified by a 
human refers to a set of ideal items, and the model 
elements identified by the TeToMo refers to a set of 
system items. In other words, precision is used to 
assess the fraction of the system items that the 
TeToMo correctly identified and recall is used to 
assess the fraction of the ideal items that the algorithm 
identified. The precision is calculated using Eq. (1): 
the division of identified model elements by TeToMo 
and human expert over the number of model elements 
identified by TeToMo only. The recall is calculated 
using Eq. (2): the division of identified model 
elements by TeToMo and human expert intersection 
over the number of model elements identified by a 
human expert. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑀𝑀

𝑀𝑀 + 𝑁𝑁
 (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀
𝑀𝑀+𝐾𝐾

 (2) 

Where, M = The number of model elements identified 
by TeToMo and Human expert. N = The number of 
model elements identified by TeToMo only. K = The 
number of model elements identified by Human 
expert only. Furthermore, the F-measure is used to 
merge both precision and recall. It is computed as 
follows: 

𝐹𝐹_measure =
2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 (3) 

Sample Case Study: Figure 2 presents a 
conceptual model of simplified a ticket sale system 
generated by an expert. “A company sells airline 
tickets, for which customers can make reservations 
either on a company’s online booking system or by 
calling a phone operator. To meet customer demand 
the company uses a flexible pricing policy based on 
which a seat prices is decided during the reservation 
by a manager. Furthermore, the price for a seat is not 

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

134



fixed and can change depending on the changes of 
several conditions, e.g. after a reservation is 
cancelled, and there are not many seats available for 
the flight while having a high demand (e.g. due to 
popular vacation destination), the price for the seat 
can increase”. 

 
Figure 2: Sample intermediate diagram produced by 
TeToMo (missing to detect elements noted in red). 

Table 1: Precision, Recall and F-score results. 

The model shows classes/concepts (e.g., ‘Customer’, 
‘Seat’, ‘Reservation’, etc.). These concepts are linked 
to each other through relationships. In addition, each 
class includes several attributes, methods/operations. 
On the other hand, a TeToMo produced sample of the 
corresponding conceptual model from the above 
problem statement produced the same output (with 
the missed elements compared to human modeler 
noted in red). To evaluate the method, we measure the 
performance of the TeToMo against human judgment 
on the level of the extracted model elements. For 
instance, Table 1 presents the three main columns: 
number of concepts/class name derived from Figures 
2 (e.g., the expert extracted 7 concepts and the 
TeToMo extracted 6 concepts). To calculate the P, R, 
and F-measure, we determine the values of M, N, K. 
Then, the equations of (1), (2) and (3) are applied to 
get the value of each evaluation metric. The averages 
of precision, recall and F-measure are considered as a 
performance of the TeToMo. We also consider using 
the same format presented in Table 1 to evaluate the 

detection of other elements such as attributes, 
methods, relationships. In this case, the column name 
“Concepts/Class Name” is replaced by the 
“Attribute”, “Method” or “Relationship”, etc. 

6 CONCLUSION 

The work proposes a method that can be used to 
design and develop a text mining based support for 
requirements analysis and modeling process. A 
prototype solution was designed for a conceptual 
modeling case using well-known standard diagrams 
for designing structural and behavioral aspects of a 
system. In this paper, we present a novel method that 
integrates machine learning based-method, word 
embedding, heuristic rules, statistical and linguistic 
knowledge to solve requirements analysis and 
modeling problem (called TeToMo).  
The effectiveness will be evaluated by comparing 
model solutions designed by human modeler and 
those constructed with the help of the prototype, e.g. 
based on the candidate constructs proposed by text 
mining approach. In addition, we also aim to compare 
the performance of TeToMo with those of the other 
existing and well-known methods used for generating 
UML diagram such as (Landhäußer, Körner, & 
Tichy, 2014). While this work outlines some findings 
on the method performance from a pilot study, 
evaluating the effectiveness of the method with an 
enhanced prototype and replication studies using a 
larger corpus constitutes a further research direction. 
Bi-directional verification of requirements from 
models to text is yet another direction for further 
work. Finally, discourse analysis module can be 
added to the NLA to allow determining contextual 
information. Addressing this points will lead to 
improved versions of the TeToMo framework and 
applications. While in this work the framework is 
limited to two specific types of diagrams, expanding 
the scope to experiment with more UML diagram 
types will be a step towards a more generic approach. 
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