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Abstract: The meaning of a word depends heavily on the context in which it is embedded. Deep neural network have
recorded recently a great success in representing the words’ meaning. Among them, auto-encoders based
models have proven their robustness in representing the internal structure of several data. Thus, in this paper,
we present a novel deep model to represent words meanings using auto-encoders and considering the left/right
contexts around the word of interest. Our proposal, referred to as Bi-Recursive Auto-Encoders (Bi-RAE ),
consists in modeling the meaning of a word as an evolved vector and learning its semantic features over its set
of contexts.

1 INTRODUCTION

Building good representation of the word meaning is
a crucial step in developing well-performing methods
for text understanding and processing. Vector space
models have recently emerged as powerful technique
of representing word semantics. In particular, dis-
tributed word representation approach, inspired by
various neural architectures, has become the most
widely used. Consequently, various methods have
been proposed to embed words in lower-dimensional
dense real-valued vector space. An intuitive idea is
to encode one word into a single vector containing
the semantic information of the word in a corpus.
Word2Vec model proposed in(Mikolov et al., 2013),
using the continuous bag-of-words (CBOW) or the
Skip-gram, is one of the famous embedding models.
The CBOW architecture is used to predict a word con-
sidering its surrounding words, while the Skip-gram
architecture is employed to predict the surrounding
words of a given word. However, encountering a word
in diverse contexts poses a major challenge for ma-
chines to understand its meaning. To address this is-
sue, some researchers proposed to learn multiple rep-
resentations per individual word representing its in-
dividual meanings (Neelakantan et al., 2015; Huang
et al., 2012). Strategies often focus on discrimination
using semantic information extracted from knowl-
edge sources such as WordNet or using clustering
algorithms. TF-IDF (Reisinger and Mooney, 2010),
(Huang et al., 2012) model and MSSG (Neelakantan
et al., 2015) used cluster-based techniques to cluster
the context of a word and comprehend word senses

from the cluster centroids. (Fei et al., 2014) sug-
gested the use of EM-based probabilistic clustering
to assign word senses. A slightly different approach
was presented in (Liu et al., 2015) where the authors
employed topic modeling to discover multiple word
senses. (Nguyen et al., 2017) suggested an extension
of the (Liu et al., 2015) model. Researchers argued
that multiple senses might be triggered for a word in
a given context and replaced the selection of the most
suitable sense in (Liu et al., 2015) model by a mixture
of weights. Other models were also applied to learn
multi-sense embeddings using external resources (e.g.
WordNet) such as the work of (Chen et al., 2014).
More recent models like SASI (Guo et al., 2019) uses
an attention mechanism to select which sense is used
in a word’s context.

Distributed representations are based on the as-
sumption that the meaning of a word depends on the
context in which it occurs as stated by the Distribu-
tional Hypothesis (Harris, 1954). Indeed, the con-
text is usually defined as the words which precede
and follow the target word within some fixed win-
dow. Meanwhile, the meaning of a word is affected
not only by its adjacent words but also by other words
appearing with it and rules to combine them (i.e. com-
positionality). Moreover, the global meaning of sen-
tences containing the target word can help determine
its intended meaning. For example, let consider the
word present in the following sentences: in ”She sent
me a present for my birthday” and in ”There were
20 students present at the course”. In the first sen-
tence the word present means gift while the meaning
of word present refers to attendant in the second sen-
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tence. Thus, sentencial context has impacts on words
meaning. As each context word provide useful in-
sights into the meaning of the target word, it would
be desirable to capture the mutual interaction of dis-
tributed word vectors by a means of a compositional
model. We assume that semantics in natural language
is a compositional phenomenon where recursion is a
natural manner of describing language.

Recently, deep neural models have been grow-
ing increasingly. Among them, auto-encoders have
proven their robustness in representing the internal
structure of several data. Thus, we opt to recursive
models based on auto-encoders algorithm to learn se-
mantic embeddings for words. Therefore, a question
is raised: How we can learn contextual information
to obtain an effective representation of the semantic
of words based on recursive models. More precisely,
how combine a word and its sentential context to rep-
resent its semantic by a recursive auto-encoders. So,
we propose to separate the sentential context to left-
side and right-side contexts. By such doing, the previ-
ous and future contextual information, around a target
word, are incorporated to construct its semantic em-
bedding. Certainly, when a person reads a text, he de-
termines its meaning by recalling each inherent mean-
ing a word can have and looking at the current context
of its use. To emulate that, we initialize the embed-
ding of the target word meaning when it appears by
its old meaning to help detecting its new meanings.
Therefore, this can provide an understanding of what
the word means at a given point.

The remainder of this paper is organized as fol-
lows. Section 2 describes our proposed model
for learning semantic word embedding. Section 3
presents the experimental setup followed by present-
ing and discussing results with comparison to state-
of-the-art systems. Finally, this paper is concluded by
providing some future work.

2 MODEL DESCRIPTION

In this section, we introduce our Bi-Recursive Auto-
Encoders model for learning semantic embeddings of
words. Our methodology consists firstly at construct-
ing, for each word in the vocabulary, its set of contexts
in the used corpus. In our work, we consider sentence
as the usage context of a word. So, a set of contexts
is the set of sentences containing the word of interest
(target word). Then, we build the evolved semantic
embedding of each target word over this set in an un-
supervised manner.

Formally, we assume that a target word wi can
have a different sense for each sentence containing it.

For example, if there are N sentences containing the
word wi, we will look to detect the evolved sense of
the target word over these N sentences. Let us con-
sider the target word wi ∈ V and we aim to learn its
word sense embedding in some d-dimensional real
space. V is the vocabulary of the considered words.
Ci denotes the set of contexts (sentences) in which wi
occurs and si ∈ℜd is the evolved semantic embedding
of the target word. We apply our model to learn the
evolved semantic embedding si of wi over the set Ci.
Our method randomly initializes embedding vectors
of each word w j and each target word sense vector
si,t (t refers to the occurrence number of a word in its
set of sentences where t ∈ 1, . . . , |Cv| and v∈ 1 . . . |V |),
and updates these vectors during training. We use the
constructed sense embedding si,t over the context Ci,t
to initialize the sense embedding si,t+1 over the con-
text Ci,t+1. Our methodology is illustrated in Figure
1.

Figure 1: Proposed methodology.

Obviously, the meaning of a target word can be
affected by the meaning of a word appearing before it
as well as by the meaning of a word appearing after it.
Additionally, we consider that the context words with
closer distance to the target one influence consider-
ably the word meaning. To simulate this observation,
we split each sentence S into two sub-sequences of
words around the target word. Thus, we construct two
parts; left context and right context. Subsequently, we
recursively encode the left context beginning by the
first word in this sub-sequence of words to the closer
word to the target. Similarly, we encode the right con-
text beginning by the last word in this sub-sequence
of words to the closer word to the target. Then, we
combine these contextual semantics of the target word
with itself to make its meaning more precise to obtain
more meaningful word representation.

Figure 2 represents the architecture of our Bi-RAE
model and its composition process to embed target
word and their contextual words.

Given a sentential context, of a given target word
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Figure 2: The proposed Bi-RAE deep model.

wi, S = [w1,w2, ..,wi, ...,wn] with length n, our model
regards it as a two separate sub-context: left context
[w1,w2, ..,wi−1] and right context [wi+1, ...,wn]. LC
corresponds to the left context and RC designates the
right context. To extract the contextual features from
these sub-contexts, our model firstly encodes the left
context LC using words from left to right and the right
context RC from right to left. Intuitively, a context
word can be informative for building the meaning of a
target word in some contexts and less or not in others.
Indeed, words that are closer to the target are, gen-
erally, more important. For example, in the sentence
”I saw a cute grey [cat] playing in the garden”, im-
mediate neighbors (for the target word cat) are more
informative than words at distance 3. Further, the rel-
evance of the information from the word appearing
before the target one decreases through recursion. In
fact, at the target word position, the constructed em-
bedding of the target word reflects its meaning influ-
enced by its left context. When the recursive model
continues reading through the sentence, the weight of
the meaning of the left context words may decrease.
To illustrate more clearly our assumption, we carry
out a concrete example. To represent the context of
the target word ”cat” in the sentence (”I saw a cute
grey [cat] playing in the garden”), we encode the left
context (”I saw a cute grey”) and its right context
(”playing in the garden”). If we continue the recur-
sion process from the target word to the last word in
the sentence from left to right, the model will grad-
ually capture the semantic information of the whole
sentence more than the semantic information of the
target word. Further, the learned semantic informa-
tion of the left context words may decrease. However,
we aim to capture the relevant information in the sen-

tential context, even when it is remote from the target
word. Hence, to represent the context of a target word
in a sentence, we separate the sentence into two sets
of left-to-right and right-to-left context word embed-
dings around a target word.
For the target word representation learning, our model
encodes the semantic of the left context words se-
quence and the right context words sequence.

Among each context words sequence, it combines
each pair of sibling nodes into a potential parent
node (hidden layer/latent representation). Consider-
ing the left context, our model takes the first pair of
neighboring words vectors and defines them as po-
tential children (c1 and c2) of a sub-sentential con-
text (c1,c2) = (w1,w2). Then, it concatenates and en-
codes them into a latent representation (parent vector)
(p1). Therefore, the network is shifted by one po-
sition and takes (c1,c2) = (p1,w3) as input vectors.
Afterwads, it computes a potential parent node (the
next latent representation). This process is repeated
until it reaches the last pair of vectors in the left con-
text: (c1,c2) = (pi−2,wi−1). Each potential parent p j
is calculated using the following formula:

p j = f (W φ

j

[
c1
c2

]
+bφ

j ), (1)

where W φ

j ∈ℜd×2d is an encoding weight matrix,
c1 and c2 are the vectors corresponding to every child
in the pair, bφ

j corresponds to the encoding bias vector
and f represents a non-linear activation function.

Therefore, we obtain left context encoding and
right context encoding representations. Let PL be
the recursive encoding reading the words of a given
sentence, appearing before a target word, from
left to right; and PR corresponds to the recursive
encoding reading the words, appearing after the
target word, from right to left. The concatenation
of the left encoding representation PL, the right
encoding representation PR and the target word
representation si will be the input to an auto-encoder
to build the latent semantic vector representation of
the target word. We denote this parent node vector PT .

PT = f (W φ

T

PL
si
PR

+bφ

T ) (2)

To obtain the embedding vector that encodes ade-
quately the target word semantic, taking into account
its left and right contexts, in the latent layer represen-
tation, we proceed to the decoding step. Our model
reconstructs the entire spanned input underneath each
node as shown in Figure 3.4. First, the model recon-
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structs the input of PT and computes:P̂L
ŝi
P̂R

= f (W ϕ

T PT +bϕ

T ) (3)

Then, each parent node is decoded with the same
structure of the encoding step. For example, it splits
recursively the left context node P̂L to produce vectors
using this equation:[

ˆwi−1
ˆpi−2

]
= f (W ϕP̂L +bϕ) (4)

This formula is parametrized by W ϕ which is a
decoding weight matrix and bϕ which is a decoding
bias vector.

At each parent node, the reconstruction error is
calculated as the difference between the words vec-
tors input in that node and its reconstructed counter-
parts. For a parent node p that spans words i to j, the
reconstruction error is calculated as follows::

Erec(p(i, j)) =
∥∥[wi; ...;w j]− [ŵi; ...; ŵ j]

∥∥2 (5)

3 EXPERIMENTS

In this subsection, we present our experiments and the
achieved results using our deep model (Bi-RAE). We
also detail some state-of-the-art methods and we com-
pare their results with our deep model results.

3.1 Experimental Setup

We assess the quality of our Bi-RAE model on word
similarity task as it is one of the most popular tasks for
evaluating vector space models. We use the Stanford
Contextual Word Similarity (SCWS) dataset (Huang
et al., 2012), which is the most known dataset in
which the task is to automatically estimate the se-
mantic similarity of word pairs. It provides simi-
larity scores between two words given their senten-
tial context. This english dataset includes 2003 word
pairs and their sentential contexts. It consists of 1328
noun-noun pairs, 399 verb-verb pairs, 140 verb-noun,
97 adjective-adjective, 30 noun-adjective, 9 verb-
adjective, and 241 same-word pairs. For each pair
of words, there are 10 human similarity scores pro-
vided (ranged in the interval [0,10]). These scores are

based on the word meanings in the context. Our Bi-
RAE was implemented using the framework Tensor-
flow1 and keras2 for python. The input of our model
is word embedding vectors initialized randomly.

We opted for tanh(x) = f (z) = ez−e−z

ez+e−z as activa-
tion function to encode the input representation and
construct the latent representation. The same func-
tion was utilized to decode the latent representation
and reconstruct the input representation. We chose
tanh because the feature vector embedding of words
includes positive as well as negative values within−1
and 1. We adopted the Adaptive Moment Estima-
tion (Adam) optimizer (Kingma and Ba, 2015) to tune
the network parameters to minimize the error recon-
struction of our model. This choice is based on re-
searchers’ advice whose study in-depth different op-
timizers. For example, Sebastian Ruder developed a
comprehensive review of modern descent optimiza-
tion algorithms (Sebastian, 2016) and recommended
Adam as the best overall choice. Besides, Andrej
recommended in their Stanford course on deep learn-
ing3. Furthermore, we empirically tested some other
optimizers like SGD and RMSprop and we remarked
that Adam provided the best results. We set the initial
learning rate to 0.001 as recommended in (Kingma
and Ba, 2015).

The evaluation procedure consists in measuring
how appropriately the automatically-obtained similar-
ity scores on word pairs of the benchmark match the
ratings produced by humans. In order to compute
the similarity of two words using our sense embed-
dings, we used the cosine similarity measure. Then,
we measured how much does the model estimation of
word similarity resembles that of the human judgment
by computing the Spearman’s correlation metric. Fi-
nally, we report the GlobalSim and AvgSim similarity
metrics (Reisinger and Mooney, 2010) as evaluation
metrics.

3.2 Hyper-parameter Tuning

To train a model that can achieve the best perfor-
mance, suitable hyper-parameters tuning is required.
Among these hyper-parameters, we can mention the
dimension of word embeddings (embedding size) and
the number of epochs. We released many experiments
to choose the best values of these hyper-parameters
and find ultimately the parameters values that allow
good convergence of the model to the best results.
To do so, we started by adopting a set of values for
each parameter. Therefore, we varied the parameters

1https://www.tensorflow.org/learn
2https://keras.io
3http://cs231n.github.io/
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and computed the Spearman score for each parameter
value.

To study the impact of the vector dimension on the
performance of the proposed model, we built word
embeddings using different dimensionalities rang-
ing in [50,100,150,200,300,400,500] while fixing the
number of epochs at 50. Afterward, we selected the
dimension size that maximized the Spearman correla-
tion score.

In Figure 3, we report Spearman values obtained
with regard to different embedding sizes.

Figure 3: Obtained Spearman values multiplied by 100
when varying the embedding dimension.

Figure 3 shows the impact of the embedding di-
mension on the results obtained by the proposed
model. Overall, the Bi-RAE model is able to learn
accurate word embeddings even with a dimension of
50. In addition, the performance increases gradually
with the embedding size, reaching a peak when the di-
mension is equal to 400. Thus, we set the dimension
size at 400.

After choosing the best dimension for word em-
beddings, we go forward to study the effect of the
numbers of epochs on the Spearman correlation. To
do so, we varied the number of epochs in the ranges
of [10,50,100,200,300,400,500].

Figure 3 shows the Spearman correlation perfor-
mance of our model for different numbers of epochs
while keeping the dimension of embedding constant.
It is clear, from this figure, that the performance in-
creases by rising the number of epochs which ranges
from 1 to 100 then it decreases continuously and
nearly keeps steady after 200 iterations. According
to this experiment, the number of epochs was set at
100.

3.3 Results and Discussions

In order to evaluate and position our Bi-RAE, we
compare it against several baseline methods. These
methods include single word embeddings techniques
and multi-prototype word embeddings. They were
chosen as baselines because they present well-known
state-of-the-art methods for word embeddings.

Figure 4: Spearman correlation of our Bi-RAE model vs
epochs number.

• Word2Vec Model: We performed our own train-
ing on the used dataset utilizing the implemen-
tation of Word2Vec from the library Gensim4.
This algorithm uses a one hidden layer neural net-
work to predict a word by considering its context
(CBOW version of the algorithm).

• Glove Model: It is an alternative way to learn
word embeddings. Training is was carried out
on aggregated global word-word co-occurrences
statistics from corpus. We trained this model
on the used dataset using the implementation of
Glove from the library Gensim5.

• C&W Model: Authors of (Collobert et al., 2011)
proposed an embedding model using CNN ar-
chitecture designed to preserve more information
about word features relations. Indeed, they ex-
tracted local feature vectors using a convolutional
layer. Then, they combined these features em-
ploying a pooling operation in order to obtain a
global features vector. The pooling operation is a
max-pooling operation which forces the network
to capture the most useful local features produced
by the convolutional layer.

• EH Model: This method was introduced in
(Huang et al., 2012). It consists in generating,
at first, single-sense word embeddings and com-
puting out the context embeddings. Then, a clus-
tering step of these context embeddings was per-
formed. The obtained results were used to re-label
each occurrence of each word in the corpus. In ad-
dition, authors applied their model to the labeled
corpus to generate the multi-vector word sense
embeddings.

• MSSG, MSSG-NP Models: Authors of (Nee-
lakantan et al., 2015) improved multi-sense word
embeddings model by dropping the assumption
that each word should have the same number of

4https://radimrehurek.com/gensim/models/Word2Vec.html
5https://textminingonline.com/getting-started-with-

Word2Vec-and-glove-in-python
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senses. They proposed a non-parametric model
to automatically discover a varying number of
senses per word. More precisely, NP-MSSG mea-
sures the distance of the current word to each
sense, picks up the nearest one and learning its
embedding via a standard skip-gram model.

• Li & Ju. Model: Authors of (Jiwei and Dan,
2015) used a similar strategy to (Neelakantan
et al., 2015) by integrating the Chinese Restau-
rant Process6 into the Skip-gram model. Indeed,
they employed this process to determine the sense
of a word and learn the sense embedding.

• Chen Model: (Chen et al., 2014) utilized glosses
in WordNet as clues to learn the distributed rep-
resentation of word sense. Then, they represented
each word sense by the vector averaged over all
the words occurring in the corresponding gloss.

• SASI Model: Authors of (Guo et al., 2019)
proposed the SASI model as an extension to
Word2Vec to learn multi-vector embeddings for
word meaning. The SASI model uses an attention
mechanism to select which sense is used in a to-
ken’s context, which they contrast to alternatives
for sense selection.

• TF-IDF: It is composed of two parts: TF which
is the term frequency of a word, i.e. the count of
the word occurring in a document and IDF, which
is the inverse document frequency, i.e. the weight
component that gives higher weight to words oc-
curring in only a few documents.

• Pruned TF-IDF (Huang et al., 2012):
Frequency-based pruning uses term frequency in-
formation to measure the importance of the terms
and to prune relatively unimportant terms or seg-
ments of the document. Pruned TF-IDF consists
in pruning the low-value TF-IDF features.

We executed the two most popular single vector
word embedding methods (Word2Vec and Glove) on
the SCWS dataset using 50, 300 and 400 as embed-
ding dimensions.

In Table 1, we report the Spearman correlation
scores p between the embedding similarities and hu-
man judgments using our proposed model, Word2Vec
and Glove models. Furthermore, we illustrate the re-
sults obtained with two others single prototype word
embedding C&W (Collobert et al., 2011) and TF-IDF
(Huang et al., 2012).

6https://www.statisticshowto.com/chinese-restaurant-
process/

Table 1: Bi-RAE performance, multiplied by 100,
on SCWS in comparison with those of Word2Vec,
Glove,C&W and TF-IDF.

Method Spearman p×100
Word2Vec (50 dim) 48.6
Word2Vec (300 dim) 50.3
Word2Vec (400 dim) 50.7
Glove (50 dim) 44.8
Glove (300 dim) 46.3
Glove (400 dim) 46.9

C&w (Collobert et al., 2011) 57.0
TF-IDF (Huang et al., 2012) 26.3

Bi-RAE (50 dim) 64.9
Bi-RAE (300 dim) 67.2
Bi-RAE (400 dim) 67.9

Experimental results show the potential of the
Bi-RAE model to reach good Spearman scores out-
performed the two baseline models (Word2Vec and
Glove) for different dimensions. In fact, it reach
Spearman scores equal to 64.9, using 50 as embed-
ding dimension, 67.2 using 300 as embedding dimen-
sion and 67.9 using 400 as embedding dimension.
These results indicate that the quality of our word em-
beddings is better than those obtained by Word2Vec
and Glove. They show the clear benefit of learn-
ing word semantic embedding using its left/right con-
texts. Thus, the gap in Spearman score between the
Bi-RAE model and baselines is great. Indeed, the
full model has to be fed with each whole sentence to
get the word representations, unlike Word2Vec vector
representations, which are constant regardless of their
context.

Table 2 shows the performance of our proposed
model while comparing it against most popular multi-
prototype models evaluated on the SCWS dataset. As
word representation with multiple prototypes is used
to build multiple distinct vectors for all senses of a
word, (Reisinger and Mooney, 2010) presented the
AvgSim measure and the GlobalSim, to compute sim-
ilarities. GlobalSim uses one representation per word
to compute similarities, while AvgSim calculates the
similarity employing different embeddings per word
based on the context information. Spearman correla-
tion scores p computed between the embedding simi-
larities and human judgments is used. In Table 3, we
report these two measures for multi-prototype word
embeddings. We also present the results obtained ap-
plying the word distributional representations Pruned
TF-IDF (Huang et al., 2012).

It is observed from Table 3.4 that our model
Bi-RAE achieved a better performance compared to
baseline techniques (Collobert et al., 2011; Huang
et al., 2012; Chen et al., 2014; Neelakantan et al.,
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Table 2: Spearman correlation scores, multiplied by 100, on the SCWS dataset in comparison with prior work. Fields marked
with ”‘-”’ indicate that the results are not available.

Method Spearman p×100

AvgSim GlobalSim
Pruned TF-IDF (Huang et al., 2012) 60.4 62.5
EH Model (50 dim) (Huang et al., 2012) 62.8 58.6
MSSG (300 dim) (Neelakantan et al., 2015) 67.2 65.3
MSSG-NP (300 dim) (Neelakantan et al., 2015) 67.3 65.5
MSSG (50 dim) (Neelakantan et al., 2015) 64.2 62.1
MSSG-NP (50 dim) (Neelakantan et al., 2015) 64.0 62.3
Li&Ju. (300 dim) (Jiwei and Dan, 2015) 66.4 64.6
Chen (200 dim)(Chen et al., 2014) 66.2 64.2
SASI (300 dim) (Guo et al., 2019) 64.8 -

Bi-RAE (50 dim) 64.9
Bi-RAE (300 dim) 67.2
Bi-RAE (400 dim) 67.9

2015; Jiwei and Dan, 2015; Guo et al., 2019) for
either 50 or 300 vector dimensions. Our model at-
tained a Spearman correlation score equal to 67.2 us-
ing 300 as dimension size and 67.9 using 400 dimen-
sion size. This finding indicates that the recursive
composition (based on auto-encoders) strategy pro-
posed in our work is beneficial. Furthermore, it shows
again that our strategy of modeling word sense em-
beddings by means of their right/left sub-sentential
context embeddings is helpful to improve the quality
of the word sense vector. Additionally, the Bi-RAE
model treats the left sub-sentential context, from first
word to the target word, and the right sub-sentential
context, from last word to target word, to mine the
semantics of the target word. This strategy allows ex-
tracting the relations between words that are far from
the target while affect its semantic. Besides, obtain-
ing Spearman scores competitive to those obtaining
by AvgSim measure for multi-prototype word embed-
dings indicates that computing the word sense embed-
dings as evolved vector taking into account its senten-
tial contexts is promising. It worth mention that our
results are obtained in unsupervised framework with-
out using any extra-information.

Recall that representing word meaning by multi-
vectors requires either sense inventories or cluster-
ing methods. The latter carried out a form of word
sense discrimination as a pre-processing step by clus-
tering contexts for each word, which ignores compli-
cated correlations among words as well as their con-
texts (Pengfei et al., 2015). Added to that, a common
strand of most unsupervised models is that they ex-
tend the SkipGram model enable the capture of sense-
specific distinctions. These models represent the con-
text of a word as the centroid of it words’ vectors
and clusters them to form the target word’s sense rep-

resentation. During training, the intended sense for
each word is dynamically selected as the closest sense
to the context and weights are updated only for that
sense. Hence, sense embedding is conditioned on the
word embeddings of its context. Therefore, the con-
text in these models is represented by a vector com-
posed of the occurrences of the neighboring words or
a weighted average of the surrounding words of the
target word. Such context definitions neglect the rel-
ative order of words in the context window and the
rules of combining words, which influences the qual-
ity of the representations based on such context rep-
resentations. Thus, these models pay equivalent at-
tention to the words to the left and to the right of
the target word. In addition, these models set an
equal number of senses for each word which is not
real. On the contrary, the Bi-RAE model provides
representations of words semantic which depend on
the sentential context. Moreover, the relative impor-
tance of left or right contexts may in principle de-
pend on the linguistic properties of the corpus lan-
guage, in particular its word ordering constraints. In
this vein, our model allows us to take account such
effects that context has on word semantic. It allows
extracting useful information about the semantic of
a target word based on its ordered sub-sequences of
left-side and right-side contexts using recursive auto-
encoders. This combination strategy of word con-
text of the Bi-RAE model leads to improved results.
This means that the Bi-RAE model is able to encode
correlations among words as well as their contexts.
Further, in contrast to other approaches, the proposed
deep model Bi-RAE constructs an evolved vector to
embed words meaning by taking into account the sen-
tential context, separated to left/right context, of the
target word. This evolved vector adapt the semantics
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of a target word based on its context. This idea was
inspired by the fact that most sentences use a single
sense per word and human can determine the mean-
ing of a word in a given context by referring to the
different meanings already-known of this word. For
this reason, we construct a new sense of a word using
its previously-learned sense by considering its previ-
ous context. Our overall process allows us to achieve
encouraging results.

4 CONCLUSIONS

In this paper, we present a new deep model, named
Bi-RAE (Bi-Recursive Auto-Encoders), to learn word
meaning embedding from scratch. This model aims
to construct a dense informative representation of
word meaning using its sentences as context. More
precisely, it treats each sentence containing the tar-
get word as two sub-contexts (left and right contexts
around the target). Our model is based on the idea
of learning dynamically an evolved semantic embed-
ding of a word relying on the words contained in their
sentential context and its latest semantic representa-
tion. Thus, it was possible to create semantic embed-
dings of words that captures as accurate as possible
the meaning of the word conveyed in their contexts.
We released experiments on a very challenging task
in NLP; the semantic similarity task. Experimental
results proved the effectiveness of our unsupervised
model compared to well-known methods modeling
word semantic embeddings using either in single or
multi prototypes. In our future work, we we would
couple our proposed model with an attention mecha-
nism to further improve its learned embeddings.
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