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Abstract: The Online Set Cover problem (OSC) and its variations are one of the most well-studied optimization problems
in operations research and computer science. In OSC, we are given a universe of elements and a collection
of subsets of the universe. Each subset is associated with a cost. As elements arrive over time, the algorithm
purchases subsets to cover these elements. In each step, an element arrives, and the algorithm needs to ensure
that at the end of the step, there is at least one purchased subset that contains the element. The goal is to
minimize the total cost of purchased subsets. In this paper, we study a generalization of OSC, in which a
request consisting of a number of elements arrives in each step. Each request is associated with a happiness
cost. A request is served by either a single subset containing all of its elements or by a number of subsets jointly
containing all of its elements. In the latter case, the algorithm needs to pay the happiness cost associated with
the request. The goal is to serve all requests upon their arrival while minimizing the total cost of purchased
subsets and happiness costs paid. This problem is motivated by intrinsic service-providing scenarios in which
clients need not only be served but are to be satisfied with the service. Keeping clients happy by serving them
with one service provider rather than many, is represented by happiness costs. We refer to this problem as
Online Set Cover With Happiness Costs (OSC-HC) and design the first online algorithm, which is optimal
under the competitive analysis framework. The latter is a worst-case analysis framework and the standard
to measure online algorithms. It compares, for all instances of the problem, the performance of the online
algorithm to that of the optimal offline algorithm that is given all the input sequence at once and is optimal.

1 INTRODUCTION

The Set Cover problem (SC) is one of the most well-
known optimization problems, extensively studied in
operations research, computer science, and combina-
torics (Feige, 1998; Slavık, 1997; Feige et al., 2004;
Caprara et al., 2000). It has been shown to be NP-
complete in 1972 as one of Karp’s 21 NP-complete
problems (Karp, 1972). Given a universe of elements
and a collection of subsets of the universe, each as-
sociated with a cost, SC asks to purchase subsets, of
minimum costs, such that each element belongs to at
least one of these subsets. SC appears in many real-
world optimization scenarios, including client-server
applications, in which subsets represent servers and
elements represent clients that need to be served at
minimum possible costs. (Vemuganti, 1998) presents
a survey of applications in various areas as capi-
tal budgeting, cutting stock, scheduling, and vehicle
routing.

SC and its variations have been studied in many
contexts including complexity theory, approximation
algorithms, and online algorithms (Feige, 1998; Alon

et al., 2003; Clarkson and Varadarajan, 2007; Duh
and Fürer, 1997; Shuai and Hu, 2006; Gupta et al.,
2017a; Markarian and Kassar, 2020; Abshoff et al.,
2016). In this paper, we continue the study of SC in
the context of online algorithms, in which the input
sequence is not given all at once but arrives in portions
over time and the so-called online algorithm reacts to
each portion as soon as it arrives while minimizing
the total incurred costs. The performance of online
algorithms is measured using the competitive analysis
framework (Borodin and El-Yaniv, 2005). An online
algorithm is said to be r-competitive or has competi-
tive ratio r if the cost incurred by the algorithm, for
all instances of the problem, does not exceed r times
the cost of the optimal offline algorithm, that is in-
formed about all the input sequence in advance and is
optimal.

Many works have addressed SC in the online set-
ting (Alon et al., 2003; Abshoff et al., 2016; Gupta
et al., 2017a; Alon et al., 2005). (Alon et al., 2003)
introduced the Online Set Cover problem (OSC), de-
fined as follows.
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Definition 1. (Online Set Cover or OSC (Alon et al.,
2003)) Given a universe of elements, one arriving in
each step, and a collection of subsets of the universe.
Each subset is associated with a cost. As elements
arrive over time, the algorithm purchases subsets to
cover these elements. In each step, the algorithm
needs to ensure that at the end of the step, there is
at least one purchased subset that contains the arriv-
ing element. The goal is to minimize the total cost of
purchased subsets.

In this paper, we study a generalization of
OSC (Alon et al., 2003), which we refer to as Online
Set Cover With Happiness Costs (OSC-HC), defined
as follows.
Definition 2. (Online Set Cover With Happiness
Costs or OSC-HC) Given a universe of n elements
and a collection of m subsets of the universe. Each
subset is associated with a cost. In each step, a re-
quest consisting of at most k elements arrives, such
that each element arrives only once. Each request is
associated with a happiness cost. A request is served
by either a single subset containing all of its elements
or by a number of subsets jointly containing all of its
elements. In the latter case, the algorithm needs to
pay the happiness cost associated with the request. At
the end of each step, the algorithm needs to serve the
request by previously purchased subset(s) or by pur-
chasing new subset(s). The goal is to minimize the
total cost of purchased subsets and happiness costs
paid.

OSC-HC is motivated by intrinsic service-
providing scenarios in which clients need not only be
served but are to be satisfied with the service. With
today’s digital transformation, maintaining good cus-
tomer relationships becomes one of the most essential
elements of a business’ success and growth. Keep-
ing clients happy by serving them with one service
provider rather than many, is one way to provide a
comfortable service and hence achieve customer sat-
isfaction. We have formalized this as the Online Set
Cover With Happiness Costs problem (OSC-HC), by
introducing happiness costs associated with requests
and incorporating them into the optimization objec-
tive. From an algorithmic point of view, this general-
ization of OSC makes sense in the presence of happi-
ness costs since otherwise elements arriving in a sin-
gle step can be treated as arriving sequentially and so
any algorithm for OSC would suffice.

The Online Set Cover problem (OSC) due to
(Alon et al., 2003) is a special case of OSC-HC in
which the number k of elements for all requests is set
to 1 and all happiness costs are set to 0. There are
two lower bounds for OSC-HC resulting from lower
bounds given for OSC. (Alon et al., 2003) showed that

the best competitive ratio achievable by any determin-
istic algorithm for OSC is Ω( logn logm

log logn+log logm ), where
n is the number of elements and m is the number of
subsets. Furthermore, (Korman, 2005) showed that no
polynomial-time randomized algorithm can achieve a
competitive ratio better than Ω(logn logm), under the
assumption that BPP 6= NP.

Results & Techniques. We develop the first on-
line algorithm for OSC-HC, which we show has an
asymptotically optimal O(logd logn)-competitive ra-
tio, matching the lower bound in (Korman, 2005),
where:

– d is the maximum number of subsets an element
belongs to (which is at most m)

– n is the number of elements

Our algorithm is randomized and based on:

– Formulating a given instance of OSC-HC as
an online directed edge-weighted graph problem
with connectivity requirements

– Applying the techniques of constructing a frac-
tional solution and randomized rounding (Ragha-
van and Tompson, 1987) to achieve a feasible so-
lution for the underlying graph problem

– Mapping the graph solution to output a feasible
solution for OSC-HC

Outline. The rest of the paper is structured as fol-
lows. In Section 2, we give an overview of works
related to OSC-HC. In Section 3, we give a graph for-
mulation of OSC-HC. In Section 4, we present our on-
line algorithm and prove its competitive ratio in Sec-
tion 5. We dedicate Section 6 to some thoughts about
future work.

2 RELATED WORK

The Set Cover problem (SC) has been extensively
studied in the online setting. (Alon et al., 2003) intro-
duced the Online Set Cover problem (OSC) and pro-
posed an online deterministic algorithm with nearly
optimal O(logn logm)-competitive ratio, where n is
the number of elements and m is the number of sub-
sets.

(Alon et al., 2005) gave an O(logn logm)-
competitive randomized algorithm for a generaliza-
tion of OSC in which elements are repeated and the
algorithm needs to cover a repeating element each
time by a different subset. Moreover, a wide range
of covering problems related to OSC were studied

Online Set Cover with Happiness Costs

41



in the context of primal-dual algorithms (Buchbinder
and Naor, 2005; Azar et al., 2016).

Another related problem appears in (Bhawalkar
et al., 2014), in which requests comprise a set of el-
ements and subsets have capacities forming packing
constraints. The authors provide a randomized algo-
rithm with nearly optimal competitive ratio. Note that
although in this model, a request contains a set of el-
ements, as in OSC-HC, the problem is substantially
different.

Many other online models for SC were intro-
duced, such as (Gupta et al., 2017b; Abshoff et al.,
2016; Markarian and Kassar, 2020). (Gupta et al.,
2017b) studied an online dynamic model in which el-
ements that need to be covered change over time and
the goal is to construct a solution while making as
few changes per timestep as possible. (Abshoff et al.,
2016; Markarian and Kassar, 2020) studied an online
leasing model in which subsets are not purchased but
leased for different durations and prices, and elements
need to be covered only at the step they arrive.

3 GRAPH FORMULATION &
SOLUTION MAPPING

In this section, we formulate the Online Set Cover
With Happiness Costs problem (OSC-HC) as an on-
line directed edge-weighted graph problem with con-
nectivity requirements.

Given an instance of OSC-HC. The algorithm ini-
tially knows the universe of elements, the subsets, and
the subset costs. In each step, the adversary reveals to
the algorithm a request comprising a set of elements
and a happiness cost. Before the appearance of any
request, the algorithm constructs the following nodes
and edges.

Before Any Request Arrives. The algorithm con-
structs for each element a so-called element node and
for each subset, two nodes, called a subset node and
a duplicate subset node, respectively. For the edges,
the algorithm adds a directed edge from each subset
node to its corresponding duplicate subset node, of
weight equal to the cost of the associated subset. The
algorithm also adds a directed edge from each dupli-
cate subset node to each element node it contains, of
weight equal to 0.

Upon the arrival of a new request, the algorithm
constructs the following nodes and edges.

Whenever a Request Arrives. The algorithm con-
structs a request node for the request and a so-called

Figure 1: OSC-HC graph formulation of an instance of five
elements, three subsets, and a request of two elements.

intermediary node. For the edges, the algorithm adds
a directed edge from the request node to each subset
node that contains all of its elements, of weight equal
to 0. It also adds a directed edge from the request
node to the intermediary node, of weight equal to the
happiness cost associated with the request. Moreover,
it adds a directed edge from the intermediary node to
each subset node that contains at least one element of
the request but does not contain all of the elements, of
weight equal to 0.

An example graph for an OSC-HC instance of five
elements, three subsets, and a request of two elements
is illustrated in Figure 1. The problem can now be de-
scribed as follows. When a new request arrives, the
algorithm needs to find a directed path from the re-
quest node to each element node comprising the re-
quest. The solution paths purchased by the algorithm
would either consist of the intermediary node or not.
This is translated as either a single subset covering
all the elements of the request, or multiple subsets
needed to cover the elements of the request. In the
former case, the happiness cost, represented as the
weight on the edge from the request node to the in-
termediary node, is paid, since this edge belongs to
the solution paths. Finally, the algorithm will pur-
chase the subsets that correspond to the edges in the
solution paths purchased. That is, the weights of the
edges from the subset nodes to the corresponding du-
plicate subset nodes that belong to the solution paths
represent the subset costs incurred by the algorithm.

4 ONLINE ALGORITHM

In this section, we present an online randomized algo-
rithm for OSC-HC based on the online graph problem
described earlier.

Following the example in Figure 1, request {a,c}
arrives. The algorithm needs to find two paths: one
from the request node to the element node a, and an-
other from the request node to the element node c.
Every edge of weight equal to a subset cost repre-
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sents the corresponding subset. Thus, if such an edge
belongs to the solution paths, then the subset is pur-
chased by the algorithm. Similarly, every edge of
weight equal to a happiness cost represents the re-
quest’s happiness cost. Hence, the algorithm pays the
happiness cost if the corresponding edge is in the so-
lution paths.

Upon the arrival of a new request, the nodes and
the edges associated with the request are formed,
as described in the previous section. The algorithm
assigns a fractional value ve to each edge e in the
graph. These values are set to 0 when the edges are
formed and increase over time. The maximum flow
between two nodes is defined as the smallest total val-
ues of edges which if removed would disconnect the
two nodes. These edges form a minimum cut. Be-
fore the algorithm receives its first request, it gen-
erates a random number r chosen as the minimum
among 2dlogne independent random variables dis-
tributed uniformly in the interval [0,1], where n is the
total number of elements.

Given a request and its elements. For each el-
ement node, the algorithm calls the so-called Find-
Directed-Path function, that returns a set of edges
forming a directed path from the request node to the
element node. We denote the weight of an edge e by
we. The algorithm’s steps describing its reaction to a
new request are depicted in Algorithm 1 below.

Algorithm 1: Online Algorithm for OSC-HC.

For each element node j:
If there already is a directed path to the element
node j in the current solution, do nothing. Other-
wise,

- Run Find-Directed-Path( j).
- Buy the subsets and pay the happiness costs

corresponding to the edges outputted by Find-
Directed-Path( j).

Find-Directed-Path( j)
i. While the maximum flow from the request node
to j is less than 1:

- Generate a minimum cut K from the request
node to j and then increase the value ve of each
edge e ∈K according to the following equation:

ve← ve(1+
1

we
)+

1
|K | ·we

ii. Output edge e if its value ve ≥ r.
iii. If there is no directed path to the element
node j in the current solution, output the edges
of a smallest-weight directed path from the request
node to the element node j.

Feasibility. Upon the arrival of a new request, the
algorithm breaks down the request into parts, one for
each element in the request, after forming the graph
nodes and edges associated with the request. Accord-
ing to the graph formulation, the only way a request
node is connected to an element node is through a di-
rected path containing a subset node and its duplicate
subset node which represent a subset containing the
element in the original instance. The weight of the
edge in between these nodes is what the algorithm
pays in terms of subset costs. If the solution path does
not contain the intermediary node, then the edge as-
sociated with a happiness cost is not in this path as
per the graph construction. In this case, the algorithm
does not pay a happiness cost. Note that, at some
point in a given time step, if the algorithm decides to
purchase a subset that contains all the elements of the
request, then all the remaining elements of the request
are covered and the step ends. On the other hand,
even if the algorithm pays the happiness cost at some
point in a given time step, it may eventually decide
to purchase a subset that contains all the elements of
the request. In such a case, the algorithm, in practice,
does not have to pay for the happiness cost, since its
decisions are revocable within a time step. However,
as we will see in the next section, this does not affect
our competitive analysis of the algorithm.

5 COMPETITIVE ANALYSIS

In this section, we show that the online algorithm pre-
sented has an O(logd logn)-competitive ratio, where
d is the maximum number of subsets an element be-
longs to and n is the number of elements.

Let S be the collection of edges outputted by the
algorithm excluding the edges outputted in Step iii.
We denode by CS the total weight of these edges. Let
Opt be the cost of an optimal offline solution.

The function Find-Directed-Path outputs an edge
if its fractional value exceeds the random number r
(recall that r is generated before the execution of the
algorithm).

Fix edge e and i : 1 ≤ i ≤ 2dlogne. We denote
by Xe,i the indicator variable of the event that e is
outputted by Find-Directed-Path. CS can then be ex-
pressed using the following sum.

CS = ∑
e∈S

2dlogne

∑
i=1

we ·Exp [Xe,i] (1)

= 2dlogne∑
e∈S

weve (2)
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We compare now this sum to the optimal offline
solution, as follows. Every time a minimum cut is
constructed, there is at least one edge that belongs to
the optimal offline solution, due to the definition of
minimum cut and the fact that the optimal solution
must also find a directed path to each element node.
It remains to count the number of times the function
Find-Directed-Path constructs a minimum cut.

Lemma 1. The total number of times Find-Directed-
Path constructs a minimum cut is at most O(Opt ·
log |K|), where |K| is the size of the largest minimum
cut.

Proof. The proof is based on observing the edges in
the optimal solution. Each edge in the optimal so-
lution can appear in a bounded number of minimum
cuts, after which its fractional value becomes 1 and
it can’t appear in any future minimum cut, as per
the while-loop condition of the Find-Directed-Path
function. This bound can be achieved by using the
equation in the algorithm and counting the number
of times needed for the fractional value of any edge
in the optimal solution to become 1. The bound de-
pends on the weight of the corresponding edge and
the maximum size of the minimum cut: O(we log |K|).
This bound holds true for every edge in the opti-
mal solution. Moreover, each minimum cut con-
structed must contain at least one edge from the op-
timal solution. Hence, the number of times the func-
tion Find-Directed-Path constructs a minimum cut is
O(Opt · log |K|).

We also have that the size of any minimum cut
constructed does not exceed d, the maximum num-
ber of subsets an element belongs to, since there are
at most d directed paths from the request node to
the element node. Hence, |K| ≤ d. Next, we show
that the total increase in the fractional values of the
edges associated with each minimum cut can be up-
per bounded by 2.

Lemma 2. The total increase in the fractional values
of the edges associated with each minimum cut is at
most 2.

Proof. Fix any minimum cut K. Edge e in K incurs
an increase of we ·

(
ve
we

+ 1
|K|·we

)
. The maximum flow

is less than 1 before the increase is made, that is,
∑e∈K ve < 1. The same can be said about all the edges
in the cut. Hence, the following holds true:

∑
e∈K

we ·
(

ve

we
+

1
|K| ·we

)
< 2

As a result of Lemma 1 and Lemma 2, we con-
clude that ∑e∈S weve ≤ O(Opt · logd). Thus,

CS ≤ O(Opt · logn · logd) (3)

It remains to upper bound the cost of the algorithm
in Step iii, which we prove affects the competitive ra-
tio of the algorithm by a negligible factor.

We define the flow of a path to be the minimum
value among the edge values of the path. To calculate
the cost incurred in Step iii, we need to observe the
probability that there is no directed path outputted for
the element node prior to this step. This probability is
at most the probability that r exceeds the flow of each
directed path to the element node. We fix a minimum
cut K constructed at the end of Step i. Before per-
forming Step ii, Find-Directed-Path guarantees that
the sum of flows of all paths to the element node is at
least 1. Hence, the probability that there is no directed
path to the element is:

∏
e∈K

(1− ve)≤ e−∑e∈K ve ≤ 1
e

Computing for all i: 1 ≤ i ≤ 2dlogne, the proba-
bility that there is no directed path to the element node
is at most 1

n2 . When there is no directed path to the el-
ement node, the algorithm buys the smallest-weight
path to the element node, which is a lower bound on
Opt. Thus, the cost of the algorithm incurred in Step
iii is at most n · Opt

n2 , since there are n elements and
each element may arrive only once.

Hence, we conclude the following theorem.

Theorem 1. There is an O(logd logn)-competitive
randomized algorithm for the Online Set Cover with
Happiness Costs problem, where d is the maximum
number of subsets an element belongs to and n is the
number of elements.

6 CONCLUDING THOUGHTS

We have proposed in this paper a new framework
for optimization problems, motivated by service-
providing scenarios in which the goal is to minimize
serving costs while taking into account the happiness
of clients. We have considered in our model one hap-
piness prespective, in which clients prefer to be served
through one service provider. Clearly, there is much
one can explore, since the satisfaction of clients can
be viewed from various perspectives.

Another research direction is to study other op-
timization problems with different objectives, using
this framework, such as the Online Facility Loca-
tion with Service Installation Costs problem, in which
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the distances between clients and the facilities they
are served by are also minimized (Markarian, 2021;
Markarian and Khallouf, 2021).

Each element in our model arrives only once. This
is in fact needed to achieve the competitive ratio of
the algorithm. It would be interesting to extend our
model to include repetition of elements as in (Alon
et al., 2005).

In our model, the algorithm is not given any in-
formation about future requests. In fact, it might be
possible to make some assumptions about the future
and to use this information to improve decisions, by
considering, for instance, various probability distribu-
tions for the request arrival.

Implementing the proposed algorithm on a sim-
ulated or real environment is an interesting next step.
This would allow us to understand the difficulty of the
problem as well as the performance of the algorithm
and its effectiveness in practical applications.
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