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Abstract: An important task at the onset of a laparoscopic cholecystectomy (LC) operation is the inspection of 
gallbladder (GB) to evaluate the thickness of its wall, presence of inflammation and extent of fat. Difficulty 
in visualization of the GB wall vessels may be due to the previous factors, potentially as a result of chronic 
inflammation or other diseases. In this paper we propose a multiple-instance learning (MIL) technique for 
assessment of the GB wall vascularity via computer-vision analysis of images from LC operations. The bags 
correspond to a labeled (low vs. high) vascularity dataset of 181 GB images, from 53 operations. The instances 
correspond to unlabeled patches extracted from these images. Each patch is represented by a vector with color, 
texture and statistical features. We compare various state-of-the-art MIL and single-instance learning 
approaches, as well as a proposed MIL technique based on variational Bayesian inference. The methods were 
compared for two experimental tasks: image-based and video-based (i.e. patient-based) classification. The 
proposed approach presents the best performance with accuracy 92.1% and 90.3% for the first and second 
task, respectively. A significant advantage of the proposed technique is that it does not require the time-
consuming task of manual labelling the instances. 

1 INTRODUCTION 

Laparoscopic surgery (LS), offers substantial benefits 
for the patient such as minimized blood loss, rapid 
recovery, better cosmetic results and lower risk of 
infection. In addition, the laparoscopic camera allows 
to record the video of the surgery, thus providing a 
rich set of visual information that can be leveraged for 
various computer vision applications. For example, 
vision-based systems may provide context-aware 
assistance to the surgeon during or after the operation 
to facilitate improvements in the delivery of surgical 
care. Artificial Intelligence (AI) in surgery has a key 
role in this direction by training a computer to analyze 
and understand images and ultimately enhance 
surgical performance throughout the patient care 
pathway (Ward et al., 2021).  

To date, surgical video analysis has been 
employed to provide key semantic information about 
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the status of an operation, such as its current phase 
(Cheng et al., 2021), remaining duration (Marafioti et 
al., 2021), instrument detection (Zhang et al., 2020), 
and coagulation events (Loukas and Georgiou, 2015). 
Post-operatively, the video recordings have been 
employed for surgical performance analysis (Funke et 
al., 2019), keyframe extraction (Loukas et al., 2018), 
surgical gesture recognition (van Amsterdam et al., 
2021), and management of large-scale surgical data 
repositories (Al Abbas et al., 2019). In addition, the 
availability of annotated video datasets, such as 
Cholec80 (Twinanda et al., 2017), has been a key 
factor in recent AI applications, allowing the 
employment of state-of-the-art machine learning 
techniques such as deep learning. 

Apart from recording the video of the operation, 
the surgeon may also acquire still frames that reflect 
certain visual features of the operated organ or the 
outcome of a procedural task. Moreover, the acquired 
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images may be utilized post-operatively in the 
patient’s formal report, for future reference about the 
patient’s anatomy and for medical education or 
research purposes (Loukas et al., 2011). Recently, a 
few research works have been published on the 
analysis of still frames extracted from the video of a 
surgery. A framework for multi-label classification of 
laparoscopic images into five anatomic classes was 
proposed in (Loukas and Sgouros, 2020). In (Madad 
Zadeh et al., 2020) a convolutional neural network 
(CNN) was employed for semantic image 
segmentation into surgical tools and gynecologic 
anatomic structures. In (Baghdadi et al., 2019) a 
computer vision technique was applied to surgical 
images with the aim to assess surgical performance 
on pelvic lympl node dissection. In (Derathé et al., 
2020), visual features extracted from manual 
annotations of still video frames were employed to 
assess surgical exposure, an important indicator of 
surgical expertise. AI on surgical images has also 
been applied recently for intraoperative guidance and 
detection of adverse events (Madani et al., 2020, 
Beyersdorffer et al., 2021). 

In this paper we elaborate from a different 
perspective on the image-based assessment of 
gallbladder (GB) vascularity proposed recently in 
(Loukas et al., 2021). In laparoscopic 
cholecystectomy (LC), a common surgical technique 
for the treatment of GB diseases, the surgeon initially 
inspects the GB to assess certain features that are 
important for the strategy to be performed. Some of 
these features include thickness of the GB wall, 
indications of inflammation and fat coverage. In 
addition, difficulty in the visualization of the GB 
vessels may result from fatty infiltration or increased 
thickening of the GB wall (potentially as a result of 
chronic inflammation or other diseases), conditions 
that may suggest increased intraoperative difficulty 
(Iwashita et al., 2016).  

In (Loukas et al., 2021) the main focus was on the 
vascularity assessment of GB images extracted from 
LC videos. The employed method was based on a 
CNN trained to classify the GB wall into vascularity 
levels (e.g. low vs. high). Due to the small number of 
GB images available for CNN training, 800 image 
patches were manually annotated by surgical experts. 
Although highly promising (91.7% accuracy), this 
approach was based on the time consuming task of 
patch annotation to create the ground truth dataset.  

In the present work we propose an alternative 
strategy that alleviates this limitation. In particular, 
we employ a different machine learning approach 
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based on multiple-instance learning (MIL). 
Compared to single-instance learning (SIL), in MIL 
the training examples correspond to bags of instances 
and each bag is assigned a specific label. In the 
present work, the bags correspond to the limited 
dataset of GB images available, and the instances 
correspond to sequential patches extracted from the 
GB images. It is important to note that the MIL 
approach does not require that the labels of the 
instances are known, but rather the labels of the bags. 
This is particularly suited in our case since the 
number of GB images available is limited, whereas 
from each GB image we can extract dozens of 
patches, without the need to annotate them.  

The rest of the paper is organized as follows. The 
next section presents the employed dataset, the image 
feature extraction process and various state-of-the-art 
MIL techniques employed, as well as a proposed one 
based on variational Bayesian inference. 
Subsequently follow the comparative experiments 
and presentation of the results for two experimental 
tasks (image-based and video-based classification). 
Finally, we conclude the paper with a discussion and 
directions for future work. 

2 METHODOLOGY 

2.1 Dataset 

For the purpose of this study we employed the 
GBVasc181 dataset 1  (Loukas et al., 2021), which 
includes 181 surgical images with manual contours 
(regions of interest-ROIs) of the GB wall. The images 
are extracted from 53 LC videos of the Cholec80 
dataset (Twinanda et al., 2017) and the ROIs contain 
the body and fundus of the GB. In addition, the 
dataset provides labels with respect to the vascularity 
level of the GB ROIs: low (L) and high (H) 
vascularity. H denotes presence of prominent 
superficial vessels whereas L denotes absence of 
vessels or extensive fat coverage. The labelling was 
performed by two expert surgeons (E1 and E2) via 
visual inspection of the GB ROIs. According to 
(Loukas, et al., 2021), the level of agreement between 
the two experts was high (~92%), so we randomly 
chose the annotations of expert E1 as the ground-truth 
for algorithm training. 

The GBVasc181 dataset also includes vascularity 
annotation for 800 image patches extracted 
selectively from the ROIs, but this information was 
not used in this study. Instead, based on the MIL 
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formulation, each GB ROI was considered as a bag of 
instances that correspond to image patches (64x64). 
The patches were extracted from each ROI in a 
sliding window fashion with 50% overlap. In total 
3,272 patches were extracted from the 181 ROIs. 
Table 1 provides a statistical overview of the 
employed ROI/patch dataset and the ground-truth 
annotations. 

Table 1: Data statistics. Number (#) of GB images and 
patches per vascularity class (L, H). 

Vascularity class: L H 
# annotated GB images (ROIs): 71 110 
# patches extracted 
from the GB ROIs: 

Min 2 1 
Max 51 70 
Median 14 17 
Total 1214 2058 

 

Figure 1: Examples of GB images from the GBVasc181 
dataset. The manual outline of the ROI is shown in white. 
The ground-truth vascularity label for the top and bottom 
ROI is L and H, respectively. Insets show sample patches 
with different vascularity. 

It should be noted that the patch labels were 
considered unknown. Indeed, the patches extracted 
from a GB ROI may not necessarily inherit the label 
of the ROI. A GB ROI with vascularity H may also 
contain patches from the L class, and vice versa. As 
shown in Figure 1 the GB wall presents a variable 
vascularity pattern with regions from both classes. 
Hence, the employed dataset is in essence weakly 
labeled and the MIL paradigm is particularly suited: 

only the labels of the bags (ROIs) is known, whereas 
the label of the instances (patches) contained in each 
bag is unknown. 

2.2 Feature Extraction 

Each patch was represented by a 707-long feature 
vector that included 3 categories of features (Lux and 
Marques, 2013). First, color and color-edge features 
were extracted after the patches were quantized to 32 
colors via k-means. Compared to uniform color 
quantization, the previous approach was preferred 
since the color values expanded over a limited region 
in the RGB space. The number of color features was 
259 and included: mean RGB color values, color 
histogram, auto color correlogram, improved color 
coherence, and color edge magnitude-direction 
histograms. Color coherence considers the size and 
locations of the regions with a particular quantized 
color and the auto color correlogram measures how 
often a quantized color finds itself in its immediate 
neighborhood. The color edge magnitude-direction 
histograms employs the Sobel gradient operator on 
each quantized color image plane providing two 
histograms for the edge magnitude and direction. 

The second category included mostly information 
about texture (405 features). The input was the 
intensity component of the color image and the 
extracted features were: histogram of oriented 
gradients (HOG) with 7 bins and cell-size=16, 
Tamura features (coarseness, contrast and 
directionality), and the edge histogram descriptor. 

The third category included 43 statistical features 
extracted from the RGB image. In particular, we 
extracted global features such as skewness and 
kurtosis as well as statistical features using the 
following higher-order matrix-based types: GLCM 
(gray-level co-occurrence matrix), GLRLM (gray-
level run-length matrix), GLSZM (gray-level size 
zone matrix) and NGTDM (neighborhood gray-tone 
difference matrix). From each matrix various 
statistical features were extracted such as: energy, 
contrast, etc. (GLCM); short run emphasis, long run 
emphasis, etc. (GLRLM); small zone emphasis, large 
zone emphasis, etc. (GLSZM); complexity, strength, 
etc. (NGTDM). It should be noted that compared to 
the standard calculation of these matrices based on 8-
heignboors connectivity, in our case the RGB image 
was considered a 3D volume. Thus, the matrices were 
obtained using 26-neighboors connectivity (i.e. pixels 
were considered to be neighbors in all 13 directions 
in the three dimensions). 

After feature extraction, all features were 
concatenated into a patch-based feature vector with 
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707 dimensions. To reduce the dimensionality of the 
feature space, PCA was performed using the feature 
vectors collected from all patches of the training set 
of GB images. This process led to feature vectors with 
211-223 dimensions (depending on the training fold), 
that accounted for > 95% of the total variance. 

2.3 MIL Methods 

MIL is a form of supervised learning applicable to 
problems where the training examples correspond to 
bags of instances and each bag is assigned a specific 
label but the labels of the instances are usually 
unknown. Under the MIL formulation, {ሺࢄ, ሻ}ୀଵேܮ  
is a data set of N training bags ࢄ  and each bag is 
associated with label ܮ. A bag contains a set of ݉ 
instances: ࢄ = ൛࢞ൟୀଵ ,  usually in form of a feature 

vector, whereas the number of instances ݉ may vary 
among the bags. 

The MIL formulation was first proposed to solve 
the binary musk drug activity prediction problem 
(Dietterich et al., 1997): a molecule (bag of instances) 
is considered active (resp. inactive) if one (resp. none) 
of its spatial confirmations (instances) is able to bind 
to a certain target site. The solution to this problem 
was approached via the standard MIL assumption, 
which states that a positive bag contains at least one 
positive instance, whereas negative bags contain only 
negative instances: ܮ = ൜+1, ∃	 ݈: ݈ = +1		−1, ∀	 ݈: ݈ = −1    (1) 

where ݈ 	= 	 {+1,−1}  denotes the hidden class 
label for an instance ࢞ that belongs to bag ࢄ. 

MIL algorithms may be categorized according to 
their ability to perform instance-level or bag-level 
predictions (Quellec et al., 2017). The first category 
(primarily instance-level) targets instance prediction 
but may easily be employed for bag prediction, as 
required for the purpose of this study. After training 
an instance-level detector, a bag is positive if it 
contains at least one positive instance otherwise it is 
negative. This category includes algorithms such as 
the Axis-parallel hyper rectangle (APR), Diversity 
Density (DD), its variant Expectation-Maximization 
DD (EM-DD), and mi-SVM. The aforementioned 
approaches follow the standard MIL assumption.  

The second category includes bag-level 
algorithms that are optimized for bag-level prediction 
and can be further divided according to their ability 
to also perform instance-level prediction (primary 
bag-level) or not (exclusively bag-level). A well-
known primary bag-level algorithm is MI-SVM and 

it follows the standard MIL assumption. From the 
exclusively bag-level subcategory we employed the 
Citation KNN (CKNN) and mi-Graph, both of which 
follow alternative MI assumptions (nearest neighbor 
and graph assumptions, respectively). For an 
extensive review of MIL techniques the reader is 
referred to (Quellec et al., 2017),(Amores, 2013). In 
the following we summarize the aforementioned MIL 
algorithms and a proposed method (MI-VBGMM) 
that falls under the exclusively bag-level category. 
All methods were employed for the GB vascularity 
classification problem studied in this paper. 

The APR (Dietterich et al., 1997) was the first 
method that introduced the MIL paradigm, aiming to 
find a hyper rectangle that contain at least one 
instance from each positive bag while excluding all 
the instances from negative bags. A bag is classified 
as positive (resp. negative) if one (resp. none) of its 
instances lies within the APR. 

For the DD method (Maron and Lozano-Pérez, 
1998), the goal is to find a discriminative point in the 
feature space so that in its neighborhood all positive 
bags have at least on instance, while instances from 
negative bags are far away. The location of this point 
and the feature weights defining the appropriate 
neighborhood are found by maximizing a DD metric. 
The EM-DD (Zhang and Goldman, 2001) is a widely 
known variant that employs the EM algorithm. 

The mi-SVM and MI-SVM (Andrews et al., 
2003) both employ the maximum margin concept of 
the SVM algorithm.  The mi-SVM method focuses on 
instance-level prediction by maximizing the 
separation between positive and negative instances. 
The goal of MI-SVM is to maximize positive and 
negative bags by focusing on the most ‘most positive’ 
and ‘least negative’ instances contained in the 
positive and negative bags, respectively. 

CKNN generalizes the k-nearest neighbors (k-
NN) idea using the Hausdorff distance as the bag-
level distance metric (Wang and Zucker, 2000). In 
addition to the nearest neighbors of a bag, citers that 
count the candidate bag as one of their neighbors are 
also considered in the classification rule. 

The mi-Graph relies on the assumption that the 
spatial relationships among instances are important 
for the label of the bag. This method employs SVM 
classification at the bag-level using a kernel that is 
based on the ɛ-graph representation of the bags (Zhu 
et al., 2009). 

The proposed method (MI-VBGMM) belongs to 
the exclusively bag-level subcategory and employs 
variational Bayesian Gaussian mixture models 
(VBGMM) at its core. The overall process consists of 
3 main steps. First, the instances from all bags of the 

BIOIMAGING 2022 - 9th International Conference on Bioimaging

18



training set are clustered using VBGMM. Compared 
to other techniques (k-means, k-medoids, GMM, 
etc.), VBGMM does not require to predefine the 
number of clusters. Starting with an initial (usually 
high) number of clusters K, the optimum number of 
clusters K* is estimated by excluding components 
with small weights (<1%). The weights are computed 
via a formula that provides the expected value of the 
mixing coefficients involved in the GMM. In this 
study K* was found about 24 (depending on the 
training fold). A detailed implementation of the 
algorithm with application to surgical images is 
provided in (Loukas and Sgouros, 2020),(Bishop, 
2006). Second, each instance ࢞ is represented by the 
probability ߛ that the instance is assigned to each 
of the K clusters. The formula for ߛ is omitted for 
brevity. Finally, each bag ࢄ is represented by a novel 
feature vector ࢠ  that accumulates ߛ  of all ݉ 
instances for the ܭ∗ components: ࢠ = ܿ × ቂ∑ ଵୀଵߛ , … , ∑ ∗ୀଵߛ ቃ  (2) 

where ܿ is a normalization factor so that ‖ࢠ‖ଵ =1. 
Having obtained the VBGMM parameters, the 

previous step is also employed to transform the test 
bags into novel feature vectors ࢠ . Finally, after 
having a vector representation for every bag, the MIL 
problem is transformed into a standard classification 
task which was addressed via the SVM algorithm. 
After SVM training, a test bag is classified as positive 
(resp. negative), if the corresponding SVM score is 
positive (resp. negative). 

2.4 Experimental Protocol 

The 53 videos were randomly split into five-folds, so 
that every fold included GB images (and their 
corresponding patches), from different operations 
(i.e. patients). Based on a five-fold cross-validation, 
one of the five folds served as the test set (20%) and 
the other four folds as the training set (80%).  

We evaluated two experimental tasks. For the first 
task (image level classification) each image is 
considered as a bag, annotated with its vascularity 
label (L or H), and the instances are the patches 
extracted from the images. On average there are 3.4 
images per video and 18 patches per image (i.e. a 
single bag contains about 18 instances). For each 
experimental run the training and test sets included 
approximately 145 and 36 bags, respectively.  

For the second task  (video level classification), 
we evaluated the algorithm’s performance at the 
video level based on majority voting of the image 

labels predicted from the first task. In particular, the 
label with most votes was assigned to the video. In 
case the label counts of the two classes were equal, 
the label with the highest probability was considered. 
For the ground truth video labels we did not 
encountered such an issue. For every video the 
majority of its image labels (annotated by the expert 
surgeon) corresponded to a single class. 

3 RESULTS 

For both experimental tasks the performance of each 
algorithm was evaluated via the metrics: accuracy 
(Acc), precision (Pre), recall (Rec), and F1. The 
results are presented as mean values across the five 
experimental runs. The convention used was: the 
label “positive” (resp. “negative”) refers to H (resp. 
L) vascularity images. 

Eleven methods, as described in Section 2.3, were 
evaluated on the GBVasc181 dataset: APR, CKNN, 
DD, EM-DD, mi-Graph, mi-SVM and MI-SVM and 
MI-VBGMM (the last three with linear and RBF 
kernels for the SVM classifier). For all methods, 
except mi-Graph and MI-VBGMM, we used the 
implementation reported in (Wang, 2008). The mi-
Graph was obtained from (Zhu et al., 2009) and the 
reference website of the authors (LAMDA). The 
proposed method MI-VBGMM was implemented 
based on (Bishop, 2006) and our previous work 
(Loukas and Sgouros, 2020). For each method the 
hyper-parameters were optimized using grid search. 
In the following we first present the result for the two 
experimental tasks and then we assess the best MIL 
method against various SIL methods. 

3.1 Comparison of MIL Methods 

In the first experimental task (image-level 
classification), the goal was to predict the vascularity 
label of the GB ROIs using the extracted patches. 
Table 2 shows the performance of the examined 
methods. As expected, APR, DD and EM-DD have 
the lowest performance, probably because positive 
instances do not form a single cluster in the feature 
space. The mi-SVM approach has the highest 
performance among the primarily instance-level 
algorithms (87.5% Acc). However, the bag-level 
algorithms (mi-Graph, MI-SVM, CKNN and MI-
VBGMM) outperform all instance-level algorithms 
(88.2-92.1% Acc). CKNN and MI-SVM have similar 
performance (88.2% and 88.9% Acc), whereas mi-
Graph shows slightly better performance (90.2% 
Acc). For the SVM-based methods, the linear kernel 
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seems to be slightly more suitable compared to the 
RBF kernel. The proposed method shows the best 
performance across most metrics: 92.1% Acc, 94.6% 
Pre and 94.0% F1. As reported in (Loukas et al., 
2021), the agreement at the image-level between two 
expert surgeons was close to 92%, which is similar to 
the performance of MI-VBGMM linear. 

Table 2: MIL performance comparison for image-level 
classification. Best results column-wise are in bold. 
Second-best results are underlined. Symbols † and ‡ denote 
instance-level and bag-level algorithms, respectively. 

Method Acc 
(%) 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

APR† 65.2 68.0 87.2 76.4 

CKNN‡ 88.2 88.3 93.8 91.0 

DD† 41.3 93.3 9.7 17.6 

EM-DD† 66.9 67.1 95.0 78.6 

mi-Graph‡ 90.2 93.0 91.8 92.4 

mi-SVM linear† 87.5 85.1 97.4 90.8 

mi-SVM RBF† 86.9 82.9 100.0 90.7 

MI-SVM linear‡ 88.9 92.2 90.4 91.3 

MI-SVM RBF‡ 88.5 93.0 88.9 90.9 

MI-VBGMM 
linear (proposed)	‡ 92.1 94.6 93.4 94.0 

MI-VBGMM 
RBF (proposed)	‡ 91.1 93.8 92.4 93.1 

Table 3: MIL performance comparison for video-level 
classification. Best results column-wise are in bold. 
Second-best results are underlined. Symbols † and ‡ denote 
instance-level and bag-level algorithms, respectively. 

Method Acc 
(%) 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

APR† 68.2 71.6 90.3 79.9 

CKNN‡ 86.9 87.7 94.6 91.0 

DD† 39.8 93.3 14.6 25.2 

EM-DD† 68.6 70.4 94.6 80.7 

mi-Graph‡ 88.6 91.5 92.1 91.8 

mi-SVM linear† 85.3 84.3 96.8 90.1 

mi-SVM RBF† 85.8 83.1 100.0 90.8 

MI-SVM linear‡ 88.1 91.4 91.5 91.4 

MI-SVM RBF‡ 87.5 92.0 90.0 91.0 

MI-VBGMM 
linear (proposed)	‡ 90.3 93.8 92.1 92.9 

MI-VBGMM 
RBF (proposed)	‡ 89.7 92.9 92.3 92.6 

The next goal was to predict the vascularity label 
of the patient’s GB using the images extracted from 
the video of the operation (video-level classification). 
Table 3 shows the results for this experimental task. 

As described before, a majority-voting approach was 
employed using the image labels predicted from the 
first task. Similarly to the previous results, APR, DD 
and EM-DD have the lowest performance and mi-
SVM shows the highest performance (85.3% Acc) 
among the four instance-level methods. The accuracy 
of the four bag-level algorithms (mi-Graph, MI-
SVM, CKNN and MI-VBGMM) is again higher than 
that of the instance-level ones (86.9-90.3% Acc). The 
proposed method presents the best performance, 
higher than 90%, across all metrics: 90.3% Acc, 
93.8% Pre, 92.1% Rec and 92.9% F1. For all SVM-
based methods the linear kernel results in a slightly 
better performance. Moreover, the accuracy of the 
proposed method is the highest than all other 
methods, independent to the SVM kernel employed. 

3.2 MIL vs. SIL 

Based on the same setup employed for the MIL 
experiments (i.e. experimental tasks and training/test 
folds), we compared the proposed method (MI-
VBGMM) against five SIL methods: SVM (with 
linear kernel), k-nearest neighbors (kNN), naïve 
Bayes (NB), random forest (RF), and AdaBoost. 
Hyper-parameter optimization was again performed 
via grid search. In contrast to MIL, SIL methods 
consider as samples the instances from all bags. For 
each instance, the ground-truth label was assigned to 
that of the bag it belongs to. After training, the label 
of a candidate bag is predicted via majority voting of 
the predicted labels of its instances. Hence, for the 
first task (image-level classification) the label of a GB 
ROI is determined by majority voting of the patch 
predicted labels. For the second task (video-level 
classification), the label prediction approach was the 
same to that followed for the MIL methods, as 
described previously. 

Tables 4 and 5 show the results for the first and 
second experimental tasks, respectively. The 
proposed MIL method outperforms all other SIL 
methods across most metrics. In particular, for image-
level classification the accuracy and F1 metric of MI-
VBGMM is higher by 3.6% and 2.5% compared to 
the second best method, respectively (92.1% vs. 
88.5%-SVM and 94.0% vs. 91.5%-AdaBoost). 
Moreover, MI-VBGMM outperforms the CNN-based 
method reported in (Loukas et al., 2021). In terms of 
accuracy, the performance is slightly higher (92.1% 
vs. 91.2%) whereas for the other metrics the 
performance difference is notably higher (4.2% for 
Pre, 1.9% for Rec and 3.1% for F1). Note that the 
single instance CNN method in (Loukas et al., 2021) 
employs 800 manually labelled patches for CNN 
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training. In contrast, MI-VBGMM training is based 
only on manual labelling of the GB ROIs (181 
images; same dataset as in (Loukas et al., 2021)), 
resulting in a significant reduction in the annotation 
cost. 

For the video-level classification (Table 5), the 
proposed method presents again the best 
performance. The accuracy and F1 metric of MI-
VBGMM is higher by 2.5% and 0.8% compared to 
the second best method (AdaBoost), respectively 
(90.3% vs. 87.8% and 92.9% vs. 92.1%). 

Table 4: Comparison of MIL (MI-VBGMM) vs. SIL 
methods for image-level classification. Best results 
column-wise are in bold. Second-best results are 
underlined. 

Method Acc 
(%) 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

MI-VBGMM 
linear (proposed) 

92.1 94.6 93.4 94.0 

SVM 88.5 88.9 91.4 90.1 

kNN 86.9 88.6 92.9 90.7 

NB 80.3 77.8 96.9 86.3 

RF 87.2 86.3 96.4 91.1 

AdaBoost 86.9 86.0 97.7 91.5 

CNN 91.2 90.4 91.5 90.9 

Table 5: Comparison of MIL (MI-VBGMM) vs. SIL 
methods for video-level classification. Best results column-
wise are in bold. Second-best results are underlined. 

Method Acc 
(%) 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

MI-VBGMM 
linear (proposed) 

90.3 93.8 92.1 92.9 

SVM 80.0 84.0 87.5 85.7 

kNN 81.1 83.3 92.6 87.7 

NB 78.1 78.0 96.1 86.1 

RF 86.4 87.1 95.3 91.0 

AdaBoost 87.8 87.9 96.7 92.1 

Figure 2 shows the normalized confusion 
matrices for the best method (MI-VBGMM linear), 
for the image- and video-level classification tasks. 
The normalization was applied on the aggregation of 
the confusion matrices across the five test-sets. It may 
be seen that the H class is recognized better than the 
L class in both experimental tasks (93.4 vs. 89.9 and 
92.2 vs. 85.7). This may be due to the fact that the 
presence of blood vessels in the H class images 
provide a distinguishable pattern that is captured 
more easily by the extracted features. In contrast, L 
images are distinguishable only by their color 

(yellowish due to great fat coverage), and they lack a 
texture pattern due to the absence of blood vessels. 

 

Figure 2: Color-coded confusion matrices of the proposed 
method for the two experimental tasks (image-level and 
video-level classification). The X and Y-axis represent 
predicted and ground truth labels, respectively. 

4 CONCLUSIONS 

In this paper we investigate the potential of image-
based assessment of the GB wall vascularity from 
intraoperative images using various state-of-the art 
MIL techniques and a proposed bag-level approach 
based on VBGMMs and SVM. In addition, we 
compared the best MIL method with SIL techniques 
in order to assess the significance of the multiple 
instance concept over standard classification of single 
instances. 

Our results show that the MIL framework is 
particularly suited to the problem of GB vascularity 
classification. The GB image can be considered as a 
bag, labelled with its vascularity level, whereas the 
instances are patches extracted from the GB ROI. For 
the image-level classification task, the proposed 
approach presents the best performance with Acc 
92.1%. For the video-level classification task the 
accuracy was slightly lower, 90.3%. In terms of the 
SIL methods, the best approach was based on a CNN 
and provided slightly lower performance (91.2% Acc 
for image-level classification). However, CNN 
training requires manual annotation for a large 
number of patches, which is tedious and time-
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consuming. In contrast, the proposed MIL technique 
requires only manual annotation of the GB images, 
the number of which is significantly lower. MIL can 
thus leverage surgical image classification to improve 
GB vascularity assessment, without the need of 
labeling the patches extracted from every surgical 
image. 

A potential extension of the proposed work is to 
apply the MIL concept directly at the patient-level. In 
particular, in this study the video-level classification 
was based simply on a majority voting of the image 
labels from each video, mainly due to the small 
number of operations available (only 53). Given a 
larger video dataset, one could consider the patient as 
the bag, along with its GB vascularity label, and the 
patches extracted from the GB images of the video as 
the instances. This way, the patient-level GB 
classification could be improved, without the need of 
labelling the images extracted from every video of the 
operation. 

As future work, we aim to expand the GBVasc181 
dataset by performing more annotations upon the 
Cholec80 video collection. Moreover, we aim to 
combine the MIL concept with CNNs at the image-
level to improve further the classification 
performance. In particular, we currently design a 3D 
CNN architecture that takes as input a sequence of 
patches extracted from a GB image and outputs the 
vascularity label of the image. The generation of 
spatial attention maps that allow visualization of GB 
wall regions with a variable vascularity is also major 
topic of interest for future research work. 
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