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Abstract: The increasing integration of 5G, multi-access edge computing (MEC), and microservices, benefits the de-
velopment of applications that demand low coupling, low communication latency, high scalability, and high
availability. An usual scenario that deals with such requirements is a video application, either to process in-
ference on video images or process video analytics. Given that video data are considered heavy to process
and transmit, we should investigate the best way to handle such data. This work presents an experimental
setup for the comparison between four data formats used to send video frames among distributed application
components in a MEC server. We measured and analyzed the communication latency when sending video
data between distributed parties, considering three scenarios.

1 INTRODUCTION

Currently, we have a trend of deploying the dis-
tributed systems’ architectures among different mi-
croservices. Microservices are services with specific
purposes, developed and deployed independently, al-
lowing an easier provision and management of sys-
tems that require high concurrency, high availabil-
ity, high scalability, and low coupling (Liu et al.,
2020). Many application providers deploy their mi-
croservices in cloud servers, but the deployment pos-
sibilities are growing with the increasing adoption of
fog and edge computing (Zou et al., 2019; Sunyaev,
2020). Besides, related to the edge computing con-
cept, there is still the multi-access edge computing
(MEC, previously called mobile edge computing) (Fi-
lali et al., 2020), which enables the cloud/edge bene-
fits for telecommunication operators. Thus, with the
adoption of the 5G and its enabling technologies (e.g.,
network function virtualization and network slices),
the application providers begin to deploy their mi-
croservices also at MEC servers.

The power of 5G, MEC, and microservices in-
tegration becomes an enabler to the many applica-
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tions that demand video processing with strict re-
quirements, such as low communication latency and
high video quality. For instance, a process that can
benefit from this integration is automatic video tag-
ging, which assigns meaningful human-friendly in-
formation to video frames (Arca et al., 2020). An-
other application that benefits from those technolo-
gies is video inferencing, such as a monitoring system
that performs pedestrian recognition (Xu et al., 2020).

Given the vast possibility of different applications,
developers can use many possible technologies and
tools for developing and integrating such applications.
Although the distributed systems can interoperate in
diverse ways, a concern arises when efficient commu-
nication is required: what is the most suitable data
format to send video data (frames) among distributed
components?

We decided to answer that question as a project
decision once we are developing a platform to help
in the deployment process of artificial intelligence
applications in MEC servers. As a proof of con-
cept, we have implemented a video inference appli-
cation to work as one of the possible use cases. Dur-
ing the development, we faced some communication
problems when transmitting and processing the video
frames. For this reason, we created a testbed to eval-
uate the communication between distributed compo-
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nents of the video inference application, deploying
them in the MEC server. We performed experiments
to measure the communication latency when consid-
ering different scenarios and data formats to send the
video frames.

To guide the investigation to answer the research
questions, we defined the business and technical prob-
lems as follow:

• Business problem: Investigate means of transmit-
ting and receiving video data efficiently among
distributed components in a MEC server;

• Technical problems:

– Implement a testbed considering the communi-
cation of video data among distributed compo-
nents using different data formats;

– Measure and compare the communication la-
tency among the distributed components con-
sidering distinct scenarios and data formats.

The main contributions of this paper are:

• a framework to evaluate communication be-
tween distributed components, considering differ-
ent message formats. This framework can help
when other formats and scenarios need evaluation,
or other metrics are necessary, allowing the devel-
opers to benchmark the interested metrics;

• a framework’s implementation, considering a dis-
tributed video inference application and different
deployments in a MEC server;

• a comparison of four message formats for ex-
changing JPEG-compressed images between the
components of a distributed video inference appli-
cation. For this comparison, the experiments con-
sidered the following formats: byte array, base64-
encoded byte array, base64-encoded string, and
JSON-encapsulated base64-encoded string;

The remainder of this paper follows this structure:
Section 2 presents the background, which briefly de-
scribes the gRPC technology and usual message for-
mats generally used to exchange data among different
applications; Section 3 presents some works related
to the content of this paper; Section 4 describes the
methodological design defined to guide the execution
of the experiments; Section 5 exhibits and discuss the
obtained results; and Section 6 finally concludes this
paper, presenting a summary and suggesting future
work.

2 BACKGROUND

2.1 Multi-access Edge Computing

Multi-access edge computing (MEC) refers to appli-
cations that enable the provision of telecommunica-
tions and IT services, resources such as storage and
computing, whose benefits range from low latency
to optimized use in the mobile backhaul of network
operators, providing cloud computing benefits at the
edge of the RAN (Radio Access Network) (Taleb
et al., 2017).

The use of 5G technology will bring an unimag-
inable increase in traffic volume of networks and
computing demands, due to the emergence of new
compute-intensive applications and the Internet of
Things (IoT). According to Pam et al. (Pham et al.,
2020) how to perform intensive computing on end-
users, those with limited devices, has recently become
a natural concern. Thus, MEC emerges as a key tech-
nology in the emerging fifth-generation (5G) network,
hosting computationally intensive applications, pro-
cessing large volumes of data close to users, which
will enable applications such as driverless vehicles,
VR/AR, robotics, and immersive media. Despite this,
the use of the MEC is still in its infancy and requires a
constant effort from the academic and industrial com-
munities (Pham et al., 2020).

2.2 Video Analytics

Video analysis is a subset of computer vision and
of artificial intelligence that analyze images from a
camera to recognize humans, vehicles, objects, and
events. It has advancement, but they have come at the
computing and network cost. Low-latency video an-
alytic is becoming increasingly important in security
and smart city scenarios (Yi et al., 2017).

According to Pasandi (Pasandi and Nadeem,
2020) more and more organizations are using video
analytics, deploying hundreds of cameras for various
types of applications, from monitoring industrial or
agricultural sites to retail.

As Zhang et al. (Zhang et al., 2017), it is neces-
sary to develop efficient components to use the data
power offered by the cameras. The use of edge com-
puting, where thousands of devices will be connected
and streaming video, brings the challenge of reduc-
ing bandwidth and response time. The solution for
large-scale real-time video analytic currently uses dis-
tributed architectures using public cloud, but with
trade-offs in quality, delay and reconfiguration (Anan-
thanarayanan et al., 2017).
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2.3 GRPC

GRPC1 is a open-source Remote Procedure Call
(RPC) framework that aims to connect applications
with a fast and sleek communication independent of
running environment. Bringing scalability and a sim-
ple service definition with bi-directional streaming for
a server-client structure.

For communication purposes, gRPC allows differ-
ent parts of the system to exchange data that is es-
sential for the application to function. With gRPC, a
component is able to delegate the processing of part
of its flow to a specialized module that integrates the
system, creating a distributed network of processes.
In this sense, it is necessary that the communication
is well defined and structured, allowing both parties
to be aware of what will be necessary for implementa-
tion and what is the expected result of this process. To
achieve this, an Interface Definition Language (IDL)
is used, which will define what can be accessed by the
client module, what must be consumed by the server
module and, finally, what will be delivered at the end
of the execution of the process.

Normally, gRPC makes use of Protocol Buffer, an
IDL that performs the serialization and structuring of
transported data. This ensures that the service has
a well-defined interface and enables communication
in a language-agnostic and platform-neutral way (In-
drasiri and Kuruppu, 2020). With this definition, the
server and client code are generated, making it eas-
ier for the developer to identify how the communi-
cation between the different platforms will be carried
out (Araújo et al., 2020). Both generated codes work
similarly to a local call and gRPC handles the com-
plexity needed to carry out this communication.

In the context of Edge Computing, gRPC becomes
an interesting solution, providing an efficient archi-
tecture with low resource use of the embedded sys-
tems involved, as evaluated by Araújo et al. (Araújo
et al., 2020). Therefore, with the need for commu-
nication between different application modules, the
choice for gRPC has become a trend in the devel-
opment of distributed technologies (Indrasiri and Ku-
ruppu, 2020).

3 RELATED WORK

Although we have not found works comparing data
formats, we can see works highlighting specific for-
mats, whether exploring their capabilities or propos-
ing improvements. For instance, Taktek et al. (Taktek

1https://grpc.io

et al., 2018) compare two schemes for labeling oper-
ation in native XML databases. For the comparison,
the authors employed UTF-8, UTF-16, and UTF-23
for the encoding and decoding processes. Psaila et
al. (Psaila. et al., 2020) presented a model to handle
GeoJSON documents.

Proos et al. compared three messaging protocols
considering a scenario of Internet of Vehicles and two
serialization formats (Protobuf and Flatbuffers). Re-
garding the serialization formats, they concluded that
Protobuf, which is used by gRPC, has a faster serial-
ization speed and smaller serialized message size.

With the use of MEC, the academic community
and industry seek to solve problems with workloads
and application response time at the edge. Randazzo
and Tinnirello (Randazzo and Tinnirello, 2019) pro-
pose that a standardized architecture must be designed
to perform the migration of services to the MEC in a
safe and timely manner. He assesses that the final so-
lution can be architecture with the advantages of us-
ing VM, in terms of security, and containers related to
performance in the data processing.

According to Sawant (Sawant, 2019), the expo-
nential increase in data volume is characterized by
heterogeneous formats and disparate data sources. As
a result, the task of transmitting uniform data to anal-
ysis systems becomes complex, increasing the com-
plexity of current systems.

4 EXPERIMENTAL DESIGN

The experiments were run in different scenarios, vary-
ing the pipeline architecture and the image data for-
mat exchanged between client and server. Several
time measurements were performed to describe the
latency of each step of the pipeline, being able to per-
form a deeper analysis. The scenarios are described
in detail below.

4.1 Architectural Designs

There are three basic components comprising the ex-
periment architecture:

• the RTSP Video Stream, which combines a ffm-
peg2 video stream and a Real-Time Streaming
Protocol - RTSP(Rao et al., 1998) server

• the gRPC-MLInference Client, which queries the
server with images to perform inference on, com-
posed of:

2http://ffmpeg.org/
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Figure 1: Experiment Architectural Designs: a) Single-VM,
b) Multi-VM, c) Remote MEC.

– VideoHUB, responsible for retrieving video
frames from the RTSP stream and preparing
them for inference

– DemoApp, responsible for receiving and dis-
playing the inference results

• the gRPC-MLInference Server, which receives
frames and performs Object Detection inference
on them using an OpenVINO-optimized3 SSD
MobileNET ML model (Sandler et al., 2018).

The scenarios were executed in a Nokia Airframe
server powered by the Intel R© Xeon R© processor E5-
2600 v3 family with up to 14 cores per socket. We
used Openstack as an IaaS platform, provisioning at
all four virtual machines each with 4 vCPU and 8GB
of RAM in a MEC server and one external virtual ma-
chine with 4 vCPU and 8GB of RAM.

4.1.1 MEC Single-VM

The Single-VM architectural design consists of the
deployment of both gRPC-MLInference client and
server on the same machine. In this experiment, we
used a MEC infrastructure, deploying the components
on a single MEC virtual machine, as depicted in Fig-
ure 1-a.

3https://docs.openvinotoolkit.org/

Figure 2: Experiment Input Video Screenshot.

4.1.2 MEC Multi-VM

The Multi-VM architectural design consists of the de-
ployment of gRPC-MLInference client and server on
different machines within MEC. In this case, com-
ponents were deployed on separate MEC virtual ma-
chines, as can be seen in Figure 1-b.

4.1.3 Remote MEC

The Remote MEC architectural design consists of the
deployment of the gRPC-MLInference server on a
MEC machine, and the client on an external machine
within the same network (see Figure 1-c).

4.2 Data Formats

The second factor of variation in the experiment is the
format of the data exchanged between the client and
server through gRPC. The hypothesis is that the data
format and its inherent attributes affect the transmis-
sion speed and, therefore, the latency. The video used
as input for the experiment had a FULL-HD Resolu-
tion (1080p) encoded in H.264 portraying a car trip in
the city of São Paulo, Brazil, as depicted in Figure 2.

To access the baseline transmission time measure-
ments for the chosen protocol in this experiment, a
base message consisted of a single Boolean value. As
for the transmission of video frames, a JPEG encod-
ing was chosen, paired with Base64 encoding combi-
nations as shown below.
• JPEG-compressed image

– JPEG image byte array
– Base64-encoded JPEG image byte array
– Base64-encoded JPEG image string
– JSON-encapsulated Base64-encoded JPEG im-

age string
These particular combinations have been chosen

for their popularity in web applications and to intro-
duce a variation in data size and encoding/decoding
complexity.
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4.3 Latency Measurements

As a means to perform an effective evaluation of the
performance of the Inference Pipeline with respect to
time, we define a set of latency measurements, col-
lected for each combination of the experiment vari-
ables. Each measurement is described in detail below.
Their time unit is milliseconds (ms).

• Client Frame Handling - time taken for pre-
processing of the original frame and post-
processing of the inference frame on the client

• Server Frame Handling - time taken for pre-
processing of the original frame and post-
processing of the inference frame on the server

• Round Transmission Time (RTT) - time taken for
the original frame to go from the client to the
server and for the inferred frame to go from the
server to the client

• Inference Time - time taken for the server to per-
form inference on the original frame

4.4 Aggregation Functions Applied

In order to have a consistent evaluation, the frame in-
ference pipeline is run 1000 rounds for each experi-
mental setup variables (architecture and data format)
combination, collecting the values for each latency
measurement. Finally, the values were averaged us-
ing the aggregation functions described below.

• Median - characterizes the average value of each
latency measurement

• Standard Deviation - characterizes the variance
observed in the values of each latency measure-
ment

5 RESULTS AND DISCUSSION

5.1 Average Latency Measurements
Observed

Initially, we analyze the average (median) latency
measurements for each experimental design scenario,
as described in the previous section.

5.1.1 MEC Single-VM

The median values of each latency measurement ob-
tained from the experiment round on the MEC Single-
VM architecture can be seen in Table 1. By analyzing
them, we notice that:
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Figure 3: MEC Single-VM Median Latency Measurements
per Inference Data Format.

• gRPC Round Transmission Time is around 2.5 ms
for the base message and increases to 5.5 ms in the
slowest setting (Base64-encoded string frame for-
mat). As the architectural design in Single-VM,
this is the time the message takes to hit the net-
work card and fall back to the server process port.

• Client frame processing time is around 40 ms and
Server frame processing time is between 30 ms
and 34 ms. These steps dominate the latency, sig-
naling there might be some improvement by in-
vesting in data formats which simplify frame en-
coding and decoding.

• Inference Time ranges between 22 ms and 25
ms (in an 8GB-RAM/4-vCPU virtual machine),
keeping in mind that both client and server are us-
ing the same computing and memory resources.

• Total Time stays between 99 ms and 105 ms, pro-
viding an output video of around 10 fps.

A visual comparison of the latency measurements
observed on the MEC Single-VM architecture for the
different data formats can be seen in Figure 3. By
examining it, we conclude that:

• Although the difference observed in latency
among the data formats is not large, the bytes
data format presents the overall lowest latency
measurements among the experimented data for-
mats, contributing to the hypothesis that raw for-
mats promote better performance due to the lack
of pre/post-processing.

• Overall, the different data formats behave very
similarly in terms of latency for each inference
pipeline step.

5.1.2 MEC Multi-VM

The median values of each latency measurement ob-
tained from the experiment round on the MEC Multi-
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Table 1: MEC Single-VM Median Latency Measurements.

Data Format Client Frame Proc gRPC RTT Inference Time Server Frame Proc Total Time

base 0.02 2.55 0.0 0.01 2.58

base64bytes 40.21 4.64 22.68 32.18 100.67

base64str 40.45 5.5 24.76 34.11 105.73

base64strjson 40.89 5.29 22.87 34.31 104.32

bytes 39.59 4.66 23.54 30.6 99.42

Table 2: MEC Multi-VM Median Latency Measurements.

Data Format Client Frame Proc gRPC RTT Inference Time Server Frame Proc Total Time

base 0.18 3.18 0.0 0.0 3.19

base64bytes 4.66 769.24 2.76 3.39 769.48

base64str 4.31 769.14 3.25 3.05 769.54

base64strjson 4.7 940.51 3.7 3.5 940.41

bytes 4.24 545.28 4.16 3.46 544.9
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Figure 4: MEC Multi-VM Median Latency Measurements
per Inference Data Format.

VM architecture can be seen in Table 2. By analyzing
them, we notice that:
• gRPC Round Transmission Time does not in-

crease much when moving from a single-vm to
a multi-vm architecture, reaching at most 6.8 ms
on the slowest data format (Base64 String JSON),
which indicates the communication between VMs
within the same host is very efficient, not causing
significant impact on the inference pipeline per-
formance.

• Client and Server frame processing time presents
a very similar range as the one observed in the
Single-VM architecture.

• Inference Time is lower when compared to the
Single-VM architecture, taking between 15 ms
and 16 ms (reduction of 7-9 ms). This might be

due to the separation of client and server in dif-
ferent environments, not sharing resources, leav-
ing more resources for the inference (in an 8GB-
RAM/4-vCPU virtual machine).

• Total Time decreases as well, pulled by the lower
inference time, providing an output video with a
bit more than 10 fps.
A visual comparison of the latency measurements

observed on the MEC Multi-VM architecture for the
different data formats can be seen in Figure 4. By
examining it, we conclude that:
• Following the trend of the Single-VM Architec-

ture, the difference observed in latency among the
data formats is not large, but the bytes data format
presents the overall lowest latency measurements
among the experimented data formats.

• Again, the different data formats behave very
similarly in terms of latency for each inference
pipeline step.

5.1.3 Remote MEC

The median values of each latency measurement ob-
tained from the experiment round on the Remote
MEC architecture can be seen in Table 3. By ana-
lyzing them, we notice that:
• gRPC Round Transmission Time increases drasti-

cally (around 5 times) from the values observed in
the previous rounds, reaching up to 23 ms on the
slowest data format (Base64 String JSON), which
indicates the communication between VMs in dif-
ferent hosts and, thus, subject to network traffic
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Table 3: Remote MEC Median Latency Measurements.

Data Format Client Frame Proc gRPC RTT Inference Time Server Frame Proc Total Time

base 0.02 3.83 0.0 0.0 3.86

base64bytes 31.53 21.4 16.63 29.68 102.42

base64str 31.69 22.84 16.75 31.01 105.54

base64strjson 32.35 23.39 16.81 31.58 107.79

bytes 30.75 19.67 17.23 28.23 101.39
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Figure 5: Remote MEC Median Latency Measurements per
Inference Data Format.

and anomalies decreases inference pipeline per-
formance.

• Server frame processing time presents a very sim-
ilar range as the one observed in the Single and
Multi-VM architecture. Client frame processing,
in turn, is lower, probably due to the fact that
client VM host has robust computing specs.

• Inference Time is very similar to the observed
in Multi-VM architecture, contributing to the hy-
pothesis that due to the separation of client and
server in different environments, not sharing re-
sources, there are more resources for the inference
in the server VM.

• Total Time increases, pulled by the higher gRPC
Round Transmission Time, providing an output
video with a bit less than 10 fps.

A visual comparison of the latency measurements
observed on the MEC Multi-VM architecture for the
different data formats can be seen in Figure 5. By
examining it, we conclude that:

• Following the trend of both previous architec-
tures, the difference observed in latency among
the data formats is not large, but the bytes data
format presents the overall lowest latency mea-
surements among the experimented data formats.

• Once more, the different data formats behave very
similarly in terms of latency for each inference
pipeline step.

5.1.4 Discussion

Analyzing the results obtained for the different sce-
narios, we can conclude:
• gRPC behaves well in a controlled network envi-

ronment, but is dramatically affected by network
traffic.

• gRPC communication performance is not signif-
icantly decreased if pipeline components are in
separated VMs in the same host (MEC host in this
case).

• Inference time benefits from a robust or lightly-
loaded infrastructure.

• In all evaluated scenarios, the client and server
frame processing time dominated the latency, in-
dicating there might be some room from improve-
ment on these steps of the pipeline.

• In all evaluated scenarios, the raw bytes data for-
mat presents slightly better performance than the
others.

5.2 Variability Observed in Latency
Measurements

Finally, we analyze the latency measurements for
each experimental design scenario, as described in the
previous section.

5.2.1 MEC Single-VM

Each latency measurement obtained from the experi-
ment round on the MEC Single-VM architecture can
be seen in Table 4. By analyzing them, we notice
that all latency measurements in all formats are rea-
sonably low, which indicates this scenario provides
high stability to the pipeline performance.

A visual comparison of the latency measurements
on the MEC Single-VM architecture for the different
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Table 4: MEC Single-VM Latency Measurements (in ms).

Data Format Client Frame Proc gRPC RTT Inference Time Server Frame Proc Total Time

base 0.01 1.91 0.0 0.0 1.91

base64bytes 4.94 2.2 6.37 4.5 11.5

base64str 4.3 3.26 6.24 3.74 10.36

base64strjson 4.33 2.83 6.54 4.24 11.72

bytes 4.25 2.65 6.01 3.79 10.1
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Figure 6: MEC Single-VM Latency Measurements per In-
ference Data Format.

data formats can be seen in Figure 6. By examining
it, we conclude that the difference observed in latency
among the data formats is not large, but the bytes data
format presents the overall lowest latency measure-
ments among the experimented data formats. In ad-
dition, the different data formats behave very simi-
larly in terms of latency variability for each inference
pipeline step.

5.2.2 MEC Multi-VM

The latency measurements obtained from the experi-
ment round on the MEC Multi-VM architecture can
be seen in Table 5. By analyzing them, we notice
that all latency measurements are reasonably low, ex-
cept for the gRPC Round Transmission Time, which
ranges from 545 ms (raw bytes format) to 940 ms
(Base64 String JSON format), indicating some vari-
ability (instability) in the pipeline performance for
this scenario which cannot be seen in the chosen av-
erage latency metric.

A visual comparison of the latency measurements
on the MEC Multi-VM architecture for the different
data formats can be seen in Figure 7. By examining
it, we conclude that:

• The gRPC Round Transmission Time dominates
the total latency of the pipeline measurements.
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Figure 7: MEC Multi-VM Latency Measurements per In-
ference Data Format.
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Figure 8: Remote MEC Latency Measurements per Infer-
ence Data Format.

• The bytes data format presents the overall lowest
latency measurements among the experimented
data formats.

• The different data formats behave very similarly
in terms of latency variability for each inference
pipeline step.

5.2.3 Remote MEC

Each latency measurement obtained from the experi-
ment round on the Remote MEC architecture can be
seen in Table 6. By analyzing them, we notice that
once more the latency of the gRPC Round Transmis-
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Table 5: MEC Multi-VM Latency Measurements (in ms).

Data Format Client Frame Proc gRPC RTT Inference Time Server Frame Proc Total Time
base 0.18 3.18 0.0 0.0 3.19

base64bytes 4.66 769.24 2.76 3.39 769.48

base64str 4.31 769.14 3.25 3.05 769.54

base64strjson 4.7 940.51 3.7 3.5 940.41

bytes 4.24 545.28 4.16 3.46 544.9

Table 6: Remote MEC Latency Measurements (in ms).

Data Format Client Frame Proc gRPC RTT Inference Time Server Frame Proc Total Time
base 0.02 1.26 0.0 0.0 1.26

base64bytes 6.31 3634.34 2.81 3.72 3634.58

base64str 12.0 3875.19 3.22 3.45 3876.23

base64strjson 7.82 3403.95 3.89 3.33 3404.0

bytes 8.2 4403.59 3.33 3.32 4404.22

sion Time pops up, this time even higher than in the
Multi-VM architecture, now ranging from 3400 ms
(Base64 String JSON format) to 4403 ms (raw bytes
format), indicating high variability (instability) in the
pipeline performance for this scenario which cannot
be seen in the chosen average latency metric.

A visual comparison of the latency measurements
on the Remote MEC architecture for the different data
formats can be seen in Figure 8. By examining it, we
conclude that:
• The gRPC Round Transmission Time dominates

the total latency of the pipeline measurements.
• Surprisingly, the Base64 String JSON format

presents the overall lowest latency measurements
among the experimented data formats, with the
raw bytes format presenting the highest latency
values.

• The different data formats behave very similarly
in terms of latency variability for each inference
pipeline step.

5.2.4 Discussion

Analyzing the results obtained for the latency metric
in the different scenarios, we can conclude:
• gRPC is very stable when not using network, but

can become dramatically unstable when subject to
network traffic (even in the same host).

• Except for gRPC Round Transmission Time,
all latency measurements present reasonably low
variability (high stability) for all evaluated scenar-
ios.

6 CONCLUSION

Motivated by a project decision when developing a
video application, which should be deployed in a
MEC server, we decided to analyze different data
formats to transmit video frames. Thus, we imple-
mented a testbed in the MEC server, considering three
different scenarios for the distributed components of
the application. For each scenario, we performed
experiments considering the communication among
the components when transmitting video frames. For
each communication cycle, we measured the latency.
The experiments considered four data formats for the
video frames: bytes, base64 bytes, base64 string,
and base64 string JSON. We also measured the com-
munication latency during the gRPC use. The re-
sults demonstrate that all the formats present similar
latency measurements with a slight vantage for the
bytes format in two of the three scenarios. We can
also conclude that gRPC is very stable for scenarios
without network traffic.

As future work, we suggest:
• Run the experiments varying the scenarios (e.g.,

using another deployment variations for the com-
ponents and other data formats);

• Investigate ways to make the pre and post-
processing of video frames (encoding/decoding)
more efficient once this is the operation dominat-
ing the communication latency:

• Understand what makes gRPC unstable when
subject to the network traffic (even inside the same
host);
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• Perform experiments running the components in-
side VMs with more CPU and RAM to analyze
the impact in the frame processing and inference
process.
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