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Abstract: This paper explores the use of Graph Neural Network models producing node embeddings, in order to solve
the not fully addressed problem of detecting similar items stored in a knowledge base. Leveraging pre-trained
models for textual semantic similarity, our proposed method PIKA aggregates heterogeneous (structured and
unstructured) characteristics of an entity and its neighborhood to produce an embedding vector that can be
used in different tasks such as information retrieval or classification tasks. Our method learns specific weights
for each information brought by an entity, enabling us to process it in an inductive fashion.

1 INTRODUCTION

In the last few years, the concept of knowledge bases
(KB) has gained a lot of interest. In a KB, the el-
ements sharing relations can be linked among each
other, which can then be visualized in the form of a
Knowledge Graph, very helpful for tasks like social
network analysis, decision making, question answer-
ing or product to user recommendation, (Dai et al.,
2020; Xiaohan, 2020). Such a database can be con-
structed and filled either manually (from people in
charge of entering day-to-day information) or auto-
matically (from parsing a continuous flow of data).
The latter is part of a bigger task called automatic
knowledge base population.

In both previous cases, there is a risk of adding an
already existing element due to typos in the values of
the attributes, several users concurrently updating the
knowledge base or an entity being added with up-to-
date information without worrying about one already
present in the database. These cases are a big con-
cern when administrating the database: they are in-
troducing redundancies, polluting data and impacting
the performances on the different tasks. In this paper,
we propose a solution to avoid this type of errors by
detecting similar entities in a knowledge base before
inserting new items.

To the best of our knowledge, this problem has
not been fully addressed yet. An appropriate solu-
tion should take into account the different types of
entities stored in a database (e.g Person, Location,
etc...), being able to scale to a large number of el-
ements (billion) with heterogeneous description and
taking advantages of both the entity description (at-

tributes) and its neighborhood (relations and attributes
of the neighbors).

Several attempts have been made to determinate
the similarity between pairs of elements, mostly based
on their attributes (Mudgal et al., 2018). However,
their way to operate faces a scalability issue when
dealing with large numbers of entities since the pair-
wise measure has to be computed for each candidate.

A few methods have been proposed to produce
a vector representation of the elements in a knowl-
edge base for predicting link between entities (Wang
et al., 2021; Shi and Weninger, 2018). Still, these ap-
proaches are either based on the requirement that all
of the entities are associated with a descriptive text or
that the entities have no information other than their
name. Other approaches adopt the graph neural net-
work framework from (Wang et al., 2019); but as the
previous ones, they use a loss based on the probability
of a relation between two entities. This is not suited
to the problem we are trying to solve and can lower
the discriminating power of the information carried
by the neighborhood.

In this paper, our main contributions are the fol-
lowing:

• we introduce a pre-processing step to aggregate
the attributes of an entity in a unique vector used
as an input for embedding models;

• we are the first to propose a fast and reliable GCN
model, PIKA, capable to produce node embed-
dings within a heterogeneous graph, in order to
retrieve similar or almost duplicate entities;

• we perform an in-depth evaluation and compar-
ison of our proposed model to state-of-the-art
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GCNs methods, retrieving generated clones from
the TAC KBP database.

The remaining of this article is structured as fol-
lows. Section 2 reviews the related work regarding the
embedding of the entities in a knowledge base. Sec-
tion 3 is a detailed description of our model. Section
4 formalizes the experiment conducted to measure the
embeddings quality. Finally, Section 5 shows and
describes the obtained results before discussing what
could be explored in future works.

2 RELATED WORK

2.1 Entity Matching

The task of entity matching consists in determining
the similarity between two records from the same
database or different databases (entity alignment);
this task can be tackled in a number of ways. A hybrid
module that uses the alignment of encoded values of
the same attribute between a pair of records has been
proposed by (Mudgal et al., 2018). The HighwayNet
model is a bi-directional RNN with a decomposable
attention mechanism; it summarizes attributes before
applying a concatenation and an element-wise abso-
lute difference to produce an output which is then
classified (Srivastava et al., 2015).

Two other models, Ditto and Entity Matching
on Unstructured Data, proposed respectively by (Li
et al., 2020) and (Brunner and Stockinger, 2020),
chose to fine-tune pre-trained language models such
as Roberta (Liu et al., 2019), giving the concatenation
of the two serialized records as inputs. These methods
do not integrate the graph aspect of a knowledge base
since they are applied to atomic records not linked to
each other.

2.2 Relation based Embedding

Node embedding methods use the neighborhood of a
node, generating random walks of fixed length around
each node to build a context to compute an em-
bedding, as introduced by DeepWalk (Perozzi et al.,
2014).This principle of using the context to train en-
coders relying on the frequency of appearance of the
element is frequently exploited (Nielsen, 2017; Ris-
toski and Paulheim, 2016; Dong et al., 2017).The first
disadvantage of this is that embeddings are obtained
on a vocabulary (e.g. the nodes in the graph) of fixed
size, which rules out any comparison with new nodes.
Moreover, relying only on the neighborhood is widely
applied to community detection tasks, as described in

(Fortunato, 2010), but relevant, cohesive communities
can only be detected by considering the network and
the attributes (e.g., the node-born semantic informa-
tion) (Gadek, 2019).

More focused on the existence of a relation
between two records, the “translational” approach
chooses to model links as translations from one entity
to another (Bordes et al., 2013; Dettmers et al., 2018).
The embeddings are computed using a margin-base
loss function reducing the distance of real triplets.
Rotate, from (Sun et al., 2019), deals with the rela-
tions as rotation in a vector space to allow symmetry,
anti-symmetry, inversion and composition to be taken
into account. Once again, the problem of transduc-
tivity arises. In addition to this, keeping as a training
objective the predictions of the relations is not opti-
mal for the detection of similarities.

2.3 Graph Neural Networks

The recent development of deep-learning architec-
tures, especially convolution layers, has led to an in-
terest to reuse them in graph processing, as illus-
trated in (Kipf and Welling, 2016). The information
around the node can be aggregated and iteratively up-
dated to obtain the representation of a target, in an
inductive manner with the Graphsage model (Hamil-
ton et al., 2017). This kind of method is usually lim-
ited to a depth of 1 or 2 layers because of an over-
smoothing problem (Wu et al., 2019) and to main-
tain low processing times. Still, GraphSage provides
learned reusable weights to handle new nodes.

Since not all neighbors have the same influence on
an entity, GAT, a GNN model using linear projections
and a self-attention mechanism, has been introduced
(Veličković et al., 2017). Arguing that the attention
used by GAT is not dynamic and struggles to pro-
cess the real influence of the nodes, a modification of
the sequence of operations of the previous model has
been proposed to solve the issue (Brody et al., 2021).

The above-mentioned approaches disregard the
heterogeneity of the graph, an aspect that is covered
by HinSage, an adaptation of (Hamilton et al., 2017)
implemented in StellarGraph1. HinSage groups and
averages the vectors of the neighborhood according to
the type of the relationship or neighbor. The method
called HGT computes the attention coefficient of the
neighbors, the message passed by them and merges
everything into a new vector. All the operations in-
volve class- and relation-specific linear projections.
This makes it complex to use in the case of a knowl-
edge graph because of the large number of different
edges.

1https://stellargraph.readthedocs.io
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2.4 Node Embeddings in Knowledge
Graphs

Recent work also suggested to combine the transla-
tional loss functions from (Bordes et al., 2013) with
the fine-tuning of a textual model to encode the de-
scription of the entities (Wang et al., 2021; Daza et al.,
2020). This approach performs well when provided a
rich textual description, which is however not consis-
tently the case with knowledge databases.

2.5 Discussion

Our review of the related work highlights the need for
a solution that can:

• Make the most of the additional information
brought by the nature of knowledge graphs (i.e.
the type of relationships and the class of the
nodes);

• Carry out the search quickly enough to be able to
propose similar entities in real time or near real-
time among thousands of items;

• Operate inductively to allow new nodes to be pro-
cessed without training over the model and com-
puting one more time the representations of all the
nodes;

• Transform the node profile into a vector without
loss of content, in the case of sparse or rich at-
tributes.

This paper aims to address these needs by proposing
an adaptation of the GCNs models.

3 TASK DESCRIPTION AND
MODEL FORMALIZATION

3.1 Problem Definition

A knowledge base is a data structure used to store
heterogeneous entities with structured information.
This structure can be modeled as an attributed het-
erogeneous graph, G = (V,E,Λ,M,A), where V is the
set of nodes (representing entities; the two terms are
used interchangeably) constituting the graph, εi, j ∈ E
is an oriented link between two nodes, Λ is the as-
sociation of each entity with a class, M is the as-
sociation of an edge, εi, j, to its type and α(i) =
{α(i)1, ...α(i)k} ∈ A, is the set of attributes possessed
by the node v(i) ∈ V . An attribute is constituted of a
name and the embedding of its textual representation,
α(i) j = (α(i) j,name,α(i) j,val).

Type: Per
Name: Pepper Potts
Nationality: American

Work_for

Type: Per
Name: Tony Stark
Age: 48

Spouse_of

Type: Org
Name: The Avengers
Leader: Tony Stark

Part_of

Live_in

Type: Location
Name: New-York
Population: 8.419 million (2019)

Based_in

Live_in
Type: Org
Name: Stark Industries
Location: Malibu

Figure 1: Example of a knowledge graph.

As shown in Figure 1, the difficulties with this
type of graph are in the possible variation of attributes
between two nodes of the same class (qualified as
dirty entity matching) and the number of relations.

3.2 Model Architecture

Our model is composed of two parts: the profile em-
bedding, shown in Figure 2, and the graph model, in
Figure 3. Since graph methods require the submission
of a vector for each entity, a first step is to summa-
rize the profile information. The second step consists
in a graph model adapted to the nature of knowledge
graphs. The two parts can be trained separately.

To stabilize and reduce learning time, we use
the k-head learning approach introduced by (Vaswani
et al., 2017).As described for the GAT model, the k-
head learning consists in training several versions of
the model parameters in parallel. The resulting rep-
resentations obtained for each head are then averaged
into a single vector.

3.3 Input Computation

For the first stage of embedding, we rely on a pre-
trained encoder to transform strings into vectors, such
as Universal Sentence Encoder (Cer et al., 2018), but
also Mpnet (Song et al., 2020) and DistilRoberta, a
lighter model adapted from (Liu et al., 2019). These
models were trained to measure the semantic simi-
larity between two sentences. For the last two mod-
els we used the instances proposed by the sentence-
transformers2 library; they were computed follow-
ing the process described by (Reimers and Gurevych,
2019).

We selected the Universal Sentence Encoder for
a better trade-off between processing time and effi-
ciency. One could argue that attributes in our case are
made up of words that moreover are not often found
in the literature (First name, Spouse name, etc...)
and therefore a character-based encoder like FastText
would be more appropriate. As a matter of fact, Fas-
text is used for those reasons in (Mudgal et al., 2018).

2https://www.sbert.net
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An exhaustive comparison of which encoder is the
best suited for each kind of attribute is left for future
work.

Once all the values of the fields constituting an en-
tity are encoded, we need to merge their information.
First, attribute-specific coefficients, wψ(α(i) j,name), are
used to weight the feature vectors of an attribute, α(i).
ψ, being the function mapping the attribute name to
his corresponding weight and α(i) j,name, the name of
the j-th attribute of the node i. Then those weighted
vectors are aggregated. For this step we tested several
approaches:

• Global Accumulation-Pooling: this operation
builds the entity embedding by building-up all his
weighted features.

• Max-Pooling: widely used for methods process-
ing images and reused in (Hamilton et al., 2017),
this operation returns the maximum value of the
inputs, index-wise.

• Extreme-Pooling: since the similarities are mea-
sured with vector distances, keeping negative val-
ues in the embedding enables a better comparison
while keeping the max-pooling operation.

Equation 1 shows how we compute the profile
embedding, hp, of a node i with k attributes, using
extreme-pooling. The weights and attribute feature
have values in Rd with d the length of the feature vec-
tors. The • represents the Hadamar product.

hp(i) =extreme({wψ(α(i) j,name) •α(i) j,val})
f or j ∈ {1, ...,k}

(1)

Since the profile does not depend on the relation,
once it is computed it only needs to be updated when
a change is made to the entity itself. However, the use
of specific weights per attribute makes it impossible to
infer on unseen field types. In the case where entities
have few attributes, the weighting vectors can easily
be replaced by matrices.

3.4 Taking Into Account Neighbors
Through Graph Neural Networks

We have the intuition that the task would be better
solved by taking into consideration not only the node
profiles, but also their neighborhoods. To do so we
rely on a GNN; the state of the art underlines the
relevance of a few architecture types: GAT, GATV2,
GraphSage, HinSage, HGT. The points covered by the
latter models are summarized in Table 1.

We adapt these models to take as inputs, the vector
of the target node and all its neighbors. In the case of

a model taking into account the type of the node and
the neighborhood, we add an entry corresponding to
a vector of indices. Those indices associate the target
node to its class and the neighbors to their relation
type.

3.5 PIKA: Performing Identification of
Clones in KnowledgeBase
Algorithm

We present here in detail PIKA, the model that led to
the best performances. It is an adaptation of GAT, ad-
justed to take advantage of the specifics of knowledge
graphs. The followings describe the operations per-
formed to produce the node representation.

h(i)i, j = wφ(i, j) •hp( j) (2)
First, each neighbor of the target node is mul-

tiplied in an index-wise fashion with an edge-type
specific weight. hp( j) is the profile representation
of the node j, w the weight vector (both ∈ Rd) and
φ(i, j) is the relation type from the record i to record
j. (φ(i, j) = φ( j, i)−1 is the inverse relation. To enable
the consideration of a large number of edge types, we
used vectors, since matrices would require the compu-
tation of too many parameters. Equations 3, 4, 5 re-
produce the operations explained in (Veličković et al.,
2017).

In Equation 3, the attention coefficient, e(i)i, j, of
each edge linked to the node i is computed by multi-
plying an attention vector, β ∈ Rd∗2 to the concatena-
tion of the representations of the two entities. These
coefficients are then normalized by Softmax in Equa-
tion 4.

e(i)i, j = LeakyReLU(β.[h(i)i, j||h(i)i,i]) (3)

β(i)i, j =
ee(i)i, j

∑k∈Neigh(i) ee(i)i,k
(4)

The last step is an aggregation followed by a non-
linear transformation to compute the final represen-
tation of the node i, h(i). Neigh(i) corresponds to
the neighborhood of the node i, plus a relation to it-
self. As several links can exist between two nodes,
the neighbor involved can appear more than once in
Equation 5.

h(i) = σ( ∑
j∈Neigh(i)

β(i)i, j •h(i)i, j) (5)

Since the direct neighborhood of a node is suffi-
cient to differentiate between cloned and non-cloned
pairs, we limit ourselves to models with only one con-
volutional layer. This allows us to reduce the memory

Duplicate Detection in a Knowledge Base with PIKA

49



𝛼 𝑖 !,#$%& : attr 𝑖 '

𝒆𝒏𝒕𝒊𝒕𝒚
Textual	
encoder

Pooling

𝛼 𝑖 !,#$%& : 𝛼 𝑖 !,($)
…

𝑤*(, - !,#$%&) 𝛼 𝑖 !,#$%& : [𝑎-!!, … 𝑎-!/]
…

𝛼 𝑖 ',#$%& : [𝑎-'!, … 𝑎-'/]

𝒆𝒏𝒄𝒐𝒅𝒆𝒅 𝒑𝒓𝒐𝒇𝒊𝒍𝒆
𝛼 𝑖 ',#$%& : attr 𝑖 '

…

𝛼 𝑖 ',#$%& : 𝛼 𝑖 ',($)
𝑤*(, - ',#$%&)

Figure 2: Schema of the profile encoder.

Table 1: Model characteristics.

Model Directed Heterogeneous edges Node type specific Attention Iterative inputs
GAT ✗ ✗ ✗ ✓ ✓

GATV2 ✗ ✗ ✗ ✓ ✓
GATV2* ✓ ✓ ✓ ✓ ✓

Graphsage ✗ ✗ ✗ ✗ ✓
Graphsage* ✗ ✗ ✓ ✗ ✓

HinSage ✗ ✓ ✓ ✗ ✓
HGT ✓ ✓ ✓ ✓ ✓

PIKA-simple ✓ ✓ ✓ ✓ ✗
PIKA ✓ ✓ ✓ ✓ ✓

used and the time spent on calculating the representa-
tion. This makes possible to take into account all the
neighbors without the necessity of a sampling strategy
as the one used in (Hamilton et al., 2017).

As opposed to the computation of the vector sum-
marizing the profile, if a change occurs at the at-
tributes level, there is a need to recalculate the graph
embedding of the neighboring nodes.

3.6 Near-duplicate Finding in Vector
Spaces

In order to retrieve the most similar entities based
on their embedding we use an approximate nearest
neighbor search tool, Annoy3. Inspired from kd-trees,
it uses random projections and associates a random
hyper-plane at each node of the search tree. The draw-
back of such libraries is the need to update the search
index whenever a new node is added.We use the co-
sine similarity to compare the vectors: it is the most
common measure to handle embeddings.

3.7 Training Procedure

3.7.1 Implementation

All the models have been implemented using Py-
torch and trained as classifiers in a supervised manner,
following the framework explained in (Reimers and
Gurevych, 2019). This framework consists in train-
ing a binary classifier with pairs of entities as input.
This classifier can be used in inference to perform the
classification; the last prediction layer can be removed
to directly obtain representative vectors, more useful

3https://github.com/spotify/annoy

for the entity retrieval task. Our training procedure
just changes the output given to the classifier as ini-
tially described in the framework. Instead of using
the concatenation of the two produced embeddings
and their absolute difference, we only keep the differ-
ence since it produces better results during our experi-
ments. About the number of attributes, only the 4,000
most present attribute types are taken into account and
the 2,000 types of edges (multiplied by two since the
direction of the link is considered). The vector shape
of the final embeddings is set to 512. Regarding train-
ing, we use the binary-cross entropy loss function and
the Adam Optimizer (lr = 10−3).

3.7.2 Iterative Training Procedure

The standard training procedure relies on training
pairs; the model predicts whether both entities refer to
the same or not. We had the intuition that the robust-
ness of the model could be improved here: indeed, the
non-analogous pairs are randomly created, and that is
why the models can easily differentiate between enti-
ties that have nothing in common but could struggle
to predict ambiguous entities.

To address this problem, we propose an iterative
training procedure in Algorithm 1 which, after each
iteration, adds the pairs returned by the model as the
most similar. The elements from which the most sim-
ilar requests are made are the ones in the initial test
and validation sets, while the returned instances are
the ones that are not already in one of the sets. Note
that this procedure is used for the profile encoder step;
using it on the neighborhood aggregation step would
require first to generate a train/test split with a specific
consideration (to avoid having a same neighborhood
being in both the train and test sets).
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Figure 3: Schema of the PIKA model.

Algorithm 1: Iterative training procedure.

Input : Set baseTrain, BaseVal
Result: the trained model
train← baseTrain ;
val← baseVal ;
model← new Model ;
while nbIteration ¡ maxIteration do

model← train(model, train, val);
embeddings← get embeddings(model);
most similar pairs←
get similarities(embeddings, baseTrain,
basicVal);

train, val← get new sets(model, train,
val);

end

4 EXPERIMENT SETTINGS

4.1 The Datasets

In order to develop, test and evaluate the models we
used the TAC KBP Reference Knowledge Base devel-
oped by the Linguistic Data Consortium (LDC). The
knowledge base is built from English Wikipedia arti-
cles. More than 800,000 entities are divided into four
classes: Person (PER), Geo-political entity (GPE),
Organization (ORG) and Unknown (UKN). TAC can
be modeled as a knowledge graph by using as re-
lations the references to other entities in descriptive
texts.

Generating Clones. As TAC is considered to be
free of duplicate entities, it was necessary to generate
clones from instances of the base. To do so, we used
a custom script which generates from a model entity
drawn randomly (that has not already been used) a
clone with alterations to relationships and attributes.
These alterations reproduce at best what can be found
in our use cases and have arbitrary probabilities of oc-
currence. Concerning the attributes, field values can
be swapped, the values can be randomly truncated,
changes/ insertions of characters may occur to sim-
ulate typing errors, attributes can be deleted. About

TAC

Train set
32 000 nodes

Validation set
19 200 nodes

Test set
12 800 nodes

Clones Mix
20 000 nodes

Poor Clones
10 000 nodes

Rich Clones
10 000 nodes

22 000 nodes

13 200 nodes

8 800 nodes

5000 nodes 5000 nodes

3000 nodes 3000 nodes

2000 nodes2000 nodes

Figure 4: Distribution of the dataset.

the edges, some can be deleted, added with a random
pair of neighbors and predicates or existing ones can
have the type of the relationship replaced. To prevent
bias in the evaluation, an entity can only be used to
produce one clone and a clone cannot be used as a
model.

To test thoroughly the methods, two types of
clones were generated. The first one with few deleted
attributes (deletion probability set to 0.2), qualified
as rich clones and corresponding to an exact clone
search. The second type, with a lot of deletion (dele-
tion probability set to 0.5) for the case of a query
search and will be named as poor clones. The other
changes have the same probability of occurrence for
both types.

Distribution of the Datasets. As shown in Fig-
ure 4, the datasets are made of pairs of nodes
“(entityA,entityB)”, associated with a “cloned” or
“non-cloned” label. There are respectively 16,000,
9,600 and 6,400 pairs in the training, validation and
test set. The datasets are made of 50% cloned pairs.
20% of false clone pairs have one of the entities with
a duplicate in the database to prevent from bias in the
training procedure. This distribution sets the number
of duplicates at 20,000, i.e. 2.5% of the base: it is a
trade-off between training set size and a polluted base.

4.2 Evaluation Procedure

The methods are evaluated according to two settings
in order to model the ability of a method to operate by
proposing similar entities or directly making a classi-
fication:
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• Search for similar entities: as a problem of infor-
mation retrieval, for all similar pairs in the test set,
we submit the first entity of the tuple as a query.
The position of the analogue entity in the list or-
dered by similarities with the embedding of the
query node is then measured.

• Clone detection: we take one of the entities of
each pair of the test set. The system then returns
the entity it considers the most similar and finally
applies a binary classification.

4.3 Metrics

In the context of the search for similar entities, we
used the Hit@k score (with k ∈ (1,10,100)) and the
MRR (Mean Reciprocal Rank). The Hit@k score
measures the average capacity of a system to return
the target in the first k elements, while the MRR is
used to evaluate the performance of the system is gen-
eral.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(6)

Hit@k =
1
|Q|

|Q|

∑
i=1

1targeti∈topk (7)

The clone detection task is, on the other hand, seen
as a classification problem. Given a pair of entities as
inputs, the classifier predicts whether both represent
the same real entity (“clone”) or not. The evaluation
metrics are Accuracy, Precision, Recall and F1-score.

Note that this problem is a classification task on
top of the IR chain: the classifier examines the sub-
mitted entity and its closest match. As a result the
recall of the classifier is the Hit@1 of the IR task.

5 RESULTS AND DISCUSSION

We compare our proposed method PIKA with versions
of GraphSage, HGT, HinSage, GAT and GATV2
which we implemented under Pytorch and trained un-
der the (Reimers and Gurevych, 2019) framework. In
addition to being tested with their standard implemen-
tation, some modifications are added to take into ac-
count the specificities of Knowledge Databases. We
also measure the performance of PIKA without the
iterative training procedure under the label of PIKA-
simple, in order to evaluate the added value of this
procedure.

The introduction of iterative training really boosts
the quality of the model: PIKA clearly outperforms
PIKA-simple, its non-iterative implementation. This

gain is even greater when switching from basic mod-
els to models modified to consider the characteristics
of a knowledge graph (noted with a *). Indeed, we
can clearly see a better MRR for *-versions, with an
exception for GATV2-* on rich clones. The improve-
ment is due, firstly, to the fact that the orientation of
the edges is included, which is an interesting param-
eter for places for example (GPE type). Nodes like
these, that are often linked to a myriad of incoming
neighbors, would be better represented by their out-
going edges. Secondly, our methods differentiate the
weights according to the class of the node in the self-
attention mechanism. For some types it is preferable
to keep more of the node information. Lastly, dis-
tinguishing the nature of connections gives a better
adaptability to the model for different topologies.

From the previous results we can also see that
models not adapted to the knowledge graph struc-
ture (node-type information, relation-type informa-
tion) struggle to rely on the information given by the
neighborhood as their MRR drops between 0.1 and
0.15 points when comparing the results of the same
model on the mixed and poor set. Considering the
sparsity of the knowledge base (a median of three
edges per node and 14% of them do not possess any
link), we believe that methods strongly relying on
context will perform even better on denser graphs.

As shown in the classification part of the Ta-
ble 2, the proportion of false positives is still too
high (shown as low precision scores) to enable an
automatic similarity detection system. This can be
explained by the fact that no iterative training was
done on the classifier with the embedding obtained
by the graph methods. Indeed, an iterative training
on the graph methods would not have been useful:
many nodes have a common neighborhood without
being clones. Ambiguity would have hindered itera-
tive learning.

About the time constraint of embedding methods
using graphs, we measure an average of 0.16 s re-
quired to compute the embedding of an entity and re-
trieve the most similar item from our knowledge base;
this time is computed in a standard office workstation,
against the whole TAC KBP database. This short du-
ration makes it convenient to integrate PIKA into Web-
scale systems.

6 CONCLUSION

We presented a two-part model that is able to sum-
marize the features and the neighborhood of a node
into a vector usable to compare the similarities and to
retrieve close entities in terms of characteristics and

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

52



Table 2: Measures on the sets of poor clones, then rich clones for the information retrieval task, and on rich clones for the
classification task. Models followed by ”*” are variants adapted to knowledge graphs.

Poor clones Rich clones Rich clones - classification
Model MRR Hit@1 Hit@100 MRR Hit@1 Hit@100 Acc. Precision Recall F1
GAT 0.257 0.206 0.534 0.532 0.472 0.764 0.320 0.258 0.957 0.406

GATV2 0.636 0.582 0.850 0.810 0.774 0.936 0.542 0.491 0.924 0.641
GATV2* 0.720 0.678 0.886 0.752 0.711 0.903 0.565 0.513 0.978 0.673

Graphsage 0.449 0.388 0.740 0.783 0.752 0.913 0.431 0.423 0.993 0.593
Graphsage* 0.484 0.432 0.764 0.820 0.793 0.928 0.431 0.423 0.993 0.593

HinSage 0.110 0.091 0.235 0.521 0.489 0.699 0.764 0.472 0.705 0.566
HGT 0.141 0.119 0.281 0.450 0.426 0.600 0.564 0.297 0.890 0.446

PIKA-simple 0.817 0.783 0.928 0.918 0.899 0.971 0.653 0.617 0.960 0.751
PIKA 0.856 0.828 0.941 0.959 0.949 0.988 0.786 0.669 0.952 0.786

relations. Since the model weights are not specific to
nodes but to attributes and relationships, it is applica-
ble to other graphs with the same types of attributes
and edges.

For a more specific application, our method could
easily be adapted to assign higher weights to attributes
that should be focused on. By submitting pairs of
clones with specific modifications during training, the
user would be able to detect similarities only on tar-
geted attributes.

We obtained a more robust model to ambiguous
entity pairs, by applying an iterative training. Never-
theless, embedding a complex entity prevents an ef-
ficient atomic comparison of its attributes (as is per-
formed in entity alignment methods) since the infor-
mation is smoothed into a single vector. Still, the
results showed that search entities, if not returned in
first position, are almost always in the top 100 results.
This considered, we can easily imagine the use of our
model as a pre-filtering step on a large database before
performing an entity-by-entity comparison or using a
more accurate but slower method on fewer candidates.

Finally, the numerical values are not processed in
an optimal way by the encoder since they appear in
the database as strings. Text encoders such as USE
or Mpnet do not specifically handle numerical val-
ues: we believe that a dedicated processing for such
attributes is required in order to reach an acceptable
quality for the clone classification task.
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