
Partitioned Reconstruction of Contact Forces in Tactile Sensor 
Arrays for Robotic Sensing Systems 

María-Luisa Pinto-Salamanca a and Wilson-Javier Pérez-Holguín b 
Doctoral Program in Engineering with an emphasis in Electronics Engineering, School of Electronic Engineering, GIRA 

Research Group, Universidad Pedagógica y Tecnológica de Colombia UPTC, Colombia 

Keywords: Tactile Sensing, Contact Forces Reconstruction, Tactile Sensor Array, Force Sensors, Robot Sensing Systems. 

Abstract: The reconstruction of contact forces is essential for the performance of robotic manipulation systems from 
the information captured by tactile sensors. This work explores the implementation of a model-driven 
approach for the triaxial reconstruction of contact forces in tactile sensor arrays using a partition algorithm 
that estimates forces in smaller subarrays on a flat and rigid surface. The validation of the presented approach 
depends on a prior verification of compliance with the centroids of traction and compression for each analysed 
subarray. Considering the force estimation errors, the proposed approach shows a better behaviour than 
similar works for single contacts in the force reconstruction for multiple contact events and when using large 
size sensors arrays. In addition, the application of the partitioning approach demonstrates a significant 
decrease in response time by reducing the number of operations that are needed for the force reconstruction 
calculation. Although the relative errors are still significant, the results obtained allow verifying a clear 
contribution to the reconstruction of contact events under processing time restrictions for sensor arrays 
ranging from small to large scale, that favors the development of electronic skin in robotic applications. 

1 INTRODUCTION 

The feedback of forces and the perception of contact 
events in real-time play a fundamental role in the 
planning of the robot's interactions with the 
environment (Lambeta et al., 2020) as well as in the 
grip or slip control loops (Masoumian et al., 2020). 
Likewise, forces estimation is essential for robotic 
manipulation and human-robot interaction since the 
obtained force components allow a complete 
description of a contact phenomenon (Ciotti et al., 
2019). 

To replicate the human sense of touch, tactile 
sensing systems employ a tactile sensor layer, an 
electronic interface layer, and a tactile data decoding 
system (Dahiya, et al., 2010), (Ibrahim et al., 2017). 
Tactile sensing systems allow performing tasks as 
tactile exploration, object identification, and object 
grasping and movement. Tactile perception 
contributes to expanding the capabilities of robotic 
manipulators, humanoid robots, and biomedical 
devices, among other applications. An example of 
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that is the combination of robotics with tactile sensing 
systems, which provides emulation functions of 
fingers perception in sophisticated manipulation of 
dexterous grippers in hand robots or manipulators (Y. 
Li et al., 2019). 

Considering the contact medium, tactile sensors 
can be continuous or discrete. In particular, discrete 
tactile sensors are usually organized as arrays of 
individual sensors that can simultaneously be 
activated in response to a contact event (Mohammadi 
et al., 2019). 

The basic unit in tactile sensor arrays is known as 
‘taxel’, which is in charge of measuring a contact 
event in a single point (Dahiya et al., 2010). Tactile 
sensors can also be configured as arrays of taxels to 
cover flat areas (Seminara et al., 2015), hard or soft 
surfaces (Yuan, et al. 2017), or deformable areas 
(Ciotti et al., 2019). Some sensor arrays offer three or 
six-axis force estimation with sensing areas up to 
4.7mm × 4.7mm with 24 taxels (XELA Robotics Inc). 
However, most sensor arrays measure stress or 
normal force. In such cases, additional processing 
steps are required to decode triaxial forces. 
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The contact forces reconstruction process allow 
obtaining the force distribution on a surface from 
tactile sensor measures (Seminara et al., 2015) using 
analytical models based on physical laws (model-
driven), machine learning frameworks (data-driven) 
(Wasko et al., 2019), and mixed approaches. Sensors 
employed with such approaches comprehend vision-
based, piezoresistive, magnetic, piezoelectric, Hall 
Effect, and biomimetic technologies.  

Some applications of forces estimation in the 
robotics field include shape-recognition in robot-
objects interaction (X. Li et al., 2020), wearable assist 
robots (Ito et al., 2019), grasping object in robotic 
hands (Mohammadi et al., 2019), human-robot 
interaction (Cirillo et al., 2016), robotic skin (Trueeb 
et al., 2020), and soft artificial skin (Duong & Ho, 
2021), among others. 

In tactile sensing systems, there are different 
contact sensing areas for electronic skin applications 
covering from small to large scales, depending on the 
resolution and number of taxels in the sensor array. 
Seminara et al. (2015) cover an area close to 36mm × 
36mm using a 3mm thick elastomer layer and a sensor 
grid of 10×10 piezoelectric taxels. Duong & Ho 
(2021) pose a vision-based model using a FEM 
analysis to establish the relationship between nodal 
displacements of the markers and external forces 
achieving to cover an area of 49763mm2. However, 
in the case of works focused on vision, the sensors’ 
size, and the dependence on complex image 
processing algorithms, make it difficult to extend its 
use to large artificial skin development in portable 
robotics or biomedical applications. 

Proper emulation of the human sense of touch 
involves meeting a strict time limit to detect contact 
events and process them in less than 1 ms (Dahiya, et 
al., 2010). A challenge for applications using a 
discrete array of sensors is to achieve a reasonable 
compromise between the execution speed and the 
accuracy of the results, considering the need for 
developing calibrating algorithms and parallel 
process scenes of complex contact events in real-
time.  

There are few works in the literature (Seminara et 
al., 2015), (Cimino, 2016) centered on the real-time 
implementation of force reconstruction algorithms 
employing sensor arrays. These authors propose the 
reconstruction of triaxial contact force distributions 
on a soft layer surface from the normal stress data 
retrieved from a piezoelectric sensor array. Although 
this work could be used with other sensor arrays 
whose taxels provide discrete stress data, its 
application has not been generalized. 

This work analyzes, at the simulation level, the 
implementation of the model-driven proposed by 
Seminara et al. (2015) to reconstruct contact forces in 
tactile sensor arrays with a partitioned approach, 
considering smaller subarrays. The partitioning 
approach was applied to arrays of sensors of different 
resolutions ranging from 10×10 to 48×48 taxels to 
covering different contact areas. This approach is 
aimed to reduce the computational load that allows 
speeding up the calculation times required for the 
reconstruction of forces. Although the errors obtained 
are relatively high, it is expected that combining this 
approach with a hardware implementation (FPGA-
like) will achieve compliance with the 1 ms limit in 
tactile sensor applications using large arrays of 
normal stress sensors. 

2 MATERIALS AND METHODS 

2.1 Contact Forces Estimation for 
Tactile Sensor Arrays 

The model-driven approach proposed by Seminara et 
al. (2015) allows the estimation of the intensities and 
directions of contact forces (three−dimensional force) 
starting from normal stress data of a discrete tactile 
sensor (single−dimensional data). This is relevant 
because this approach would extend the application 
of normal stress tactile sensors to the triaxial forces 
estimation. The Seminara et al. (2015) model is based 
on the solution to the inverse problem of the 
Boussinesq equation for an elastic half-space 
(Johnson, 1985). This model estimates force vectors 
in the same taxels XY-coordinates, on the sensor cover 
layer at a distance h on the z-axis (sensor thickness).  

This model establishes that the triaxial forces 
components (𝑥ଵ  force in x-axis, 𝑥ଶ  force in y-axis, 
and 𝑥ଷ force in z-axis) are defined as: 

𝑥ଵ𝑥ଶ𝑥ଷ൩ = 𝐶ற𝑏 + ሺI − 𝐶றCሻ 𝑤  (1) 

where, b is a normal stress vector sensed by the taxels 
in the sensor array, C is a matrix defined by the vector 
distances given between the taxels coordinates and 
the points where the force vectors are reconstructed, 𝐶ற is the Moore-Penrose pseudo-inverse matrix of C 
(Albert, 1972), and w is a vector that depends both on 
two continuous scalar variables µ1 and µ2, as well as 
on the geometry and the sensor input data.  
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The values for µ1 and µ2 are defined to maximize 
an Π  objective function that simultaneously fulfils 
three physical restrictions: i) compressive normal 
forces, ii) tangential forces and normal forces 
similarly distributed over the contact area, and iii) no 
pinch. 

The Seminara et al. (2015) model proposes two 
stages to define the objective function (called 
preparative phase) and find the optimal solution 
(called iterative phase). The preparative phase 
includes calculating the matrices, reading the data 
from the tactile sensor, and calculating the centroids 
required to establish the physical constraints and the 
objective function. The iterative phase allows finding 
the values of µ1 and µ2 that optimize the Π function. 
By a comparison between a FEM simulation and the 
analyzed model, the maximum estimated errors were 
about 13% in the resultant tangential forces for 
Hertzian contacts and 43% of the resultant force in 
the x-axis for non-Hertzian contacts (Seminara et al., 
2015). 

The mentioned model was evaluated through a 
software implementation conducted in Matlab® 
R.2020b, by varying the sensor parameters, the taxels 
data and the force coordinates. Figure 1 shows a case 
of force reconstruction for a tactile sensor array of  
10×10 taxels with 4mm×2mm resolution in the XY-
plane and 3mm thickness. For this example, the 
normal stress data values read by the sensor are 
between -36000 [N/m2] to 20912 [N/m2]. These were 
obtained experimentally by applying the function: 𝑆ሺ𝑥, 𝑦ሻ = 1x10 ∗ ൫𝑦 Sinሺ100𝑥ሻ + 𝑥 Cosሺ100𝑦ሻ൯ (2)
 

 

Figure 1: Contact forces reconstruction applying the model-
driven proposed by (Seminara et al., 2015). Scale factors: 
Fx=10000[N/mm], Fy=10000 N/mm], Fz=1 [N/mm], 
Normal stress surface = 0.003 + S*20000 [N/m2]. 

2.2 Partitioning Approach to the 
Forces Estimation 

The partitioning approach proposed involves 
sectioning the tactile sensor array into subarrays of 
equal size and applying the force reconstruction 
algorithm proposed by Seminara et al. (2015) in each 
subarray as if they were independent sensors. Then, 
these are grouped together to obtain the overall 
response of the force estimates. 

Although it is clear that the principle of 
superposition cannot be applied to a non-linear 
model, the sharp decrease in the size of the operations 
of the matrix and its consequent decrease in the 
system's response time justify the evaluation of the 
proposed approach. This approach should be used 
considering the accuracy requirements for force 
estimation, which may vary in each case. 

The algorithm to implement the model-driven of 
Seminara et al. (2015) has a computational 
complexity of 𝑂ሺ𝑑ଶሻ order, where d is the size of the 
tactile sensor array (Wasko et al., 2019). The model 
application implicates matrix operations of 3ሺ𝑛௧ × 𝑛௩௧ሻ × 3ሺ𝑛௧ ×  𝑛௩௧ሻ  order, where 𝑛௧ and 𝑛௧ are the 
number of horizontal and vertical taxels in the array. 
Hence, if the size of the array decreases, the 
calculation time also decreases. Figure 2 shows four 
partition cases to be considered in the proposed 
approach that include: 

Case 0: the reconstruction of forces in a sensor 
array without a subarray (SA0 1×1) 

Case 1: mix of the cases above with four subarrays 
SA1-SA4 (2×2 subarrays). 

Case 2: two vertical subarrays SA1-SA2 (1×2) 
Case 3: two horizontal subarrays SA1-SA2 (2×1) 

 
Figure 2: Partition Cases Analyzed in the Contact Force 
Reconstruction Approach. 

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

184



The performed tests comprise four tactile sensor 
arrays whose characteristics are described in Table 1. 
For the cases of 10 × 10 taxel matrices, normal stress 
data corresponding to Hertzian and non-Hertzian 
contact events were the same used by (Seminara et 
al., 2015). In the 20×20 taxel array, the sensor input 
data were combinations of Hertzian and non-Hertzian 
contacts. The input data for the 48×48 array were 
obtained with an FSR Matrix Array Sensor for the 
plantar pressure measurement systems (PPMs) 
described in (Castro et al., 2020). 

Table 1: Included Sensors for the implementation of the 
partitioned approach. 

Tactile 
Sensor 

Taxels Array ሺ𝑛௧ ×  𝑛௩௧ሻ  
Size 

[mm × mm × mm] 

Taxels 
Separation 
Resolution 
[mm × mm] 

Sensor 1 10 × 10 20 × 40 × 3 4 × 2
Sensor 2 10 × 10 40 × 40 × 3 4 × 4
Sensor 3 20 × 20 20 × 40 × 3 4 × 2
Sensor 4 48 × 48 384 × 384 × 0.91 8 × 8

The search for the optimal parameters µ1 and µ2 
was carried out using the Matlab® function fmincom. 
The objective function Π  is conditioned for the 
centroids of the contact event (Centroids Condition) 
such that: the data detected in the matrix must include 
positive and negative values to calculate the 
compression and tension centroids simultaneously. 
Consequently, the partitioning approach initially 
checks for this condition on the data in the subarray. 
If this condition is met, the approach try to perform as 
much partitionings as possible. 

In the proposed approach the preparatory phase of 
each partitioning case comprises: i) separate stress 
data from each partition, ii) redefine the coordinates 
of the taxels and the force estimation, iii) calculate the 
C matrix and the 𝐶ற pseudo-inverse matrix for each 
subarray, iv) determine the centroids of tension and 
compression for each subarray, and finally v) 
evaluate the Π functions.  

The iterative phase for each analyzed partition 
includes two stages: i) find the optimal values to the 
parameters µ1 and µ2 for each analyzed subarray, and 
ii) compare the minimum forces obtained with an 
established threshold. Finally, the algorithm groups 
the reconstructed forces to present a force vector for 
each taxel. 

3 ANALYSIS OF RESULTS 

The simulations carried out applying the proposed 
approach generate the estimation errors presented in 

Table 2, according to cases 0 to 3 described in the 
previous section and the sensor parameters shown in 
Table 1. The resulting forces correspond to the sum 
of the estimated forces in each axis (𝑋ଵ = ∑ 𝑥ଵ, 𝑋ଶ =∑ 𝑥ଶ, 𝑋ଷ = ∑ 𝑥ଷ). The error was calculated as:  𝐸𝑟𝑟𝑜𝑟 = 𝑅𝑒𝑓. 𝑣𝑎𝑙𝑢𝑒 – 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑓. 𝑣𝑎𝑙𝑢𝑒  (3)

For the force reconstruction using sensors 1 and 
2, the reference values for error estimation were 
obtained by mean a FEM simulation developed in 
COMSOL® by Seminara et al. (2015). In the analysis 
carried out with sensors 3 and 4, the estimation error 
was similar to those obtained for Case 0 (without 
partitioning). Due to the application of Equation 3, 
Table 2 contains some negative values for the error. 

Table 2: Estimation errors obtained during the partitioning 
approach validation. 

Sensor Analysis 
Case 

Estimation errors 
X1 X2 X3

1 

0 12.84% 12.93% 7.54% 
1 77.52% 65.69% -23.57% 
2 46.32% 71.17% -15.15% 
3 64.41% 5.60% -0.46% 

2 

0 -39% 16% -1% 
1 17.52% 51.22% -11.60% 
2 -97% 55% -5% 
3 42% -1% -7% 

3 

0 0% 0% 0% 
1 3.91% -12.67% -1.37% 
2 0.11% 0.07% -1.15% 
3 5.05% -12.05% -0.23% 

4 

0 0% 0% 0% 
1 51.04% 68.98% -5.44% 
2 49.10% -63.09% -5.21% 
3 51.61% -67.72% -4.25% 

Figure 3 shows a comparison between the optimal 
values µ1 and µ2 for each case. During the approach 
validation, the µ values for the partition Case 0 is 
taken as reference. For the partitions that do not meet 
the centroid conditions, the values of µ1 and µ2 are 
null. The response of the partitioning approach is 
analyzed by classifying the contact events as ‘simple’ 
for sensors 1 and 2 and ‘multiple’ for sensors 3 and 4. 

3.1 Single Contacts  

Figure 4 shows the reconstruction cases when using 
sensors 1 and 2. In the case of the sensor 1 (Figure 
4(a)), the input data corresponds to a single Hertzian-
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type contact event. As shown in Figure 3, for Case 1, 
two subarrays (SA2 and SA4) do not meet the 
centroid conditions, so their optimal parameters were 
null. Figure 3 also shows that Case 2 do not fully 
comply with the contact conditions. During the test 
with sensor 1 and Case 3 forces are estimated in the 
two subarrays taking into account that µ1 and µ2 are 
different to zero. However, it would be noted that this 
case present a high estimated error (64.41%) in the  
 

 
Figure 3: Flow diagram for implementation of the 
partitioning approach for the contact forces reconstruction. 

resulting forces on the x-axis, while the reference 
(Case 0) gives a maximum estimation error of about 
13% for the tangential forces. The results obtained 
allow verifying that the proposed partition strategy 
does not work correctly in the case of single contact 
and Hertzian events. 

For sensor 2, the input data corresponds to a non-
Hertzian contact (Figure 4(b)). For Case 1, it is 
observed that the centroid condition is not fulfilled in 
subarray SA4. For partitions with two subarrays, the 
estimation errors for Case 3 show a better 
performance than Case 2. If Case 3 is compared with 
the reference (Case 0), the first one present a smaller 
error in the resultant force on the y-axis (1%). 
However, for these cases the forces estimation error 
with respect to the z-axis is better for Case 0 (-1% vs. 
-7%). Since the non-Hertzian contact is a simple 
contact located in the center of the sensor, the 
centroid condition is fulfilled more easily than in the 
Hertzian case. 

a.  

b.  
Figure 4: Results of partitioned force reconstruction.  
a) Hertzian contact Case 2, b) Non-Hertzian contact Case 3. 

3.2 Multiple Contacts 

Figure 5 and 6 present the results of applying some 
cases of force reconstruction for sensors 3 and 4, 
respectively. The input data used with sensor 3 (see 
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Figure 5) are combinations of two Hertian and non-
Hertzian contacts. Based on the estimation errors, the 
input data for sensor 3 exhibits the best performance 
for the partitioning approach. Although Case 1 
fulfilled the centroid conditions for all partitions, the 
errors given for Case 2 are lower, so Case 2 is the best 
choice to be employed in the proposed approach with 
the multiple Hertzian and non-Hertzian contact event. 

Regarding the reconstruction of forces with 
sensor 4 (see Figure 6), all the partition cases fulfilled 
the centroid conditions. However, Case 3 present the 
lowest estimation errors for the resulting force in the 
z-axis (-4.25%), so this case is the best for the anlyzed 
contact event with sensor 4. For this sensor, in each 
case of analysis, the response times of the algorithm 
were evaluated, obtaining the data presented in Figure 
7. Executing the algorithm with one partition (Case 0) 
requires 2705.33s, with two subarrays, Cases 2 and 3, 
it takes 354.17s and 330.57s, respectively, while with 
four subarrays (Case1) it only requires 109.63s. 
Figure 7 also shows three tests for the same 
partitioning case which generated similar response 
times for each test. 

 
 

 
Figure 5: Results of partitioned force reconstruction in 
multiple contact events with Hertzian and non-Hertzian 
events. Reconstruction cases a) Case 0. b) Case 1 (2×2). 

 

 

 

 
Figure 6: Results of partitioned force reconstruction contact 
events for a PPMs application. Reconstruction cases a) 
Case 0 (1×1). b) Case 1 (2×2). c) Case 2 (1×2). d) Case 3 
(2×1). 

4 DISCUSSION AND FUTURE 
WORKS 

The model-driven on which this work is based was 
designed to reconstruct single contact events. 
Considering this limitation, it is not possible to 
guarantee the proper functioning of the proposed 

a.

b.  

a.  

b.

c.

d.
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partition approach for single contact events. This is 
because when dividing the sensor, it is not feasible to 
ensure that each subarray meets the centroid 
conditions since a single contact produces only one 
tension centroid and one compression centroid for the 
entire sensor.  

 
Figure 7: Response time for partitioning approach with a 
48×48 taxels sensor. 

Even for single contact events, the non-Hertzian 
contact analyzed had better behavior than the 
Hertzian one, since the first one allowed the 
partitioning of the sensor into two subarrays. This 
implies that non-Hertzian contacts have a greater 
expectation of being processed adequately with the 
proposed approach. 

Applying the proposed approach shows a great 
decrease in the time required to rebuild the contact 
forces when the number of subarrays increases. This 
is because the order of operations in the matrix 
decreases for smaller subarrays, which improves the 
temporal response. For instance, for a 48×48 taxel 
matrix, without partitions (Case 0), the algorithm 
requires (3 * 48 * 48) × (6912) matrix operations.  
For Case 1 with four subarrays, the algorithm requires  
(3 * 24 * 24) × (1728) operations, while in Case 2 and 
Case 3, the algorithm involves (3 * 24 * 48 = 3456) 
operations. This means that, despite the relatively 
high estimation errors obtained for this partitioning 
approach, its application for large tactile sensor arrays 
becomes attractive, since it significantly reduces the 
number of operations required. 

The latency of the FPGA-based hardware 
implementation of the no partitioned model proposed 
by Seminara et al. (2015) is 1.6 × 10-6 s for processing 
an 8 × 8 size sensor. For its part, the software 
implementation developed herein for the above-
mentioned model has a response time of 16.43 s, 
using the normal stress input data generated by 
applying Equation 3 and an 8×8 size sensor.  
This allows us to infer that given the reduction in the 
number of operations required for the proposed 
partitioning approach, the response times of the 

hardware implementation are expected to be even 
lower than those reported by Seminara et al. 

In multiple contact events, sensor 3 produces a 
good reconstruction of forces because this 
configuration allows meeting the centroid conditions 
for each analyzed subarray. This allows obtaining the 
optimal parameters µ1 and µ2, which enables to use 
of this approach to properly model these contacts. 

Future works include evaluating the 
reconstruction of single contact events for force 
feedback using the proposed partitioning approach on 
a hardware implementation considering applications 
such as electronic skin, manipulation tasks, and 
human-robot interaction. 

5 CONCLUSIONS 

The application of the proposed partitioning approach 
for a 48×48 taxel tactile sensor matrix shows a very 
significant decrease in the execution time, which goes 
from 2705.33 s to 109.63 s only, when performing the 
forces estimation using four subarrays of 24×24 
taxels. The proposed partitioning approach to the 
contact force reconstruction in arrays of tactile 
sensors facilitates the decoding of the properties of 
the touched objects by considerably reducing the 
response time required to process the information 
provided by large tactile sensor arrays. 

The validation of the partitioning approach 
depends on a prior verification of compliance with the 
centers of traction and compression for each analyzed 
subarray. Therefore, the proposed partition approach 
generates high errors for single contacts, while it 
presents tolerable errors for multiple contact events 
distributed in the subarrays. 

Due to its characteristics of low computing power 
required and high execution speed, the proposed 
approach can be used in applications of human-robot 
interaction and force control loops in robotic 
manipulation, in which it is tolerable to work with an 
approximated knowledge of the properties of the 
touched object. 
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