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Abstract: CrRCC (chromophobe renal cell cancer) belongs to the group of non-clear cell cancer which accounts 4%-
5% of RCC. Birt-Hogg-Dube Syndrome (BHDS), a subtype for crRCC, occurs due to the germline mutation 
of Folliculin (FLCN). Each disease has designated treatment and contrasting prognosis, but the histological 
features of this syndrome may overlap with the other subtypes of RCC which makes it difficult to differentiate 
and it has a limited amount of information available due to its uncommonness. This study aims to differentiate 
the pathway and genes involved in BHDS disease through NetworkAnalyst. The dataset was gathered from 
ArrayExpress and generated 395 significant DEGs in BHDS, which was then used to produce a pathway 
enrichment network and protein-protein interaction (PPI). Cytoskeletal protein binding correlating with hub 
genes KIT, RHOB, and UBC in BHDS indicates that this disease has a high risk for cell metastasis. This study 
gives a new promising therapeutic target for the said disease.

1 INTRODUCTION 

Every year, there are approximately 338,000 new 
renal cell carcinoma releases in the world and about 
30% of new renal cell carcinoma patients have 
metastases at the time of diagnosis (Li et al., 2021). 
Renal cell carcinoma (RCC) is a frequently diagnosed 
cancer with high prevalence (Y. Y. Chen et al., 2020). 
It is a heterogeneous tumor that derives from 
epithelial cells of the renal tubular, which represents 
a comprehensive 80% of all main RCC kidney tumors 
(Singh, 2021). Obesity, hypertension, and cigarette 
smoking are well-known risk factor for RCC although 
their impact may be different depending on the 
population. Renal cell carcinoma is more prone to 
male gender than females and a high incidence is 
generally seen from the sixth to eight decades of its 
existence that proves gender, race, and age affects the 
occurrence of RCC (Thompson et al., 2008). Genes 
that are typically involved in renal cell carcinomas 
such as VHL, MET, FLCN, SDH, TSC1, and TSC2 
have an important role regarding with regulation of 
cellular metabolic processes which suggest a 
dysregulation of metabolic pathways involved in 
oxygen, energy, and/or nutrient sensing as a key 
feature of RCC carcinogenesis (Linehan, Srinivasan, 
& Schmidt, 2010). 

RCC has many histological subtypes with 
different molecular drivers in which clear cell RCC is 
the most prevalent subtype, approximately for about 
75%. The remaining subtypes include papillary renal 
cell cancer (pRCC), chromophobe renal cancer 
(crRCC), MiT family translocation, and other rare 
types (F. Chen et al., 2016). Most genomic alterations 
in RCC were well defined until the World Health 
Organization (WHO) in 2016 discovered 
classifications of tumors included subtypes which 
include Hereditary Leiomyomatosis and Renal Cell 
Cancer (HLRCC), von Hippel-Lindau disease 
(VHL), Birt-Hogg-Dube Syndrome (BHDS), and 
Hereditary Papillary renal carcinoma (HPRCC) 
(Moch, Cubilla, Humphrey, Reuter, & Ulbright, 
2016).  

Birt-Hogg-Dube Syndrome (BHDS) is a major 
autosomal dominantly inherited syndrome. BHDS is 
mostly involved with chromophobe renal cell 
carcinoma (crRCC), which is the third common 
subtype of RCC as it accounts 4%-5% of the incidence 
rate. This syndrome is associated with other benign or 
malignant tumors in other organs. Patients with BHDS 
deal with the RCC subtype chromophobe cell RCC, 
which is often considered as the counterpart of the 
benign oncocytoma, own hybrid forms (oncocytoma-
chromophobe) (Murphy, Burns, Murtagh, Rooshenas, 
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& Caskey, 2021). This hereditary syndrome is 
becoming more evident due to the advancement in 
pathological and molecular characterization and since 
there are many histological features are associated 
with distinct RCC hereditary, overlapping of their 
features is possible (Carlo et al., 2019). 

It is important to identify patients at risk for 
hereditary RCC, as it may influence care (e.g. radical 
versus partial nephrectomy and surveillance type and 
schedule) and family members at risk could be 
offered specific screening to enable early detection. 
Each subtype is endowed with its unique risk factors, 
prognosis, prevalence, survival rate, responsiveness 
to diverse therapeutic agents, and clinical outcomes. 
Furthermore, the main treatment is surgery combined 
with chemotherapy and immunotherapy, but the 
therapeutic effect is limited (Fisher, Gore, & Larkin, 
2013). Therefore, it is necessary to further study the 
pathogenesis of BHD syndrome to find possible early 
diagnostic markers and therapeutic targets. 

The objectives of the study are identifying the 
main gene/s concern in differentiating the 
pathogenesis on different classifications of RCC 
specifically on BHDS disease and then integrating it 
on web-tool based mainly named NetworkAnalyst 
that will enable the user to construct a protein-protein 
interaction network that will aid classification of the 
pathophysiological pathways of this subtype of RCC. 

This study focuses on the genes and pathways that 
are needed to differentiate the specific subtype of 
RCC therefore aimed at one organ, which is the 
kidney. As the NetworkAnalyst is used as the main-
tool-based software, it also limits the resource of 
collected microarray data by choosing the 
ArrayExpress as the library resource for the dataset of 
BHDS (E-GEOD-21816). It is also noted that 
research on human tissues is used in conducting this 
study on gene expressed table. 

2 METHODOLOGY 

2.1 Data Collection 

The gene expression dataset of BHDS [E-GEOD-
21816 (GPL10175 Platform)] was manually searched 
and gathered from ArrayExpress database. The 
ArrayExpress (https://ebi.ac.uk/arrayexpress) is an 
open-source platform for the storage of genetic data. 
The E-GEOD-21816 dataset includes 6 normal kidney 
tissues and 6 Birt-Hogg-Dube syndromes associated 
with renal tumors patients. These microarray datasets 
(BHDS kidney tissues vs. normal kidney tissues and 
HLRCC kidney tissues vs normal kidney tissues) are 

inputted in text file (.txt) and are uploaded in 
NetworkAnalyst. Table 1 consists of the inclusions 
and exclusions criteria for the microarray dataset. 

Table 1: Inclusions and Exclusions criteria for microarray 
datasets. 

Inclusion Exclusion 
Kidney tissues No other organ tissues 

Homo sapien organism Non-human organism
BHDS  No other subtypes of 

disease 

2.2 Data Preprocessing, Quality Check, 
and Normalization 

In uploading, the gene expression table, data should 
be specified according to their specific organism, data 
type, ID type, and gene-level summarization. Both 
datasets are specified as homo sapien, microarray 
data, Entrez ID, and mean, accordingly. After the 
datasets are successfully uploaded, a quality check 
and normalization of the data are done to enable to 
have more refined data analysis. Diagnostic plots 
such as box plots and density plots are included in 
both the quality check category and the normalization 
category. These diagnostic plots give different 
perspectives on the data. The distribution of gene 
expression values can be seen through these 
diagnostic plots and the results of different 
normalization methods on sample clustering can be 
visualized using PCA plots (G. Zhou et al., 2019). 
Box plots are applied to examine the normalization 
status. Log scale is applied if all data values are 20 
while quantile normalization is used if all samples 
have identical distribution (Xia, Gill, & Hancock, 
2015). The two datasets are filtered and further 
normalized to quantile normalization. 

2.3 Identification of DEGs 

NetworkAnalyst may also be used to distinguish 
DEGs between renal tumor tissue and normal kidney 
tissue samples. If one probe set does not contain the 
homologous gene, or if one gene has numerous probe 
sets, the data are removed (Li et al., 2021). Fold 
change of the genes present in BHDS tumor 
compared to normal kidney tissue were analyzed 
using the LIMMA package. The comparison of 
interest is set to its specific comparison (control vs. 
infected). To determine the genes that are 
significantly expressed on both datasets, the FDR 
adjusted p-values were kept to less than 0.05. Based 
on the fold change, genes were categorized into two 
classes, up-regulated genes (log2FC > 2) and down-
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regulated genes (log2FC < -2), the cut-off statistic 
criteria were based in the study of L. Zhou et al. (L. 
Zhou, Li, Li, & Huang, 2020). Genes that were 
commonly up-regulated and down-regulated in both 
datasets were used to further analysis. 

2.4 Pathway Enrichment Analysis 

The pathway and process enrichment analysis were 
performed in all the common DEGs in both datasets. 
NetworkAnalyst allows users to perform functional 
enrichment analysis for highlighted nodes using 
different databases such as GO, KEGG, PANTHER, 
and Reactome pathway databases (Xia, Benner, & 
Hancock, 2014). KEGG, PANTHER, and Reactome 
are commonly used for biological information 
databases worldwide. The GO resource includes three 
aspects of biology which are biological process (BP), 
cellular component (CC), and molecular function 
(MF), and it is also commonly used in bioinformatics. 
The rule of significant is that P-value < 0.05 (Li et al., 
2021).  

2.5 Networking Mapping and Visual 
Analytics 

This step deals with constructing PPI networks, 
heatmaps, volcano plots, and other visualization 
steps. The summary-level data (P values and fold 
changes) from the two datasets are extracted and 
integrated to identify genes that are significantly 
altered in expression, based on overall evidence (Xia 
et al., 2014). The significant genes of the datasets are 
presented in PPI networks and visualization analysis. 
In the PPI network, the number of nodes, edges, and 
seed proteins are summarized for each network (Xia 
et al., 2015). The clustering analysis of expression 
levels of hub genes is performed using interactive 
heatmaps or enrichment networks. The heatmap 
visualization tool shows detailed gene expression 
patterns underlying individual functions; while the 
enrichment network tool provides an overview of all 
enriched functions with similar ones connected by 
edges (G. Zhou et al., 2019) that uses different 
databases mentioned above. 

3 RESULTS  

3.1 Identification of DEGs 

Following the preprocessing of the raw dataset, and 
then thoroughly running it through the LIMMA 
package, a total of 395 significant genes was 

identified in the dataset of E-GEOD-21816. With cut-
off statistic criteria of p-value ≤ 0.05 and fold change 
(FC) ≥ 2 or FC < -2, each set has generated their own 
up and down regulated genes, for E-GEOD-21816 
consists of 148 down-regulated genes and 247 up-
regulated genes. The visualization of the resulted 
DEGs of BHDS dataset was done through volcano 
plots heatmaps (Figure 1). Based on the DEGs, 
heatmap analysis showed clear segregation of 
patients with BHDS from the control sample (Figure 
1A and Figure 1B). The top up and down regulated 
DEGs ranked by fold change in BHDS is listed in 
Table 2. 

3.2 Pathway Enrichment Analysis 

It was concluded that while PPIs are reliable in 
discerning specific hub nodes that can describe the 
gene’s centrality towards protein genes, it is only 
enclosed within a specific subnetwork, hence the 
usage of gene set enrichment analysis (GSEA). GSEA 
is primarily used as a visual data analysis within the 
NetworkAnalyst to produce gene count for the 
enriched KEGG and GO pathways. P-value was added 
to determine the probability of connection between the 
pathway and BHDS genes seen in Tables 3 & 4. 

 
Figure 1: Hierarchical clustering heatmap of (A) BHDS and 
control sample. Volcano plot of DEGs between (B) BHDS 
sample and control sample. The red circles found in the 
volcano plots signify up-regulated genes while the blue 
circles are the down-regulated genes, and the white circles 
are non-significant genes. From the heatmap, the first six 
columns from the left are the normal kidney tissue and the 
last 6 columns are the tumor samples. The blue shade 
signifies low expressed genes while the red shade defines 
the high expressed genes. 

3.3 Protein-Protein Interaction 

Using both up and down regulated DEGs that were 
produced by the statistical analyzation of the provided 
sets, Hub nodes were identified through the string 
interactome database and therefore established the 
protein-protein interaction. As stated above, Table 5 
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shows PPI can be used to determine the specific 
subtype’s centrality towards BHDS genes. Figure 3 
contains the visual representation of PPI network 
from DEGs of BHDS. 

4 DISCUSSION 

The different types of renal cell carcinoma may pose 
some difficulty in differentiating histologically as 
many features of the subtypes overlap each other. 
And because they all have designated treatment and 
as well as contrasting prognosis, the utilization of 
gene-expression microarray analysis is therefore 
essential in the identification of molecular 
pathogenesis that will aid in distinguishing 
biomarkers that is important in clinical diagnosis, 
especially in diseases where there is a limited amount 
of information available due to the rarity of some 
disorders (Caliskan, Andac, & Arga, 2020). 

With that in mind, NetworkAnalyst was chosen as 
the designated program that will generate gene 
expression profiles as an innovative move to further 
test the program if it is accurate enough to be used not 
only to detect biomarkers but also construct pathways 
specifically for BHDS. 

As previously stated, renal cell carcinoma has a 
high prevalence rate (Fisher et al., 2013) and within 
the aforementioned subtype; chromophobe, though 
not as much predominantly known as clear cell RCC 
is shown more significant than its counterparts. And 
from the previously gathered studies, BHDS has been 
mentioned the most by papers by the papers amongst 
the tumors that are enclosed within the chromophobe 
subtype and was therefore selected to be analyzed 
thoroughly. 

 
 
 

4.1 Birt-Hogg-Dube Syndrome (BHDS) 

Birt-Hogg-Sube syndrome (BHDS), a subtype of 
chromophobe renal cell cancer (crRCC), is a 
hereditary condition characterized by skin 
fibrofolliculomas, pulmonary cysts, spontaneous 
pneumothoraces, and multiple RCCs (Nickerson et 
al., 2002). The germline mutation in the folliculin 
(FLCN) gene affects this disorder but its function 
remains unknown.  

As DEGs from the dataset were used to produce 
the pathway enrichment network analysis using 
GSEA (Figure 2), therefore it conveys a much larger 
visualization in terms of connection of gene towards 
the disease. Referring to Tables 3 & 4 that include the 
KEGG and GO pathways enriched from the DEGs of 
BHDS. 

 

Figure 2: Visual representation of GO: MF pathway 
enriched in BHDS using GSEA network. 

4.2 Pathway for BHDS 

From reviewing the result in Table 4, it was 
interpreted that while the research of Moch et al. may 
say that the chromophobe form of RCC has a lowered 
risk for metastasis (Moch & Ohashi, 2021), but its 
subtype; specifically BHDS showed that cytoskeletal 
protein binding has the highest genome count with 
 

Table 2: The top up and down regulated DEGs of BHDS ranked by log2FC. 

Up-regulated genes Down-regulated genes 
Gene Symbol Log2Fc P-value Gene Symbol Log2FC P-value

Birt-Hogg-Dube Syndrome (BHDS)
CXCL14 6.689 7.1641E-13 TMEM255A -7.9156 3.856E-18
ALDOB 6.558 2.346E-9 HHATL -7.3352 3.413E-14
CALB1 6.177 2.567E-9 DAPL1 -5.6567 1.465E-6
UMOD 6.106 6.362E-10 PVALB -4.8824 5.800E-7
NAT8 6.048 2.388E-7 CKMT2 -4.6471 1.508E-12

PDZK1IP1 6.0416 1.1997E-9 PDZK1IP1 6.0416 1.1997E-9
ASS1 5.8721 3.8722E-9 ASS1 5.8721 3.8722E-9
PAH 5.3302 6.6718E-8 PAH 5.3302 6.6718E-8

BBOX1 5.2498 1.6913E-7 BBOX1 5.2498 1.6913E-7
PROM1 5.1054 2.7515E-7 PROM1 5.1054 2.7515E-7

 

BIOINFORMATICS 2022 - 13th International Conference on Bioinformatics Models, Methods and Algorithms

76



Table 3: Top KEGG pathways in the enrichment analysis 
of significant DEGs associated with BHDS. 

Birt-Hogg-Dube Syndrome (BHDS) 
Pathway Gene 

Count 
P. value 

Focal adhesion 168/199 1.57E-4
Fluid shear stress and 

atherosclerosis 
119/139 1.64E-4 

Cell adhesion molecules 105/146 1.64E-4
Leukocyte transendothelial 

migration 
89/112 1.68E-4 

TGF-beta signaling pathway 71/92 1.71E-4
Protein digestion and 

absorption 
70/90 1.72E-4 

Biosynthesis of amino acids 61/75 1.75E-4
Complement and 

coagulation cascades 
59/79 1.75E-4 

Glycolysis/Gluconeogenesis 51/68 1.77E-4
Oxidative phosphorylation 106/133 2.55E-4

Table 4: Top GO (BP, MF, CC) terms in the enrichment 
analysis of significant DEGs associated with BHDS. 

PATHWAY GENE 
COUNT 

P-VALUE 

Biological Process (BP) 

Wound Healing 483/610 1.4E-4 

Positive regulation of cell 
proliferation 

478/668 1.4E-4 

Regulation of anatomical 
structure morphogenesis 

478/605 1.4E-4 

Regulation of body fluid 
levels 

469/595 1.4E-4 

Vasculature development 429/523 1.43E-4
Response to biotic 

stimulus 
432/614 1.43E-4 

Response to other 
mechanism 

413/586 1.44E-4 

Negative regulation of 
development process 

404/563 1.44E-4 

Regulation of growth 408/518 1.44E-4
Negative regulation of 

cell proliferation 
409/526 1.44E-4 

Molecular Function (MF) 

Cytoskeletal protein 
binding 

497/635 1.39E-4 

Calcium ion binding 442/662 1.41E-4 

Structural molecule 
activity 

428/624 1.43E-4 

Actin binding 278/356 1.51E-4 

Metal ion transmembrane 
transporter activity 

267/373 1.52E-4 

Enzyme inhibitor activity 229/322 1.54E-4 

Substrate specific channel 
activity 

228/376 1.54E-4 

Anion transmembrane 
transporter activity 

165/229 1.60E-4 

Secondary active 
transmembrane activity 

146/192 1.61E-4 

Glycosaminoglycan 
binding 

136/172 1.63E-4 

Cellular Component (CC) 

Cell surface 351/488 1.47E-4 

Extracellular matrix  313/424 1.48E-4 

Actin cytoskeleton 292/366 1.5E-4 

Proteinaceous 
extracellular matrix  

262/362 1.51E-4 

Cell-cell junction 232/292 1.54E-4 

Apical plasma membrane 169/212 1.62E-4 

Extracellular matrix part 139/178 1.64E-4 

External side of plasma 
membrane  

142/202 1.64E-4 

Apical junction complex 96/117 1.7E-4 

Anchored to membrane 97/146 1.7E-4 

Table 5: The top 10 significant hub genes of BHDS 
according to their betweenness and their designated p-
values. 

Hub Nodes P-value Betweenness
BHDS 

KIT 7.00E-9 102791.3
RHOB 2.74E-9 68625.94
UBC 0.062274 63768.85
PLG 0.003165 40525.61
AGT 4.70E-5 40265.16

THBS1 4.09E-7 38286.66
SRC 0.36754 33653.63

KNG1 2.34E-5 30817.65
FHL2 7.28E-6 29003.64

PRKAR2B 8.04E-7 27625.94

497/635 and has significantly lowered p-value of 
1.39E-4 which means that a lot of genes that is 
involved in cytoskeletal protein binding pathway is 
included with the progression of BHDS. This in turn, 
may potentially point out that unlike the previously 
constructed views of BHDS, it may possibly have a 
higher risk of metastasis. Figure 4 shows a schematic 
representation of the mechanism of cytoskeletal 
protein binding pathway enriched in BHDS.  

4.2.1 Cytoskeletal Protein Binding 

Cytoskeletal proteins contain different sub-families 
of proteins mainly which are Microtubules, Actin, 
and Intermediate Filaments (Pacheco & Gallo, 2016). 
The mechanism of these proteins is altered in cancer 
cells as they promote tumor growth by increasing the 
cells’ migratory and invasive function alongside its 
ability to proliferate and the resistance to cellular 
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environmental stress such as: mitochondrial and 
oxidative stress (Allen et al., 2020). Mutations from 
these genes may result in metastasis and therefore and 
because of the high genome count and the 
significance of its p-value, this may very well allude 
to the possible metastatic characteristic of BHDS.  

4.3 Hub Nodes for BHDS 

In alignment with the statement above, three hub 
nodes were selected in terms of increasing 
betweenness. As this describes the gene’s centrality 
towards other genes that are involved in the diseases’ 
progression. These are: KIT (betweenness: 
102791.3), RHOB (betweenness: 68625.94), and 
UBC (betweenness: 63768.85) in descending order.  

4.3.1 c-KIT Gene Expression 

C-KIT proto-oncogene is located on chromosome 4q 
and is considered to be part of class III of tyrosine 
kinase receptor (TKR) family. It is known to regulate 
several physiological functions such as: 
hematopoiesis, erythropoiesis, lymphopoiesis, 
megakaryopoiesis, gametopoiesis, and 
melanogenesis (Martinez-Anton, Gras, Bourdin, 
Dubreuil, & Chanez, 2019). All of these are essential 
to the biological process of human beings. Numerous 
research have suspected that this particular gene 
could be a potential biomarker to the chromophobe 
type of RCC as evidences show that it is found 77% 
to 100% in cases of this type of variety, and therefore 
is also a potentially targeted for therapeutic 
modalities (Yamazaki et al., 2003). 

Using NetworkAnalyst, Figure 5 shown that C-
KIT is connected to a gene called RAC1. RAC1 is 
considered as one of the key regulators for cellular 
motility and structure as the members of RAC family 
is considered to hold regulatory functions over 
cytoskeletal structures, mainly Actin (Tejada-Simon, 
2015). As it primarily controls the mechanism behind 
the moderation of other signaling pathways that are 
involved in cell cycle regulation, cellular growth, 
formation of cell-cell adhesion, and contact 
inhibition, and these mediated activities are 
considered to be highly involved in progression of 
malignancy as it is included in angiogenesis, 
invasion, and metastasis which are dependent from 
the mutations from the genes assigned in it (Olson & 
Sahai, 2009). 

 

Figure 3: (A) The top 10 extracted hub nodes (Left to Right, 
Top to Bottom: PRKAR2B, KIT, FHL2, UBC, RHOB, 
KNG1, AGT, SRC, THBS1, PLG) The red-colored gene 
are seed genes, while purple-colored gene are: protein gene. 
(B) Along with the overall presentation of protein-protein 
interaction network for BHDS. 

4.3.2 RHOB Gene Expression 

RhoB is part of the Ras Homolog gene gamily or 
better known as Rho subgroup of GTPase which is 
included along with RhoA and RhoC. This family of 
genes is critical for analyzing regulation of cellular 
action and modulation of cytoskeleton-mediated 
motion and adhesion, as well as protein trafficking 
(Haga & Ridley, 2016). 

Rho GTPases functions are directed by 
conversion of GDP-bound inactive states to GTP-
bound active states. This activation is caused by three 
factors: Guanine nucleotide exchange factors (GEFs), 
GTPase activating proteins (GAPs), and guanine 
nucleotide dissociation inhibitors (GDI). The 
switches between active and inactive form are critical 
in regulating intracellular signaling pathways 
(Gampel & Mellor, 2002; Haga & Ridley, 2016). 

Though the three subgroups of Rho GTPase share 
similar homology, they have different functions. 
Mainly RhoB is believed  to have a putative tumor 
suppressor role, compared to the other two, which is 
claimed to have an oncogenic association (Ju & 
Gilkes, 2018). This particular function of RhoB 
serves in the signaling pathways including the EGFR, 
RAS, PI3K/AKT/mTOR, and MYC pathways 
(Gutierrez et al., 2019). 

4.3.3 UBC Gene Expression 

Ubiquitin C gene is described as a stress-inducible 
gene, upregulated upon different cell treatments as 
well as in other diseases (Radici, Bianchi, Crinelli, & 
Magnani, 2013). As it is one of the main hub nodes 
shown in the table above that was detected through 
the use of NetworkAnalyst, upon further inspection, 
WNK4 a subfamily of WNK protein is the one 
associated gene connected to UBC (Figure 5). 
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Interestingly, recent studies about the link 
between WNK4 and Rho GTPases have emerged; it 
shows that WNK4 can be isolated in a complex with 
Rho-GDI (Zhang et al., 2009) and while it is observed 
that the expression of WNK4 was found to be 
correlated with invasiveness as with metastatic 
tumors such as infiltrative gliomas or in other neural 
tumor cells the exact relationship between the genes 
is still largely undetermined (Hong et al., 2007). In 
addition, WNK4 is required for the activation of 
extracellular signal-regulated kinases and Mitogen-
activated Protein/ERK Kinases (MEKK2/3) 
pathways. Alongside other reports, this suggests that 
WNK4 is involved in many factors that attribute to 
carcinogenesis and is an important role in tumor cell 
growth and remodeling of extracellular matrix for 
tumor invasion (Sie et al., 2020). 

 

Figure 4: The mechanism of the pathway enriched in 
BHDS: Cytoskeletal protein binding. As C- KIT forms a 
heterodimer, SCF binds to it resulting to activation of RHO 
GTPase from inactive state. Then RHO GTPase will 
promote the activation of an effector such as RAC1 that 
regulates the Actin cytoskeleton. RAC1 can also be affected 
with the correlation of WNK4 with RHO GDI. 

 

Figure 5: Protein-Protein Interaction of WNK 4 gene 
connecting to seed gene UBC and seed gene KIT to RAC1 
gene. 

And in that note, the connection between these 
genes and the given pathways may still up for further 
studies, they may support the suspicions that there are 
other characteristics traits of BHDS that have not 

been explored fully, and the presence of genes in the 
result above, bodes significance in terms of 
determinants for other biomarkers that may comprise 
this disease but also for alternative targeted 
treatments that may help patients in the future 

5 CONCLUSION 

The resulted hub genes from the PPI networks, which 
were ranked according to its betweenness, correspond 
with the high scored gene count and p-value enriched 
pathways. With the relation of the pathway and hub 
genes in the BHDS disease, it showed different 
pathophysiological features of this subtype of RCC. 
In this study, RAC1 and WNK4 genes were found to 
be connected to KIT, RHOB, and UBC respectively. 
These genes are known to highly affect the cell 
metastasis of patient with BHDS and play crucial role 
in Cytoskeletal protein binding, as these hub nodes 
control the regulation of cellular action and 
modulation of cytoskeletal structures. 

In conclusion, this study gave significantly fresh 
insights for further examination on topics of diagnosis 
and the widening berth of therapeutic modalities for 
BHDS. 
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