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Abstract: The global aging population is increasing rapidly along with the demand for care that is restricted by the 
decreasing workforce. World Health Organization (WHO) suggests the development of smart, physical, social, 
and age-friendly environments will improve the quality of life for older adults. Social Companion Robots 
(SCRs) integrated with different sensing technologies such as vision, voice, and haptic that can communicate 
with other smart devices in the environment can allow for the development of advanced AI solutions towards 
an age-friendly, assistive smart space. Such robots require the ability to recognize and respond to human affect. 
This can be achieved through applications of affective computing such as emotion recognition through speech 
and vision.  Performing such smart sensing using state-of-the-art technologies (i.e., Deep Learning) at the 
edge can be challenging for mobile robots due to limited computational power. We propose to address this 
challenge by off-loading the Deep Learning inference to edge hardware accelerators which can minimize the 
network latency and privacy/cybersecurity concerns of alternative cloud-based options. Additionally, to 
deploy SCRs in care-home facilities we require a platform for remote supervision, assistance, communication, 
and technical support. We propose the use of Augmented Reality (AR) smart glasses to establish such a central 
platform that will allow one single caregiver to assist multiple older adults remotely.     

1 INTRODUCTION 

The global aging population is increasing at a rate 
faster than ever. According to the World Health 
Organization (WHO), the world’s aging population 
aged 60 years and older is expected to total 2 billion 
by 2050, up from 900 million in 2015 (Steverson, 
2018). The demand for care is increasing while the 
supply is restricted due to the decreasing workforce. 
WHO suggests that the development of smart, 
physical, social, and age-friendly environments will 
improve the quality of life for older adults (Ionut, et 
al., 2020). To make the living space more 
personalized, connected and socially amenable, such 
environment could utilize advances in Artificial 
Intelligence (AI) and robotics such as Social 
Companion Robots (SCRs) (Mitchinson & Prescott, 
2016)) and computer vision for scene understanding 
through human motion tracking (Ghaeminia, 
Shabani, & Shokouhi 2010), objects relationship 
(Shabani & Matsakis 2012) and monitoring human 
daily activities (Shabani, Clausi, & Zelek 2011- 2013) 
when integrated with smart home automations such 

as intelligent occupancy (Luppe & Shabani, 2017), 
and smart ventilation (Forest & Shabani, 2017). 

Augmented Reality (AR) through smart glasses 
has become a widely popular multidisciplinary 
research field over recent years in a wide range of 
fields such as healthcare (Sheng, Saleha, & 
Younhyun, 2020), military, manufacturing, 
entertainment, games, educations, teleoperation and 
robotics (Varol, 2020). However, the literature lacks 
research of AR with SCRs for elderly care. AR gives 
the real-time view of our physical world with the 
addition of interactable computer generated objects. 
AR can be experienced with mobile displays, 
computer monitors and Head-Mounted Displays 
(HMDs). In the recent years, AR smart glasses such 
as Microsoft HoloLens and Google Glass allowed for 
efficient and realistic interaction between humans and 
autonomous systems. Among them Microsoft 
HoloLens 2 is one of the state-of-the-art 
commercially available device used in many 
applications (Xue, et al., 2020). 

For health-care specific to older adults, AR 
related works focus on the Physical, Social and 
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Psychological well-being. Physical well-being 
include training for their lack of ability, encouraging 
physical activity, providing reminders for health 
related activities (e.g., medicine or food intake) (Lee, 
Kim, & Hwang, 2019). For social well-being, AR 
offers remote participation, virtual interaction and 
emotional relationship for older adults who face 
decline in mobility, lacks transportation or has 
financial constraints (Lee, Kim, & Hwang, 2019). For 
physiological well-being, interactive games improve 
their moods and augmented immersive worlds offer 
an escape to forget their chronic pain, anxiety and 
social isolation (Lee, Kim, & Hwang, 2019).  

AR has been used with a social robot for medical 
dose control (Lera F.J., 2014). It also has been used 
to engage the patients with dementia in a relaxing 
nature experience (Feng, Barakova, Yu, Hu, & 
Rauterberg, 2020). Other works include AR-based 
coaching, exercise games, e-learning for older adults 
(Lee, Kim, & Hwang, 2019). However, among the 
extensive research in this area, little work includes 
AR with social robots for older adult care.  

Our application of SCRs is targeted towards care 
home facilities. One of our goals is to reduce the 
pressure on overworked staff and caregivers in care 
home facilities, allowing them to better focus on their 
most important person-to-person duties. We aim to 
design a system where the caregivers can instantly 
communicate to the older adult, provide assistance 
through actuation, analyze their clinical data, and 
perform remote intervention when necessary. To 
achieve this, we propose the use of Augmented 
Reality smart glasses (e.g., Microsoft HoloLens 2).  

Integrating SCRs with AR smart glasses will 
allow for an easy-to-use central platform for 
monitoring, actuation, communication, assistance, 
and system troubleshooting. Typical monitoring 
systems in hospitals and care-home facilities rely on 
feeds from CCTV cameras that are monitored by 
technicians. When technicians notice events such as a 
fall, the caregivers are alerted. With this approach, the 
delay in receiving the alert can result in serious 
injuries. Other approaches rely on sensors to detect 
movements or changes in vitals and alert caregivers 
through mobile applications. After receiving the alert, 
the caregiver must locate the older adult to provide 
the support. 

For our application of deploying a group of SCRs 
in care-home facilities, the number of caregiver could 
be as low as one person who monitors all SCRs and 
older adults through a central platform over AR 
interface. With our approach, the duties of the 
middleman (technician) will be replaced by the 
automation and the caregiver will have direct access 

for intervention. When comparing a web-based or 
mobile application to our AR-based system, 
accessing the platform through smart glasses allows 
for a more convenient, portable, and immersive 
experience where the caregiver can remain engaged 
in their daily duties. Furthermore, using a mobile 
device instead of smart glasses can be challenging as 
using mobile devices in workplaces are controversial. 
With the increasing use of AR technologies, soon 
having smart-glasses instead of mobile phones may 
become the norm. Particularly in healthcare, the use 
of AR is becoming increasingly popular. The next-
generation smart glasses are estimated to be reduced 
in size to be comparable to standard eyeglasses that 
will allow such integration with ease. 

Although a platform for supervision, health 
monitoring and communication is essential for older 
adult care, that is just one component of our vision of 
SCRs integrated with smart devices. What 
differentiates SCR with other assistive technologies 
is the interaction component. The robot needs to 
interact with the human counterpart in a natural 
human-like manner. More specifically, it needs to 
recognize and respond to human emotion. 
Applications of Affective Computing can allow 
social SCRs to achieve this ability. Affective 
Computing allows systems and devices to recognize 
and respond to human affect (e.g., emotion, touch). 
The main contributions of this paper are as follows:  

1) Integration of SCRs (i.e., Miro-e) with AR 
Smart Glasses (i.e., HoloLens 2) for 
supervision and support in care home 
facilities. This integration enables 
interoperation while utilizing the benefits of 
both systems. 

2) Hardware integration of Miro-e’s Raspberry 
Pi 3 (B+) to Nvidia’s Jetson Nano for off-
loading Deep Learning-based Facial 
Emotion Recognition on the edge. Our 
choice of integration using wired ethernet 
minimizes the network latency and 
privacy/cybersecurity concerns. 

The rest of the paper is organized as follows. 
Section 2 explains our proposed framework of using 
SCR and AR and their integration, Section 3 presents 
a computation off-loading method for performing 
Deep Learning inferences on the edge. To test and 
demonstrate our method we deploy FER model into 
our robot Miro-e. Section 4 explains the integration 
of HoloLens 2 with Miro-e for a central supervision, 
communication and actuation platform for older adult 
care. Section 5 presents the conclusion and future 
work.    
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2 PROPOSED FRAMEWORK 

Our proposed system is to deploy SCRs in different 
elder’s room for individual monitoring and 
personalized interactions through speech and vision. 
One could consider SCR robot as a limited version of 
a private all-time available nurse. To address the 
privacy concerns, as a standalone system, each SCR 
could analyse the sensitive data such video/speech 
recording and only communicate processed and 
aggregated data to the central interface on an AR 
which is accessed by the caregiver. To address the 
cloud/internet cybersecurity concerns, a private local 
area network could be setup in the facility to connect 
the SCRs to the central interface. As it can be seen in 
Figure 1, the caregiver with AR system can monitor 
the analysed status of the elders and provide 
necessary support through the SCR without needing 
to be present in the elder’s room. This enables the 
caregiver who wears the AR  system to effectively 
and efficiently interact with multiple people through 
their dedicated SCR robot from one (remote) location. 
The central interface shows different smart rooms of 
the older adults with SCRs integrated with other 
smart devices in the rooms. Through different 
interactive screens, the interface can provide different 
analysed information such as overall emotional states 
of the older adults in each room over a period of time. 
In case the caregiver notices unusual behaviour they 
can take appropriate actions. For example, the 
caregiver notices that the older adult in room 3 was 
sad 80% of the time within a period. They can initiate 
a video/voice call with the older adult to hear their 
concerns, help improve their mood, check their vitals 
to ensure they are healthy and even dispatch for extra 
support and alert friends and family.  

 
Figure 1: Our proposed AR-based system integrated with 
Social Companion Robot for older adult care. 

For our application, emotion recognition through 
speech and vision can make the experience more 
interactive and engaging while providing feedback on 

the user’s mental health and well-being. With the 
exponential increase of data, deep learning techniques 
are being more widely used due to their superiority in 
performance compared with the conventional 
machine learning techniques, especially when large 
amounts of data is available. However, performing 
deep learning training and inferences in embedded 
systems such as SCR robot is challenging due to the 
computational cost of deep learning algorithms. In 
such cases, researchers utilize the cloud to perform 
the computation. But cloud based approaches incur 
large latency, energy and financial overheads and also 
privacy/cybersecurity concerns (Mittal, 2019). In-
order to mitigate these challenges,  edge computing is 
used in the literature, that means computation is 
performed where the data is produced (or close to it). 
To meet the computational needs of deep learning 
algorithms on the edge, multiple companies launched 
low-power hardware accelerators (Mittal, 2019). 
Among them, NVDIA’s Jetson is one of the most 
widely used for Deep Learning inference. Jetson 
features CPU-GPU heterogenous architecture where 
the CPU can boot the OS and the CUDA-capable 
GPU perform complex machine-learning tasks 
(Mittal, 2019). To minimize the network latency and 
privacy/cybersecurity concerns, in-order to perform 
Deep Learning inferences on the edge, we propose to 
off-load the computation to Nvidia’s Jetson through a 
hardware integration via ethernet cable. To test our 
system we deployed our Facial Emotion Recognition 
(FER) model where the computation was performed 
by Jetson using data from Miro-e’s cameras.  

3 REAL-TIME FER ON THE 
EDGE  

Facial Emotion Recognition (FER) has been a topic 
of interest in the computer vision community for 
many applications. Specifically for Affective 
computing, FER is an integral part of affect 
recognition. Standard ML algorithms such as SVMs 
and their variations have been extensively used for 
FER classification. Over the recent years, Deep 
Learning techniques with Convolutional Neural 
Networks (CNNs) have proven to outperform 
standard ML algorithms for image and video 
classification in FER (Lawrence, Anjum, & Shabani, 
2021). However, Deep Learning training and 
inferences are computationally expensive and 
typically performed using powerful and expensive 
computers or servers. Most mobile robots such as 
Miro-e have limited on-board resources such as 
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processor, memory and battery. To apply Deep 
Learning algorithms on such robots', researchers 
typically off-load heavy computations to cloud hosts. 
The data is collected from the mobile robot and sent 
to the cloud for applying Deep Learning algorithms. 
But this makes the data vulnerable to cybersecurity 
concerns and privacy invasion due to data 
transmission through computer networks (Chunlei, et 
al., 2020). Additionally, network failure or network 
package loss can disrupt cloud-based deep learning. 
(Chunlei, et al., 2020). In order to apply Deep 
Learning algorithms on mobile robots we require 
hardware that are energy efficient, small in size and 
affordable (Mittal, 2019). Furthermore, for our 
application we require edge computing for its low 
latency and data privacy since sensitive data is 
processed on-board and not on the cloud (Mittal, 
2019).  

To satisfy the need for Deep Learning inference 
on the edge, serval products have been launched by 
commercial vendors based on hardware accelerators.      
Apart from Graphics Processing Units (GPUs), 
system-on-chip architectures that utilize the power of 
Application-Specific Integrated Circuits (ASICs), 
Field-programmable Gate Arrays (FPGAs) and 
Vision Processing Units (VPUs) can also be used for 
inference at the edge (Amanatiadis & Faniadis, 2020). 
Some of the most widely used commercially available 
devices include (Amanatiadis & Faniadis, 2020):  

• The Edge TPU by Google, is an ASIC 
exclusively for inference achieving 4 Tera 
Operations Per Second (TOPS) for 8-bit 
integer inference. However, it requires the 
models to be trained using TensorFlow 
which is a limitation. Google’s Coral Dev 
Board featuring Edge TPU is priced at $169 
(USD) for the 4GB RAM version.  

• The Intel Neural Compute Stick 2 is a 
System-on-Chip built on the Myriad X VPU, 
optimized for computer vision with 
dedicated neural compute engine for 
hardware acceleration of deep neural 
network inferences. It has max performance 
of 4 TOPS, similar to the Edge TPU. 
However, it requires a host PC since the 
device is distributed as a USB 3.0 stick. It 
also requires the model to be converted to a 
Intermediate Representation (IR) format that 
can slow down the development process. 
This device is priced at $68.95 (USD) 
excluding the cost of a host PC.   

• NVIDIA’s Jetson series is a group of 
embedded machine learning platforms that 
aims to be computationally powerful while 
being energy efficient. They feature CUDA-
capable GPUs for efficient machine learning 
inferences. Their cheapest and lightest 
model is the Jetson Nano TX1 with a peak 
performance of 512 single precision (SP) 
Giga floating-point operations per second 
(GFLOPS). They cost $129 (USD) for the 
4GB version.  

 
Figure 2: Hardware integration of Miro-e and Nvidia’s 
Jetson Nano via ethernet port. 

Unlike the EDGE TPU and Neural Compute Stick 2, 
Jetson Nano does not require a host PC, models do 
not require any conversion, is not restricted to any 
specific machine learning framework and is the 
cheapest option. However, Jetson Nano has a lower 
computational power compared to the other two 
devices, but the difference will not be significant for 
our applications of vision and speech inferences. 
Considering all the components, Jetson Nano was the 
best fit for our system. Figure 2 shows our hardware 
integration of Miro-e and Nvidia’s Jetson Nano for 
efficient Deep Learning inference at the edge. In the 
image, Jetson Nano board is attached to a robot body. 
For our final prototype  we will have the Jetson Nano 
board on Miro-e’s body.  

Table 1 shows the difference in power between 
Jetson Nano TX1 and Raspberry Pi 3(B+) (Miro-e’s 
on-board computer). The Jetson Nano TX1 
significantly outperforms Miro-e’s on-board 
computer in every aspect. Having such a powerful 
computer integrated with Miro-e opens doors for a 
large number of applications.  
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Table 1: Jetson Nano and Miro-e’s on-board computer 
specification comparison.   

 Jetson Nano TX1 Raspberry Pi 3(B+)

GPU 256-core Maxwell @ 
998MHz VideoCore IV 

CPU ARM Cortex-A57 
Quad-Core @ 

1.73GHz 

ARM Cortex-A53 
Quad-Core @ 

1.4GHz 

Memory 4GB 64-bit LPDDR4 
@ 1600MHz,  

25.6 GB/s 

1GB LPDDR2 @ 
900MHz, 8.5 GB/s 

Peak 
Performance 512 SP Gflops 6 DP Gflops 

3.1 CNN Architecture for FER  

In our recent studies, we introduced a data 
augmentation technique for FER using face aging 
augmentation. Publicly available FER datasets were 
age-biased. To increase the age diversity of existing 
FER datasets we used GAN based face aging 
augmentation technique to include representation of 
our target age group (older adults). We conducted 
comprehensive experiments for both intra-dataset 
(Lawrence, Anjum, & Shabani 2021) and cross-
dataset (Anjum, Lawrence, & Shabani 2021) that 
suggest face aging augmentation significantly 
improves FER accuracy.  

For the FER implementation, we utilize two Deep 
Learning architectures, CNNs in particular have 
shown great promise for image classification. For the 
purpose of FER, several studies showed that CNNs 
outperform other state-of-the-art methods. For our 
experiments, we used two CNN architectures; 
MobileNet, a lightweight CNN developed by Google 
and a simple CNN which we will refer to as Deep 
CNN (DCNN). (Howard, et al., 2017). Our DCNN 
classifier includes six convolutional 2D layers, three 
max-pooling 2D layers, and two fully connected (FC) 
layers. The Exponential Linear Unit (ELU) activation 
function is used for all the layers. The output layer 
(FC) has nodes equal to the number of classes (in this 
case, six classes) with a Softmax activation function. 
To avoid overfitting, Batch Normalization (BN) was 
used after every convolutional 2D layer and dropouts 
were used after every max pooling layer. Both BN 
and dropout were used after the first FC layer.  

Additionally, we used a lightweight CNN 
architecture known as MobileNet. A lightweight 
model is required for our application of FER in 

embedded systems at the edge such as SCRS. 
MobileNet has 14 convolutional layers, 13 depth wise 
convolutional layers, one average pooling layer, a FC 
layer and a output layer with the Softmax activation 
function. BN and Rectified Linear Unit (ReLU) are 
applied after each convolution. MobileNet is faster 
than many popular CNN architectures such as 
AlexNet, GoogleNet, VGG16, and SqueezeNet while 
having similar or higher accuracy. The main 
difference between DCNN and MobileNet is that the 
latter classifier leverages transfer learning by using 
pre-trained weights from ImageNet. Throughout 
every experiment MobileNet contained 15 frozen 
layers from ImageNet. An output layer was added 
with nodes equal to the number of classes and 
softmax is used as the activation function. We used 
both DCNN and MobileNet classifiers with 
implementations from (Sharma, 2020). The Nadam 
optimizer was used along with two callbacks, ‘early 
stopping’ to avoid overfitting. For reducing the 
learning rate when learning stops improving, we used 
‘ReduceLRonPlateau’. The data is normalized prior 
to being fed into the neural networks as neural 
networks are sensitive to un-normalized data. Both 
the models we deployed onto Miro-e (MobileNet and 
DCNN) were trained with both original and face age 
augmented images. 

3.2 Miro-e and Jetson Nano 
Integration: Off-Loading Deep 
Learning Inference to an Edge 
Computing Device  

In order to established a connection between Miro-e 
and Jetson Nano we utilized the Robot Operating 
System (ROS). The connection could be established 
either through Wi-Fi or hardwired via an ethernet 
cable. As privacy is our top most priority we decided 
to go with hardware integration to keep Miro-e 
disconnected from the internet.  

For the integration to be successful to we had to 
setup the environment such that Jetson and Miro-e 
were compatible. Miro-e requires ROS Noetic which 
is the latest version of ROS that is only compatible 
with Ubuntu 20.04 Focal Fossa. However, Jetson 
does not support Ubuntu 20.04 so we had to use a 
Docker image on Ubuntu 18.04 with ROS noetic built 
from source. Then we had to install TensorFlow, 
OpenCV and other Python and ROS libraries. We 
also installed Miro Development Kit (MDK) on to the 
Jetson Nano and established a connection through 
ethernet port. The communication was done through 
ROS libraries. We were successfully able to perform 
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real-time FER with both MobileNet and DCNN 
models without any lag or disturbances.  

Miro-e is equipped with various sensors including 
one camera in each eye. Each sensor is recognized as 
a topic in the ROS interface. In ROS, topics are 
named buses over which nodes can exchange 
messages. The left eye camera and right eye camera 
topics allowed us to view Miro’s real-time video feed 
and utilize each frame to detect and track faces. Once 
the face is detected, is it then cropped, re-sized to 
48x48, converted to grayscale and passed onto our 
trained FER model for emotion prediction. This entire 
process is done using one script. Figure 3 
demonstrates our real-time FER through Miro-e.  

 
Figure 3: Real-time FER with Miro-e on the edge. 

4 AR SMART GLASS 
INTEGRATION WITH SCR 

Our proposed AR-based system for monitoring group 
of social robots in care home facilities requires 
deploying a group of SCRs with the following 
constraints:  

1) Controlling robots to assist the elderly while 
ensuring they performing as expected.  

2) Running diagnostics on such robots in case 
of hardware or software issues can be 
expensive.  

3) Non-intrusive monitoring and 
communication with caregivers. 

Having a central monitoring platform for a group 
SCRs is imperative for our application. The platform 
will be used to monitor the health and well-being 
related data from various sensors in the environment 
as well other sensing data from vision, speech, haptic 
(e.g., emotion recognition). A video/voice chat option 
enables the caregiver to interact with the older adult 
regarding concerns about their health and well-being 
(e.g., Miro-e detects the older adult is sad or angry). 

The system recommends intervention when Miro-e 
detects using various sensors in the environment that 
the older adult has skipped medication, food or 
exercise. The platform will further reduce the risk on 
contamination during viral outbreaks such as 
COVID-19. 

4.1 Connection between ROS and 
Unity 

Figure 4 outlines the proposed system architecture 
where the left side represents the user interface of 
Microsoft HoloLens 2 with Unity game engine. This 
requires the ROS Noetic running on a Ubuntu 18.04 
(Bionic Beaver).  

 
Figure 4: HoloLens-Miro end-to-end System Architecture. 

Table 2: System Development tools. 

Development Stack 
Microsoft Visual Studio 2019 

Unity  
ROS-Sharp 

Mixed Reality Toolkit 
ROS-bridge suite 

Miro Development Kit 
Client Stack 
HoloLens 2 

Miro-e 
Server Stack 

Ubuntu 18.04 Bionic Beaver 
ROS Noetic 

The development tools are presented in Table 2. 
In order to establish the communication between 
Miro-e and Microsoft HoloLens 2 we utilized Unity, 
ROS Sharp and RosBridge-suite. ROS Sharp is a set 
of open source software libraries and tools in C# for 
communicating with ROS from .NET applications, 
particularly Unity. RosBridge-suite is a collection of 
packages including RosBridge and RosBridge 
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WebSocket. RosBridge is a .NET JSON API  for 
communication between ROS and non-ROS 
programs. RosBridge WebSocket allows messages to 
be exchanged between ROS nodes.  

The Ubuntu machine runs Roscore and 
RosBridge. Roscore is a collection of nodes and 
programs that are pre-requisites of a ROS-based 
system. Roscore must be running in order for ROS 
nodes to communicate. Roscore is used to send data 
through topics to Miro-e, RosBridge is used to accept 
data from Unity through the RosBridge WebSocket. 
The data is then published on ROS topics for Miro-e 
to access the data.   

Unity sends simulated ROS message types to the 
WebSocket provided by the RosBridge client hosted 
on the Ubuntu machine. The RosBridge client then 
translates these simulated messages from unity to 
ROS and publishes them to ROS topics.  

The first step is to establish a connection between 
ROS and Unity project. To accomplish this, we 
created a Unity project and copied RosSharp and 
NewtonSoft (JSON framework for .NET) into the 
project. We then installed and configured the Mixed 
Reality Toolkit (MRTK), and configured 
RosBridgeClient to be used with Unity project. This 
setup establishs a connection between ROS master 
node and the Unity project, allowing bi-directional 
messages to be sent or received between ROS and the 
Unity project.    

4.2 Building an AR HoloLens App 

The AR application is created using the Unity game 
engine. To exchange messages with HoloLens 2, we 
require an Universal Windows Platform (UWP) app 
to run in HoloLens 2. For this, we first developed the 
app in Unity using C# and then deployed it to 
HoloLens 2.  We used the Mixed Reality Tool Kit’s 
(MRTK) button and menu prefabs alongside Unity’s 
TextMeshPro to build a simple user interface (UI). 
The user interface has buttons with the corresponding 
functions written on it such as red LED, blue LED, 
wag tail and so on. The predicted emotion from our 
FER model is displayed on the top of the UI.    

4.3 Publishing to ROS Topics 

ROS topics are named buses over which nodes can 
exchange messages. Each ROS topic is constrained 
by the ROS message type used to publish to it and 
nodes can only receive messages with a matching 
type. Both Miro and the Unity project can have their 
own topics and we can also build custom topics. The 
Unity project is required to be subscribed to the 

specific Miro topics from/to which it intends to 
exchange messages and vice-versa. Miro-e has 
various topics including illumination, kinematic 
joints, cosmetic joints, mics, camera left, camera 
right, etc. We can publish a message (executable 
code) to these topics triggering the corresponding 
functions to execute allowing Miro to move, wag tail, 
light-up etc. To begin this process, we first initialize 
Roscore with the master node as the Ubuntu machine. 
Then we connect the RosBridgeClient Node and 
Miro’s ROS node to the master node. Once both 
nodes are linked to the master node we are ready to 
exchange messages between Miro and our app in 
Unity. We use a script that allows Miro to listen for 
data to be published to the subscribed topics. Once 
Miro’s ROS node receives a publish request it 
executes the command for that specific topic. For 
example, we send a request to execute a block of code 
to Miro’s Illumination topic from ROS Sharp in 
Unity. As ROS Sharp is subscribed to Miro’s 
Illumination topic, it can exchange messages with 
that topic. Miro is constantly listening for publish 
requests and accepts a request that matches the type 
of the topic. A similar process takes place when 
executing commands to HoloLens 2, a publish 
request is sent to ROS Sharp topics in Unity from 
Miro’s ROS node.  

Figure 5 is a picture of our prototype. Miro-e 
performs FER and sends the predicted emotion to the 
HoloLens AR app. The emotion is then displayed on 
the user interface. Furthermore, using the user 
interface, the caregiver can manipulate Miro-e to 
navigate, change LED light colors, wag its tail, move 
its head, ears and perform every function it is capable 
of.  

 
Figure 5: Prototype running on HoloLens 2. 

5 CONCLUSION 

Given the rise of global aging population it is 
imperative to develop systems for age-friendly smart 
environments to support our aging population for 
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both independent living and also in long-term care 
facilities. Integrating SCRs to such smart 
environments can improve the quality of life for older 
adults. With the use of personalized machine 
learning, SCRs can learn the preferences of the older 
adults such as preferred temperature, lighting 
intensity, and even activate robotic vacuum cleaners 
(e.g., Roomba (Tribelhorn & Dodds, 2007) according 
the their preferred time.  

We proposed an AR-based system for 
interactive interfacing with multiple SCRs deployed 
in different rooms/homes. More specifically, we 
developed a seamless communication between 
Microsoft HoloLens 2 and Miro-e robot.   This 
integration serves as an efficient platform for 
controlling the robot for assisting the older adult, 
over-ride control in case the robot takes unexpected 
actions,  monitor their health and daily activities (i.e., 
medication or food intake, exercise), instant 
communication for emergency situations  and much 
more.  

For a more natural interactions between the robot 
and elder, we developed an improved deep learning 
based facial emotion recognition technique for 
affective computing. To overcome the limited 
computational power of the robot’s computer, we off-
loaded the Deep Learning inference to on the edge 
hardware accelerators which opens doors for a wide 
range of applications. To achieve this we integrated 
Miro-e to Nvidia’s Jetson and successfully performed 
our FER algorithms on the edge and minimize the 
network latency and privacy/cybersecurity concerns 
of alternative options which require cloud and 
internet connectivity. 

Having a central interactive platform through AR 
smart glasses for managing multiple robots and being 
able apply state-of-the-art learning algorithms on the 
edge is a milestone towards deployment of SCRs in 
smart environments to assist older adults. In fact, 
combining our proposed AR-based system with 
applications of Affective Computing allows for a 
more reliable and safer interaction between the SCR 
and the older adult.  

Our future work will include integration of Miro-
e with smart home devices for advanced personalized 
home automation for elder adult. The integration will 
focus on the safety, security, lighting and 
heating/cooling control, and also mental health of the 
older adult. Another research direction is study of 
human factors in the interface design and adding 
more functionalities for communication, alert and 
health analysis to the interface. Another next step is 
the field study to assess the usability, acceptance rate, 
and benefits of our systems.  
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