
A Model Driven Framework for the Development of Adaptable REST
SERVICES

Adil Kenzi a and Fadoua Yakine b
LISA Laboratory, Sidi Mohamed Ben Abdellah University, FEZ, Morocco

Keywords: REST, UML Profile, Restful Web Services, MDD/MDA, Adaptability, Service Modeling.

Abstract: REST (Representational State Transfer) is an architecture style for distributed, open, loosely coupled and
decentralized hypermedia systems such as the Web. In the context of this architectural style, Restful Web
services has gained significant attention in both academy and industry sectors. Restful Services may interact
with several types of service requesters. Therefore, the key issue is how to deal with the challenge of
adaptability of Restful Services. In this paper, we propose a framework for the development of adaptable
REST services. The core building blocks of this framework is a Unified Modeling Language profile called
RESTVSoaML, and its associated tool support RESTVSoaMLTool. RESTVSoaML aims the modeling of
adaptable Restful Web services regardless of standards and implementation platforms. RESTVSoamLTool
is an MDD tool that enables the generation of code by using a model transformation language, from high
level models defined with our profile RESTVSoaML. In particular, it permits the generation of the description
of each RESTFUL service and its implementation.

1 INTRODUCTION

REST (Representational State Transfer) is an
architecture style for distributed, open, loosely
coupled and decentralized hypermedia systems such
as the Web (Pautasso, Wilde and Alarcon, 2013). In
the context of this architectural style, Restful Web
services has gained significant attention in both
academy and industry sectors in comparison to SOAP
services. Many mainstream Service providers (e.g.
Yahoo, Google, and Facebook) has adopted REST
Services due to its simplicity of use.

Restful Web Services can be viewed as software
services which are published on the Web. Such
services probably interacts with several types of
service requesters that have different needs and
requirements. Therefore, the central problem is the
design and development of highly
adaptable/personalized Restful services. To tackle
this problem, we put forward a model driven
framework for the design and development of
adaptable Restful services based application. Such a
framework provides the necessary capabilities to
model users’ needs and requirements early in the

a https://orcid.org/0000-0002-5800-1968
b https://orcid.org/0000-0001-9789-6146

development lifecycle of service based applications
and enables the automatic code generation from high
level platform independent models. Indeed, several
approaches have been proposed to take into account
several aspects of service requesters needs such as the
adaptation to their profiles (Chang and Kim, 2007),
the management of their access rights (Hafner and
Breu, 2008) (Fink, Koch and Oancea, 2003) or the
adaptation to their contexts (device, location)
(Bouguettaya and Yang, 2009). Nevertheless, to the
best of our knowledge, there is no framework that
enables the modeling of users’ needs by separating
their concerns early in the development process of
service based application and permitting the
automatic generation of code following the model
driven development principles.

In this paper, we propose a model driven
framework for the design and development of
adaptable Restful Services. The core building blocks
of this framework are: a UML profile called
RESTVSoaML and A MDD tool. (1)RESTVSoaML
(REST View based Service Oriented Architecture
Modeling Language) is a UML profile enabling the
design and specification of adaptable Restful

544
Kenzi, A. and Yakine, F.
A Model Driven Framework for the Development of Adaptable REST SERVICES.
DOI: 10.5220/0010718200003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 544-552
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Services. Such UML profile defines a set of
stereotypes that allows the representation of
adaptable Restful Services in a high level of
abstraction. The key element of the proposed profile
is the REST multiview service defined as a first class
modeling entity that allows the representation of the
needs and requirements of users by separating their
concerns early in the development lifecycle of
Services based Applications. The REST multiview
service as a new modeling entity provides, in addition
to the simple interfaces, interfaces which have the
characteristic of being flexible and adaptable to the
different type of service requesters.

 (2) The MDD tool associated to the profile called
RESTVSoaMLTool allows the automatic generation
of code from high level models following the MDA
principles and standards. It permits also the
deployment of each REST multiview service. In a
first phase, RESTVSoaMLTool accepts in input
platform independent models that describe the
structure and functionalities of systems according to
the actors interacting with each service and by using
a model transformation language, it generates
automatically the description of each REST
multiview service (e.g. WADL) and its
implementation (e.g., JAX-RS).

 The rest of this paper is structured as follows:
Section 2 presents our UML profile RESTVSoaML.
In section 3, we illustrate the applicability of our
profile on the basis of a motivating example. In
Section 4, we present an overview of the
RESTVSoaMLTool tool allowing both the edition
and transformation of models and deployment
services. Section 5 illustrates the steps to generate the
WADL description. Section 6 presents some related
works, and in Section 7 we give a conclusion and
perspectives to our work.

2 A UML PROFILE FOR
RESTFUL ADAPTABLE
SERVICES

The objective of this section is to present the first
component of our approach: the UML profile for
adaptable restful services. To this end, we put forward
the REST MULTIVIEW SERVICE CONCEPT.
Finally, we describe our UML profile for the
modeling of adaptable restful services.

2.1 Rest Multiview Service Concept

The concept of view is principally adopted in
different computing fields such as Database
Management System (Rafanelli, 2002), Workflow,
Web Services (Fink, Koch and Oancea, 2003)
(Maamar et al., 2005) (Rademacher et al., 2019) etc.
In the context of this paper, we adopt the view
concept as a means of functional separation of
concerns by highlighting what is expected to a
specific type of actor. Generally, the separation of
concerns (Ossher and Tarr, 2001) helps in writing
software that is modularized by concern; modeling
concerns and their relationships and extracting
concerns that are tangled with others.

We define the concept of REST multiview service
as a first class modeling element that illustrates the
user needs and requirements early in the development
process of service based applications. The REST
multiview service enables the capture of the various
needs of service clients by separating their concerns.
For each service consumer, the service must provide
the required capabilities that correspond to the needs
of users invoking the service. From an
analysis/design viewpoint, the central problem
therefore, is how to model the multidimensional
aspect of the needs of the various actors interacting
with the same service. Thus, a REST multiview
service provides in addition to the simple interfaces
that characterize the service, service interfaces which
are able to describe the capabilities of services
according to the profiles of users interacting with the
same service. We call this type of interfaces a
RESTViewServiceInterface. For each REST
multiview service, we group semantically the various
RESTviewServiceInterafece in a set of packages.
Each package called RESTMVServiceInterface is
composed of a base interface
(RESTbaseServiceInterface) and the set of view
interfaces (RESTviewServiceInterface).The
RESTbaseServiceInterface permits the
representation of the functionalities of services
required by all kinds of users. In contrast, the
RESTviewServiceInterface permits the
representation of the functionalities required by a
specific kind of user. These functionalities are
accessible only if the specific user is in interaction
with the service. The RESTviewServiceInterface
depends on the base interface in the sense where the
functionalities of the RESTbaseServiceInterface are
implicitly shared by all views interfaces.

A Model Driven Framework for the Development of Adaptable REST SERVICES

545

Figure 1: Excerpt of the RESTVSOAMLMetamodel.

2.2 A UML Profile for Adaptable
Restful Services

The REST multiview service as a first class modeling
entity plays a crucial role in the specification of
adaptable service based applications. Indeed, in
Service Computing the service is a fundamental
element for the development of interoperable,
evolvable, distributed information systems
(Papazoglou, 2008).Each service oriented system is
mainly composed of a set of services which are
described, published, discovered and can be
assembled in order to create more complex based
systems and distributed applications in a cost and
time effectiveness way.

Obviously, the REST multiview service
constitutes the core building block of our approach,
however it is insufficient to describe all aspects
(structural and behavioral) of service oriented
systems such as the information models associated
with each service or the service collaboration which
must specify the composition of REST multiview
services to cope with the complex nature of users’
needs that an atomic service does not deal with them.
Hence, we must define other concepts and notations
in order to describe the various aspects of an
adaptable service oriented systems. Such concepts
and notations are defined in the context of our UML
profile RESTVSoaML.

RESTVSoaML allows the modeling and
specification of adaptable service oriented systems. It
defines a consistent set of stereotypes, its associated
notations, constraints and semantics. In other words,

the profile defines a Domain Specific Language
(DSL) providing designers the necessary capabilities
to design an adaptable Service based application in
high level of abstraction regardless of implementation
platforms (dotNet, JEE, etc.) and standards (WADL,
XML, etc.).

Figure 1 depicts the RESTVSoaML metamodel.
Such metamodel plays an important role in the
process of the automatic code generation, especially
in the context of a Model Driven System
Development (MDSD). Generally, the profile defines
in addition to the RESTMultiview service, the
RESTMVServiceInterface,
RESTbaseServiceInterface,
RESTviewServiceInterface described in the
previous section, the following stereotypes.

Message: The stereotype Message represents the
structures of data exchanged between service and
service clients. These informations consist of data
passed as input or output of a service operation. The
use of this stereotype may be optional since it is
possibly to use the parameters of each service
operation in order to define messages.

A message stereotype has a property to specify its
assumed encoding form (text, xml, json, etc.). A
message may not have operations, it may have public
properties and associations to each other messages.

Service Interface: The stereotype service
interface is a modeling entity that represents the
functional capabilities of a given service as a set of
operations provided to its service clients. The service
interface in addition to the service implementation
constitutes a key artifact of the concept service in SC.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

546

In the case of web service technology as a Web based
implementation of Service Computing, each service
interface is described by means of a WSDL or WADL
document.

Service Domains: The stereotype “Service
Domains “ represents some logical or physical
boundary of the system. In fact, the specificity of
SOA is the integration of application both intra an
inter-enterprises, so it is necessary to distinguish
between the different collaborating domains.

ServiceCollaboration: The stereotype
“ServiceCollaboration” allows the specification of a
set of atomic services in order to create more complex
added value service in a high level of abstraction.

3 DLS CASE STUDY:
ABSTRACTION LAYERS

Our case study is a simplified version of a DLS
(Distance Learning System). Our objective is to use
this simplified version in order to validate and illustrate
our approach. The DLS interacts mainly with three
actors: Students, Teachers and Administrators. For
each actor, the DLS must provide only the
functionalities corresponding to its needs. It allows
students to apply for courses, access to documentation
(slides, web pages, text, etc.), make exercises,
communicate with teachers, and take exams. The DLS
provides for students runtime sequences, such as
getting the next item in a sequence. DLS can be
distributed over several sites, and is managed by a
responsible whose job consists in: Student registration
(registering students for available courses); Resource
management (creating, updating and removing
resources, their availability and their interactions) and
Content management (creating, updating, organizing
and publishing information resources). Teachers use
the DLS in order to propose and update their own
courses; plan learning experiences and units of work
for delivery on or off line; access curriculum outcomes
and record student assessments. They are in charge of
writing exam subjects.

In order to develop an adaptable service oriented
DLS, we have defined several abstraction layers to
master the complexity associated to such systems.
Globally, we have defined three abstraction layers: the
business layers, the logical layer and the physical layer.

The Business Layer: The business layer is defined
on the basis of a set of models in order to describe the
business requirements. In this layer, we have used the
formalism of use cases allowing the formalization of
user requirements.

The Logical Layer: The objective of the logical
layer is the description of the services which will
compose the system at a high level of abstraction. In
our approach, the logical layer is mainly composed of
a collection of REST multiview services. In the context
of our case study, we have identified some relevant
DLS REST multiview services. The identification of
these multiview services is based on the development
process defined in (Kenzi et al., 2009). Such
development process allows the transformation of the
business models into multiview services models.

The multiview service model of the DLS is
composed mainly of the REST multiview services:
Registration, Course, Documentation and Exam.
Such services are multiview since they interact with
many actors: Teacher, Student and Administrator. For
example, Registration service provides the student
with the required functionalities in order to register
while it enables an administrator to manage the
registration of students, to fix the registration fees to
given courses and to make decisions about the
registration of students. The Course service provides
functionalities permitting students to apply for
courses. They can have access to exercises, ask
questions, consult projects, take quizzes and post
messages to discussion forums relating to a specific
course. It also enables Teacher to create courses, to
answer to students’ questions, to propose exercises
and to reply to messages of discussion forums. The
administrator uses course service in order to fix
course fees, to manage the calendar of courses, to
affect courses responsible. The Documentation
service allows Teacher to upload documents
concerning specific course, to update/delete the
content. It permits students to download the required
documentation (pdf file, ppt files, audio/video, etc).
The Exam Service enables students to take exams, to
download exam subjects, to ask questions, to consult
their marks. It also permits to Teacher to add exams,
to answer students’ questions. Figure 2 illustrates
examples of multiview services, specially, the
multiview service Course. Each Multiview Service
provides a set of viewServiceInterface and a
baseServiceInterface that specifies the function-
alities of the service required by all types of actors.
The viewServiceInterface highlights the service
capabilities required by a specific type of actor.

The physical layer consists of various Service
based applications artifacts. It is primarily composed
from the multiview service descriptions, multiview
service implementations with a given programming
language (e.g., Java, C#, etc), the BPEL code as well
as various non-functional properties such as XACML
policies for the management of access control.

A Model Driven Framework for the Development of Adaptable REST SERVICES

547

Figure 2: An example of REST multiview Service.

4 RESTVSOAMLTOOL: A
MODEL DRIVEN
DEVELOPMENT TOOL FOR
ADAPTABLE RESTFUL
SERVICES

Our approach for developing adaptable service based
applications is based on two components: the
RESTVSOAML profile and its tool support called
RESTVSoaMLTool. As illustrated in the previous
sections, RESTVSoaML allows the description of
adaptable SOA applications at high level of
abstraction. The RESTVSoaMLTool aims the edition
of models, the automatic generation of code from
these models as well as the deployment of the REST
mutiview service descriptions following the web
service reference architecture. For these purpose,
RESTVSoaMLTool is composed of three main
modules, as depicted in figure 3:

1. The Editor module that enables the edition of
RESTVSoaML models on the basis of the EMF
(www.eclipse.org/emf/) tools such as Ecore.

2. The transformation module allows the generation
of code from the edited models. It is based on two
complementary transformations targeting two
specific platforms. Each transformation is carried
out on two steps: Model to Model transformation
and Model to Code transformation. The first
transformation aims the generation of the REST
multiview service description that conforms to
the WADL. The second transformation aims the
generation of the service implementation
according to a particular implementation
platform (dotNet, JEE, etc.). In our approach, we
have chosen JAX-RS as an implementation
platform. Indeed, JAX-R is used to implement

Restful web services in JEE platforms. To
achieve the transformation targeting a JAX-RS
implementation platform, we firstly define the
JAX-RS metamodel. Secondly, we specify the
mapping of the RESTVSoaML metamodel as
source metamodel to the JAX-RS metamodel as
a target metamodel by identifying the equivalent
elements. Thirdly, we define the transformation
rules which implement the equivalences between
the source and target metamodel elements.
Finally, we define additional transformations in
order to generate the java code as an
implementation of the multiviews service.

3. The deployment module allows the deployment
of each generated REST in a given application
server such as Apache Tomcat or GlassFish.

5 GENERATION OF MVWADL
DOCUMENT

In this section, we present our extension to WADL
called MVWADL for the description of REST
multiview Service and its metamodel. Also, we
illustrate how to generate MVWADL documents

5.1 MVWADL Metamodel

WADL (Hadley, 2006) is an XML based language for
the description of RESTfull Web services. WADL
plays the same role as WSDL for SOAP Web
Services. WADL describes the interfaces of restful
and the relationships between them. Moreover, It
permits the definition of the media types used for the
representation of the HTTP request as well as the
HTTP response. However, the WADL specification
does not take into account the profile of users that

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

548

Figure 3: Main modules of RESTVSoaMLTool.

interact with the service. Indeed, two service
requesters with different profiles can have the same
WADL. To deal with this problem, we put forward
a lightweight extension of the WADL specification
called MVWADL (MultiView Web Application
Description language) in order to describe the REST
multiview service. The purpose of this extension is
twofold. Firstly, MVWADL describes in a single
XML file all REST service interfaces both simple and
multiview interfaces. Secondly, it permits the
adaptation of this description taking into account the
profile (i.e the role) of the user invoking the service
by providing a WADL description adapted to the
users’ profiles. We have also defined the Multiview
WADL Meta-model (cf. Figure 4) as an extension of
WADL meta-model in order to take into account the
profile of the user interacting with the service. This
extension is carried out by means of an element
called “actor”. Such an element permits the
definition of the profile interacting with the service.
It is associated with different element of WADL that
must be adapted to users’ profiles such as Resource,
grammars, etc.

In addition to the actor element, the MVWADL
metamodel is composed from the following elements:

• application is the root element in a WADL
document. It defines global information about
services, especially references to the schema
definition.

• Resources is an element that contains all the
resources provided by a RESTful Web
Services. This element defines a base attribute
which identifies the common path used by all
resources in the RESTful Web Services.

• grammars: This element includes the
definition of data formats using the include
element, which references the data format with
the href attribute.

• resource is child element of the resources
element used for defining a collection of
resources. Each resource is identified by
unique URI and can also comprise the
element param to identify the path parameters
contained in the request.

• method: The element resource may be
associated with one or more method element.
The element method defines the HTTP
method (e.g. get, put, post, delete). Each
method has as an input a request and
produces in output a response.

A Model Driven Framework for the Development of Adaptable REST SERVICES

549

• request: A request can have one or more
child elements for example:
o representation: This element defines the

internet media type (JSON, XML, HTML,
text, …) for the body of the request

o param: This element defines the query or
header parameter contained in the request

• response: The element response defines the
result of the call of a method on a resource.
The response element contains the optional
status code contained in the HTTP response
and can also contains the data in given
produced by a HTTP method, especially in the
case of a GET method. A response can have
several child elements such as:
o representation: This element describes

the internet media type for the response
body returned by the execution of a restful
web service method.

o param: This element defines the HTTP
header parameters contained in the
response.

5.2 Transformation Module: The
Generation of MVWADL
Document

Model transformation (Brambilla, Cabot and
Wimmer, 2017) is a key technique in model driven
Engineering. We distinguish between two types of
model Transformation: Model to model (M2M)
transformation and Model to Text (M2T)

transformation. In M2M transformation, the input and
the output parameters of the transformation are
models while in M2T transformation, the output is
Text String. In our approach, the transformation is
carried out on two phases: the mapping phase and the
definition of transformation rules phase. In the
mapping phase, we have determined the elements of
the source metamodel which are equivalent to the
elements of the target metamodel. Table I shows a
possible mapping from the RESTVSoaML
metamodel to the MVWADL metamodel. In this
table, the first column contains the elements of the
MVWADL metamodel. The second column presents
its equivalents elements from RESTVSoaML
metamodel.

Table 1: Mapping between WADL element and
RESTVSoaML.

MVWADL element RESTVsoaML
Application RESTMVservice
Grammars Type
Resource RESTServiceInterface,

RESTviewServiceInterface,
RESTBaseServiceInterface

Method ServiceOperation
Request Request

The mapping specification allows the
specification of the equivalent elements between the
source and target metamodels elements. The second
phase of the transformation process consists on the
definition of the transformation rules using a model
transformation language.

Figure 4: The MVWADL metamodel.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

550

In the context of our Framework, we are using
ATL (Atlas Transformation Language) language to
implement a set of transformation rules that allows the
M2M and M2T transformations in order to generate
MVWADL documents.

After the generation of MVWADL, the
deployment module can also produce a standard
WADL document for each actor interacting with the
multiview REST service as depicted in figure 3.

6 RELATED WORK

Model driven web service development has been an
active area of research in software engineering. Thus,
Gronmo et al. (Gronmo et al., 2004) , Bezivin et al.
(Bezivin et al., 2004) and Yu et al. (Yu et al., 2007)
propose several approaches in the MDA context for
the development of web service systems. These
approaches target the automatic generation of the
code from a given PIM. They are based essentially on
the elaboration of PIM on the basis of a high level
modeling language (UML, EDOC). Then, this PIM
will be transformed in a web service platform by
using a transformation model language (ATL, QVT)
or a specific tool such as presented by Gronmo et al.
(Gronmo et al., 2004). Douibi et al.(Ed-Douibi et al.,
2016) put forward an approach called EMF REST,
using EMF data models and allows the generation of
web applications according to the REST principles.
Haupt et al. (Haupt et al., 2014) propose a
multilayered metamodel for restful applications. The
authors illustrate an implementation of their approach
on the basis of a metamodel and a method. In the
same context, Terzic et al. (Terzić et al., 2018)
present the MicroBuildertool for the specification of
REST services. MicroBuilder is based mainly on two
modules: the MicroDSL and the MicroGen.
MicroDSL defines a DSL for the specification of
REST services. MicroGen allows the generation of
executable programs from high levels models defined
by MicroDSL.(Rossi, 2016) put forward a model-
driven approach to REST API development; two
main phases are identified : (i) the definition of
specific UML profile for modeling REST API and
(ii) a model transformation that uses RAML as an
intermediate notation that can be exploited to
automatically generate documentation as well as
code for various languages/platforms. In the same
objective, (Zolotas et al., 2017) present a model
driven engineering engine that allows fast design and
implementation of restful Web Services. The
proposed approach allows developers to design their
envisioned system on the basis of software

requirements in multimodal format. The input model
for the MDE engine is created from textual
requirements and graphical storyboards. Then, the
MDE engine applies model to model transformations
(CIM to PIM, PIM to PSM, PSM to code) in order to
generate a restful ready to deploy web service. More
recently, (Alulema et al., 2020) propose a model-
driven engineering approach for the service
integration of IoT systems. In particular, the authors
developed a tool for modelling IoT nodes with
communication and integration capabilities. It
consists of a graphic editor and a code generator,
which generates software artefacts (IOT nodes,
RESTful Web service, etc.).

Despites, several MDA approaches have been
proposed in order to user into account. Thus, (Hafner
and Breu, 2008) presented a model driven security
engineering framework focusing on trust
management issues. This framework permits the
generation of platform specific security models such
as XACML models via a set of transformation rules.

(D’Ambrogio, 2006) defines model driven
approach for the generation of Q-WSDL(Qos–
enabled WSDL) specification.

(Ortiz and Hernandez, 2006) propose an approach
that combines between the SCA(Service Component
Architecture), the Aspect Oriented Programming and
the MDA in order to deal with the extra-functional
properties such as encryption, logging, real time,
etc.).

The main difference between these approaches
and ours, resides in the PIM and PSM levels. The PIM
which we put forward is essentially composed of
REST multiview services that represent the users’
needs and requirements.

7 CONCLUSIONS

In this paper, we have proposed a model driven
framework for the design and development of highly
adaptable Restful services. therefore, we have firstly
presented a UML profile that enables the
specification of Adaptable REST Services. Such
UML profile defines a set of stereotypes allowing the
representation of adaptable Service based
applications in a high level of abstraction. The key
element of the proposed profile is the REST
multiview service defined as a first class modeling
entity that allows the representation of the needs and
requirements of users by separating their concerns
early in the development lifecycle of service based
Applications.

A Model Driven Framework for the Development of Adaptable REST SERVICES

551

The second contribution of our approach is the
tool RESTVSoaMLTool as a MDD tool associated
with the profile enabling the automatic generation of
code (e.g., WADL description) from high level
models according to the MDA principles and
standards.

REFERENCES

Alulema, D. et al. (2020) ‘A model-driven engineering
approach for the service integration of IoT systems’,
Cluster Computing, 23(3), pp. 1937–1954.

Bezivin, J. et al. (2004) ‘Applying MDA approach for web
service platform’, in Proceedings. Eighth IEEE
International Enterprise Distributed Object Computing
Conference, 2004. EDOC 2004., pp. 58–70.

Bouguettaya, A. and Yang, X. (2009) Access to Mobile
Services.

Brambilla, M., Cabot, J. and Wimmer, M. (2017) ‘Model-
driven software engineering in practice’, Synthesis
lectures on software engineering, 3(1), pp. 1–207.

Chang, S. H. and Kim, S. D. (2007) ‘A service-oriented
analysis and design approach to developing adaptable
services’, in IEEE International Conference on
Services Computing (SCC 2007), pp. 204–211.

D’Ambrogio, A. (2006) ‘A model-driven wsdl extension
for describing the qos ofweb services’, in 2006 IEEE
International Conference on Web Services (ICWS’06),
pp. 789–796.

Ed-Douibi, H. et al. (2016) ‘EMF-REST: generation of
RESTful APIs from models’, in Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pp.
1446–1453.

Fink, T., Koch, M. and Oancea, C. (2003) ‘Specification
and enforcement of access control in heterogeneous
distributed applications’, in International Conference
on Web Services, pp. 88–100.

Gronmo, R. et al. (2004) ‘Model-driven web service
development’, International Journal of web Services
Research (IJWSR), 1(4), pp. 1–13.

Hadley, M. J. (2006) ‘Web application description language
(WADL)’. Sun Microsystems, Inc.

Hafner, M. and Breu, R. (2008) Security engineering for
service-oriented architectures. Springer Science \&
Business Media.

Haupt, F. et al. (2014) ‘A model-driven approach for REST
compliant services’, in 2014 IEEE International
Conference on Web Services, pp. 129–136.

Kenzi, A. et al. (2009) ‘A model driven framework for
multiview service oriented system development’, in
Aboulhamid, E. M. and Sevillano, J. L. (eds) The 7th
{IEEE/ACS} International Conference on Computer
Systems and Applications, {AICCSA} 2009, Rabat,
Morocco, May 10-13, 2009. {IEEE} Computer Society,
pp. 404–411. doi: 10.1109/AICCSA.2009.5069357.

Maamar, Z. et al. (2005) ‘Views in composite web
services’, IEEE internet computing, 9(4), pp. 79–84.

Ortiz, G. and Hernandez, J. (2006) ‘Toward UML profiles
for web services and their extra-functional properties’,
in 2006 IEEE International Conference on Web
Services (ICWS’06), pp. 889–892.

Ossher, H. and Tarr, P. (2001) ‘Using multidimensional
separation of concerns to (re) shape evolving software’,
Communications of the ACM, 44(10), pp. 43–50.

Papazoglou, M. (2008) Web services: principles and
technology. Pearson Education.

Pautasso, C., Wilde, E. and Alarcon, R. (2013) REST:
advanced research topics and practical applications.
Springer.

Rademacher, F. et al. (2019) ‘Specific Model-Driven
Microservice Development with Interlinked Modeling
Languages’, in 2019 IEEE International Conference on
Service-Oriented System Engineering (SOSE), pp. 57–
5709.

Rafanelli, M. (2002) Multidimensional Databases:
Problems and Solutions: Problems and Solutions. IGI
Global.

Rossi, D. (2016) ‘UML-based Model-Driven REST API
Development.’, in WEBIST (1), pp. 194–201.

Terzić, B. et al. (2018) ‘Development and evaluation of
MicroBuilder: a Model-Driven tool for the
specification of REST Microservice Software
Architectures’, Enterprise Information Systems, 12(8–
9), pp. 1034–1057.

Yu, X. et al. (2007) ‘A model-driven development
framework for enterprise Web services’, Information
Systems Frontiers, 9(4), pp. 391–409.

Zolotas, C. et al. (2017) ‘From requirements to source code:
a Model-Driven Engineering approach for RESTful
web services’, Automated Software Engineering, 24(4),
pp. 791–838.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

552

