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IoT technologies together with Al, and edge computing will drive the evolution of Smart Cities. IoT devices
are being exponentially adopted in the urban context to implement real-time monitoring of environmental
variables or city services such as air quality, parking slots, traffic lights, traffic flows, public transports etc. IoT
observations are usually associated with a specific location and time slot, therefore they are spatio-temporal
collections of data. And, since IoT devices are generally low-cost and low-maintenance, their data can be
affected by noise and errors. For this reason, there is an urgent need for anomaly detection techniques that are
able to recognize errors and noise on sensors’ data streams. The Spatio-Temporal Behavioral Density-Based
Clustering of Applications with Noise (ST-BDBCAN) algorithm combined with Spatio-Temporal Behavioral
Outlier Factor (ST-BOF) employs both spatial and temporal dimensions to evaluate the distance between
sensor observations and detect anomalies in spatial time series. In this paper, a Python implementation of
ST-BOF and ST-BDBCAN in the context of IoT sensor networks is described. The implemented solution has
been tested on the traffic flow data stream of the city of Modena. Four experiments with different parameters’
settings are compared to highlight the versatility of the proposed implementation in detecting sensor fault and

recognizing also unusual traffic conditions.

1 INTRODUCTION

Modern smart cities employ numerous sensors to
monitor several aspects of city life, i.e. vehicular traf-
fic, parking availability, air quality, and others. The
huge amount of data streams produced by sensor net-
works needs data cleaning processes to detect outliers
and remove unreliable data before further analysis.
Indeed, anomaly detection is one of the most impor-
tant challenges in data mining. In an urban sensor
network, the comparison of data coming from close
sensors (neighborhood information) can be exploited
to improve the identification of anomalies. Traffic
sensors are an example of faulty sensors. Anoma-
lies in traffic sensor observations can heavily affect
the results of the subsequent analysis, such as traffic
flow simulation, traffic trend analysis, traffic monitor-
ing, and prediction. Traffic sensor observations can
be seen as a time series (considering only one sen-
sor at a time) or as a spatial time series (consider-
ing more than one sensor and their relative position).
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Traffic sensors are usually fixed; hence, each sensor
generates a geolocated time series associated with its
position. Exploiting spatial information for anomaly
detection makes the approach more robust because it
allows not only to compare a sensor’s measurements
with respect to its past measurements but also to the
measurements of close sensors. On the other hand,
managing the spatial features is very challenging.

Spatio-temporal outlier detection is the identification
of objects that exhibit abnormal behavior either spa-
tially, and/or temporally. Even if there is an ur-
gent need for algorithms that classify outliers based
on space and time features, there are not many al-
gorithms of this type in literature. Mainly, meth-
ods are divided between algorithms for the identifi-
cation of outliers based on the temporal component
(Wang et al., 2019a; Gupta et al., 2014) and algo-
rithms that are based on the spatial component (such
as Local Outlier Factor (LOF) (Breunig et al., 2000),
DBSCAN (Ester et al.,, 1996) and the merge of the
two: LDBSCAN (Duan et al., 2007)). For detect-
ing spatio-temporal outliers using both the spatial and
temporal features, a promising approach has been re-
cently published, combining the Spatio-Temporal Be-
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havioral Outlier Factor (ST-BOF) in cascade with the
Spatio-Temporal Behavioral Density-based Cluster-
ing of Applications with Noise (ST-BDBCAN) (Dug-
gimpudi et al., 2019) algorithm. ST-BDBCAN is
based on the distinction between spatio-temporal and
behavioral attributes. Spatio-temporal attributes in-
dicate the position of the sensors or provide tempo-
ral information about the observation. Behavioral at-
tributes instead are all the other attributes that refer to
the given spatio-temporal point, i.e. measured values,
environment variables. ST-BDBCAN groups objects
with similar behavioral attributes as clusters and de-
tects objects with abnormal behavioral attributes as
outliers, exploiting the outlier factors evaluated by
ST-BOF. To the best of our knowledge, there is no
code implementation of these two algorithms avail-
able online.

In this paper, we focused on the study of ST-BOF
and ST-BDBCAN and produced its implementation
in Python (the code is available online! with exemplar
data to execute the algorithm). The proposed imple-
mentation is realized for multivariate spatial time se-
ries but can be easily adapted to spatio-temporal time
series (where both spatial and temporal dimensions
vary for each observation). The proposed implemen-
tation is suitable for the application of the algorithm
to different contexts. In this paper, we discuss the ap-
plication of the algorithm to data collected by 49 traf-
fic sensors in the city of Modena, in Italy.” Several
experiments have been conducted with different con-
figuration parameters of ST-BOF and ST-BDBCAN
in order to investigate the difference in the types of
anomalies detected.

The paper is organized as follows. Section 2 dis-
cusses related work on anomaly detection in spatial
time series. In Section 3, a brief explanation of ST-
BOF and ST-BDBCAN is given, and we focus on
describing the characteristic of our implementation.
Then, Section 4 is devoted to the description of our
use case, while Section 5 presents in detail four ex-
periments and compares their results. Section 6 is
dedicated to conclusions.

2 RELATED WORK

Several techniques have been developed to identify
anomalies in spatio-temporal data. In recent years,

https://github.com/quattrinifabio/ST-BOF_
ST-BDBCAN

ZHourly sensor traffic data are published as Open
Data on the Emilia Romagna Open Data portal (Desi-
moni et al., 2020) at https://dati.emilia-romagna.it/dataset/
hourly\ \ - traffic-observation-linked-data-2018-2020.
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also Machine Learning based anomaly detection ap-
proaches have been successful. In (Rollo et al., 2021)
the authors selected 12 unsupervised anomaly detec-
tion algorithms, such as Angle-base Outlier Detec-
tion, Isolation Forest, clustering-based Local Outlier,
and trained them on air quality sensor data to iden-
tify and remove abnormal data patterns. Anomaly
detection techniques can be divided into two main
categories: distance-based and clustering-based. In
distance-based techniques, the spatio-temporal dis-
tance between instances is evaluated with different
approaches and then the instances whose distance
from the other instances is above an established
threshold are considered as outliers. Among distance-
based algorithms, an interesting solution is proposed
by (Bachechi et al., 2020; Bachechi et al., 2021)
that describes a novel data cleaning process to de-
tect anomalies in real-time traffic data streams. The
proposed methodology exploits the Seasonal-Trend
Decomposition using Loess (STL) and the study of
the Interquartile Range on the remainder component
of the time series. Distance-based anomaly detec-
tion methods could not handle datasets with different
density areas effectively. For this reason, clustering-
based approaches can be an interesting alternative
since the identification of outliers is based on density:
the instances in regions with low density are labeled
as outliers. An example of a clustering-based algo-
rithm is DBSCAN exploited in (Celik et al., 2011)
to detect anomalies in monthly temperature data. The
paper shows that the clustering algorithm outperforms
the statistical methodology on data collected by a me-
teorological station in Turkey. Moreover, the authors
of (Wang et al., 2019b) present an isolation-based dis-
tributed outlier detection framework that exploits the
spatial correlation among sensors and employs the
Local Outlier Factor (LOF) together with the nearest
neighbor algorithm. Similarly, the solution proposed
by (Duggimpudi et al., 2019) and implemented in this
paper combines a modified version of LOF (ST-BOF)
with a modified version of DBSCAN (ST-BDBCAN).

3 ST-BOF AND ST-BDBCAN

The scope of this Section is to provide a brief descrip-
tion of the algorithm proposed in (Duggimpudi et al.,
2019) (Section 3.1) and the solution we adopted to
implement it (Section 3.2).

3.1 Algorithm

In (Duggimpudi et al., 2019), the Spatio-Temporal
Behavioral Outlier Factor (ST-BOF) and the Spatio-
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Temporal Behavioral Density Based Clustering of Ap-
plications with Noise (ST-BDBCAN) are combined to
execute in cascade. This combination allows defining
a locality-based spatio-temporal context for each in-
stance to analyze. The instances are the input data,
e.g. the observations of some IoT devices. Two types
of attributes are identified for the spatio-temporal
data: the contextual attributes are the spatio-temporal
attributes that define the “location” of the instances
and the time reference; while the behavioral attributes
describe a feature of the instance.

Firstly, ST-BOF is applied to evaluate a score that
represents the potential outlierness of each instance
based on its behavioral attributes w.r.t. the neigh-
bors. Then, ST-BDBCAN, which is the clustering al-
gorithm for spatio-temporal data, exploits the outlier
factor evaluated by ST-BOF in the generation of clus-
ters. ST-BOF takes two positive integers as parame-
ters: MinPts which is the number of spatio-temporal
neighbors to consider and k which defines the order of
the neighbors to determine the behavioral reachable
distance of the instances. The behavioral reachable
distance of two instances is calculated by finding the
maximum value between the distance of the behav-
ioral attributes of the two instances to compare and
the distance of the behavioral attributes of the second
instance from its k" nearest spatio-temporal neighbor
(behavioralk — distance). When evaluating that dis-
tance, different weights can be given to each available
behavioral attribute. Given MinPts and k, the formula
to calculate ST-BOF is the following:

1 ST-BRD(0)

ST-BOF(p) = ———— e Y D)
IST-NP)| a5ty ST-BRD(P)

where ST-N (p) is the ensemble of the spatio-temporal
neighborhood of object p with MinPts neighbors.
Then ST-BRD indicates the Spatio-Temporal Behav-
ioral Reachable Density, that is the inverse of the av-
erage behavioral reachable distance of the object p
w.r.t. its MinPts neighbors. This value is high if p
has spatio-temporal neighbors whose behavioral at-
tributes are similar to p. In the end, ST-BOF is the
average of the ratios of the ST-BRD of p’s neighbors
w.r.t. the ST-BRD of p. If an object p has an ST-BOF
greater than 1, then its spatio-temporal attributes are
very different from the spatio-temporal neighbors’ at-
tributes. On the other hand, if p has an ST-BOF less
than 1, then its behavioral attributes are very similar to
its neighbors’ behavioral attributes. Thus, ST-BOF al-
lows quantifying the potential outlierness of each in-
stance by showing how much its behavioral attributes
diverge from the ones of its spatio-temporal neigh-
bors.

ST-BDBCAN detects outliers by grouping in-

stances with similar behavioral attributes in the same
cluster and identifies instances with abnormal be-
havioral attributes as outliers based on their spatio-
temporal locality. Thus, given an instance, this algo-
rithm exploits the spatio-temporal attributes to iden-
tify its neighboring observations. Then, the behav-
ioral attributes of the instance and the neighbors’ be-
havioral attributes are compared to define clusters.

Firstly, the algorithm marks every instance as un-
classified and calculates ST-BOF for each of them.
Then, the upper bound of ST-BOF (ST-BOFUB) is
calculated considering the percentage of anomalies
expected to find (AP) that is a configuration parame-
ter. Instances with ST-BOF values above ST-BOF are
labeled as spatio-temporal outliers. After setting ST-
BOFUB, every unclassified instance with an ST-BOF
lower than ST-BOFUB is selected as a candidate core
instance. Then, to become a core instance, at least
MinPtsInCluster neighborhoods of p should have an
ST-BOF lower or equal to ST-BOFUB. Moreover, at
least MinPtsInCluster neighborhoods (o) of p should
verify the condition:

S(Tﬁiﬁig) < ST-BRD(p) < ST-BRD(0) * (14 pct)

where pct is the percentage of variation accepted
in ST-BRD. If p is a core instance, a cluster can be
generated starting from that instance by finding in-
stances with similar behavioral attributes whose ST-
BOF is lower than ST-BOFUB. In this way, a spatio-
temporal behavioral-based cluster containing the in-
stance is generated. This process is repeated till none
of the remaining instances can be a core instance or
can be inserted in a cluster. At the end of this process,
all the unclassified instances are marked as noise.

3.2 Implementation

We developed a Python implementation of the ST-
BOF and ST-BDBCAN combined algorithm in the
context of spatial time series generated by a sen-
sor network. This implementation can be exploited
also in different contexts where spatial time series are
available in a predefined and fixed set of locations.
The mutual distances between the locations are
pre-calculated to reduce the execution time of the al-
gorithm and its complexity. Two libraries have been
created separately for ST-BOF and ST-BDBCAN to
be eventually used in other applications. Moreover,
a Python script that exploits and combines the two
libraries were implemented. The script takes as in-
put two “csv” files: one with the sensors’ measure-
ments and the other with the distances between the
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sensors’ locations in meters. The user should also in-
dicate the names of the behavioral attributes. Even
for spatio-temporal time series where the positions
dynamically change over time (e.g. mobile sensors,
trajectories of values), our implementation can work
associating a unique id to each observation and pre-
calculating the spatial distance for each observation.
The generated output is a “csv” file with the classifi-
cation of the measurements; the outliers are labeled
with “clusterID” equal to -1. Furthermore, the script
allows the user to define different configurations of
the algorithms in order to obtain different results. The
ST-BOF and ST-BDBCAN parameters can be cus-
tomized and additional parameters are added to allow
a better configuration based on the use case: (i) the
user can give different weights to spatial, temporal,
and behavioral attributes, (ii) the user can optionally
specify a minimum percentage of outliers to detect,
(iii) specifying the sensor identifier, the algorithm will
execute considering exclusively the temporal dimen-
sion. Besides, the implementation allows detecting
two different types of anomalies based on the configu-
ration parameters: (i) contextual point anomalies, (ii)
contextual collective anomalies. In the context of a
sensors network, contextual point anomalies are sen-
sor faults and contextual collective anomalies are real,
but unusual conditions detected by sensors. Chang-
ing the parameters’ configuration, the algorithm can
be employed to find only sensor faults or both sen-
sor faults and unusual conditions. In Section 5, four
different configurations are tested.

4 USE CASE

This section is devoted to describing the context
where our algorithm implementation (Section 3) has
been exploited, i.e. the road traffic sensor network in
the city of Modena. In Modena, around 400 traffic
sensors (induction loops) are spread in different loca-
tions, usually near traffic lights. These sensors collect
the number of vehicles and their average speed with a
certain frequency. Sensors data are collected in real-
time into a PostgreSQL database (Po et al., 2019a)
and exploited to emulate real routes of vehicles in
a traffic model (Po et al., 2019b; Po et al., 2019a;
Bachechi and Po, 2019). Modena sensor rnap3 dis-
plays the fixed locations of all the traffic sensors avail-
able in the city of Modena. From September 2018
till now (July 2021), the database collected around
466 million observations recorded by the urban traf-
fic sensors in Modena. Since traffic sensors are in-

3Modena Sensor Map:
modenasensormap/

https://trafair.eu/
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stalled under the surface of the street, their mainte-
nance cannot be continuously granted, and sensors
can be faulty. Therefore, sensor data are not free
of anomalies. Thus, an anomaly detection process
is essential for two reasons: excluding outliers from
the traffic model input and discovering unusual traf-
fic conditions. Traffic sensors measurements are mul-
tivariate spatial time series since they provide infor-
mation about two variables: the traffic flow and the
average speed of vehicles. Besides, the two variables
are not independent: the number of vehicles and their
average speed are correlated. In our use case, sensors
are located in a single lane; thus, given a fixed time
interval, there is a maximum number of vehicles that
can pass on the road lane in the position where the
sensor is located at a certain average speed. We ex-
ploit the relation between flow and speed to perform a
real-time filtering of the data (“flow-speed correlation
filter” described in (Bachechi et al., 2020)).

Traffic sensors provide measurements every
minute. However, since they are located near traffic
lights, the time series of measurements is aggregated
summing up the number of vehicles and evaluating
the weighted average speed for each 15 minutes inter-
val to reduce the effect of traffic light logic. The “fil-
tered” observations are detected in one-minute data
and replaced with the average of the reliable observa-
tions in the 15 minutes interval; hence, the 15-minutes
aggregated time series is generated removing and re-
placing the “filtered” observations.

S EXPERIMENTS AND RESULTS

In this paper, we presented the implementation of ST-
BOF and ST-BDBCAN that are combined in order
to detect anomalies in geolocated spatial time series.
The time series are aggregated every 15 minutes ex-
cluding filtered observations as described in Section
4. This solution was tested in the context of road traf-
fic sensors varying the parameters to obtain different
results. Four experiments are performed on 3,423,179
observations collected during April 2019 by 49 sen-
sors located in the city of Modena. The experi-
ments are executed on a High-Performance Comput-
ing (HPC) Debian machine with 32 Intel(R) Xeon(R)
Silver 4108 CPUs @ 1.80GHz and 256 GB RAM.
The first experiment (Section 5.1) highlights the
influence of the spatial dimension in the detection
of anomalies comparing its results with the ones of
Exp.2. In Exp.3, the parameter k controls the statisti-
cal fluctuation in the computation of ST-BOF; thus,
while increasing k, the behavioral distance is eval-
uated for a more distant spatio-temporal neighbor.
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Figure 1: Traffic flow and average speed of sensor R002_52
from April 25 to April 30. Outliers detected in Exp.1 are
highlighted in orange.
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Figure 2: Traffic flow with outliers of sensor R002_S5 from

April 25 to April 30. The red lines are the traffic flows of the
sensors in the same crossroad. The figure refers to Exp.2.
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Figure 3: Average speed measurements of sensor R002_S5
with the anomaly identified in Exp.3.

Moreover, increasing the value of ST-BDBCAN,yinpts
(the number of observations that potentially belong to
a cluster), the number of outliers is reduced. Gen-
erally, high values of k and minPts are suitable for
the detection of contextual point anomalies Finally,
in Exp.4 only the parameter AP is modified keeping
the same configuration of Exp.2 for the others. The
parameter AP is the percentage of anomalies to de-
tect and influences the evaluation of ST-BOFUB. In
all the experiments, some parameters had the same
values: the value of ST-BOFyiuprs Was 20, pct was
set to 0.2, and the minimum number of points in a
cluster was 5. The other parameters vary as displayed
in Table 1. ST-BOF is defined with generic distance
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Figure 4: Traffic flow measurements of sensors R002_S5
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Table 1: Parameters’ configuration.

ST-BOF k | ST-BDBCANpinpis | ST-BDBCAN AP
Exp.1 4 20 1
Exp.2 4 20 1
Exp.3 9 100 1
Exp.4 4 20 3

functions, we decide to use the Manhattan distance as
behavioral distance function to give the same impor-
tance to flow and speed. The Manhattan distance is
evaluated between two points measured along axes at
right angles as the sum of the absolute values of the
difference between its coordinates. The selected units
of measure are meters and minutes. This configura-
tion is more suitable for the detection of contextual
collective anomalies. The implemented code allows
attributing a different weight to the spatial and tempo-
ral dimensions. However, since we assume that none
of the dimensions should be preferred in evaluating
the distance in our use case, we decide to equally dis-
tribute the weights in the last three experiments.

5.1 Experiment 1

The first experiment is performed without taking into
account the presence of other sensors in the sensor
network. The sensor R002_S2 data are the only ones
given as input to the algorithm. ST-BOF evaluates
the outlier factor considering only temporal neighbors
and ST-BDBCAN determines clusters based on the
temporal distance and the similarity of behavioral at-
tributes. The algorithm splits sensor data into 61 clus-
ters with a percentage of noise points of 25% and de-
tects 731 anomalies. In Figure 1, the time series of
the sensor flow and average speed is displayed with
the detected anomalies highlighted in orange and each
cluster displayed with a different color. The obser-
vations of each day are located in a different cluster
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Figure 5: At the top, traffic flow trend of sensor R131_S1 in Exp.3 with anomalies in orange and observations in another
cluster in light blue. At the bottom, the trend of average speed during the Easter period for sensor R131_SM83 on the left side

and sensor R131_S1 on the right side.

Table 2: Results.

Number of sensors with % anomalies
anomalies | < 1% | from 1% to 5% > 5% avg anomalies 31mul.. exec. e
per sensor anomalies | (minutes)
Exp.2 2688 17 25 4 55 632 76
Exp.3 1620 25 11 2 33 307 180
Exp.4 5051 15 22 9 103 1418 173

and the observations during the night period are often
classified as anomalies. We can observe that high val-
ues that are not in line with the normal trend for the
flow or the average speed are labeled as anomalies.
Comparing the two time series, it can be observed
that when the observation is different from the trend
for even just one of the variables (flow or speed), it is
labeled as an outlier.

5.2 Experiment 2

The second experiment takes as input the multivari-
ate time series of measurements produced by all sen-
sors in the selected area. The ST-BDBCAN algorithm
identifies 207 clusters. Table 2 shows the total num-
ber of detected anomalies, the number of sensors with
a very low (lower than 1%), normal (from 1% to 5%)
and high (higher than 5%) percentage of anomalies in
one month, the mean number of anomalies for each
sensor, the number of simultaneous anomalies, and
the execution time in minutes required to evaluate the
anomalies for the whole April month. Simultaneous
anomalies are observations labeled as anomalies that
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refer to the same timestamp and belong to different
sensors. The sensors without anomalies are 3. Exp.2
detects only 4 anomalies for sensor R002_S2 in the
whole month. Besides, sensor R002_S5, which is lo-
cated in the same crossroad of sensor R002_S2, has a
13% of outliers (375 anomalies). In general, the value
of flow detected by sensor R002_S5 is more than dou-
ble of the flow detected by the other sensors in the
crossroad. This leads to the classification of its val-
ues as anomalous even if they are aligned with the
normal trend of the sensor itself. In particular, the
majority of anomalies are detected during the week-
end and the holidays. In Figure 2, the time series of
sensor R002_S5 is compared with the time series of
sensors R002_S1, R002_S2, and R002_S4. It can be
observed that during holidays and weekends the traf-
fic flow measured by R002_S5 is high, while the traf-
fic flow of the other sensors in the crossroad is sig-
nificantly reduced. The high flow values are labeled
as anomalous since they are out of context compared
with the spatial neighbors.

In Exp.1, sensor R002_S2 had a high number of
anomalies because we do not compare its values with
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the neighboring sensors but only with its own trend.
When integrating the space dimension and compar-
ing its measurements with the simultaneous measure-
ments of the sensors in the same crossroad, the ma-
jority of observations that are classified as anomalous
in Exp.1 are contextualized with the neighboring sen-
sors observations and no more classified as anoma-
lies. However, sensor R002_S5 has a trend that signif-
icantly differs from the other sensors in the crossroad
and its number of anomalies is higher. Generally, it
can be observed that anomalies with very high flow
or speed values are sensor faults and anomalies corre-
sponding to normal values of flow or speed are con-
textual anomalies, as in the case of sensor R002_S5.

5.3 Experiment 3

The third experiment is a modified version of Exp.2
that was performed to reduce the number of detected
anomalies. In order to do that the values of k and
ST-BDBCANyinpss are increased. As shown in Ta-
ble 2, the number of anomalies is reduced to 1620,
the number of sensors without anomalies is triplicated
and the number of sensors with more than 5% of ob-
servations labeled as outliers is halved compared with
Exp.2. The number of clusters detected by Exp.3
is 25; increasing 5 times the ST-BDBCANinpss Pro-
duced a reduction of around 8 times in the number of
clusters. For sensor R002_S2 zero anomalies are de-
tected and for sensor R002_S5 only one anomaly is
detected. The anomaly is shown in Figure 3 and is a
real anomaly that corresponds to a very high and not
realistic value of average speed.

Therefore, it seems that this solution detects sen-
sor faults or contextual point anomalies instead of
unusual traffic conditions or contextual collective
anomalies. Observing the anomalies detected for sen-
sor R131_S1 (one of the two sensors with a very high
percentage of outliers) in Figure 5, the observations of
weekends and Easter holidays that are unusual traf-
fic conditions are labeled as anomalies. The graph
on the right-bottom shows the trend of Easter holi-
day average speed for sensor R131_S1 highlighting
that the values labeled as anomalous have very strange
values of average speed and can be considered sen-
sor faults. To underline the difference between these
values and the normal values of average speed, on
the left-bottom graph the average speed trend for the
same days of sensor R131_SM83 is displayed. More-
over, we can observe that all the observations of the
sensor R131_S1 from the Ist of April to the 25th of
April belongs to the same cluster since they have
the same color in the top graph of Figure 5. There-
fore, the parameters’ configuration of Exp.3 tends to

identify sensor faults or contextual point anomalies
rather than contextual collective anomalies because
the whole time series is located in the same cluster
and the overall trend can be investigated.

5.4 Experiment 4

The fourth experiment is a modified version of Exp.2
with a higher value of the p parameter. The percent-
age of anomalies that should be detected (AP) is set
to 3%. As a consequence, the value of ST-BOFUB
decreases from 2 in Exp.2 to 1.68, a lower upper
bound generates more anomalies. Lowering the ST-
BOFUB observations with a lower ST-BOF will be
labeled as anomalies; thus, the number of contextual
collective anomalies will increase and more unusual
traffic conditions will be identified (e.g. incidents or
traffic jams). Table 2 displays that this configuration
identifies 5051 anomalies and the number of sensors
with a very high percentage of anomalies is doubled
compared with Exp.2; however, the number of sen-
sors with less than 1% of anomalies is only slightly
reduced. The number of clusters (218) slightly in-
creased compared with Exp.2. For sensor R002_52,
only 5 anomalies are detected, however for sensor
R002_S5 more than 1000 anomalies are identified.
This configuration of parameters generates different
results for different sensors. In Figure 4, the traf-
fic flow time series of sensor R002_S5 and R031_S2
are displayed with their outliers highlighted in orange.
For sensor R002_S5, anomalies can be used to identify
weekends, holidays and the night period where traf-
fic flow drops significantly. For sensor R031_52, the
configured parameters allow detecting all the point
anomalies in the time series but do not highlight un-
usual traffic conditions.

5.5 Discussion

The experiments are performed on data collected by
road traffic sensors; this kind of sensor is particularly
challenging because the traffic flow and the average
speed of vehicles are not continuous phenomena in
the space-time domain. The time series of each sensor
can have a very different amplitude and trend com-
pared with the others in the same area. Moreover, in
the city of Modena, traffic sensors are located near
traffic lights; thus, even if data are aggregated ev-
ery 15 minutes to reduce the effect of the traffic light
logic, the flow and the average speed are strongly in-
fluenced by the viability of the crossroad. Thus, even
if the spatio-temporal distance between two observa-
tions is small the value of the behavioral variables
can be very different. For example, sensor R002_S2
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had very few anomalies in all experiments excluding
Exp.1, the reason is that its values of flow are very
low, generally behind 20 vehicles every 15 minutes;
thus, compared with the other sensors that have higher
variability in traffic flow the difference between its
observations is reduced. Although, when the obser-
vations of sensor R002_S2 are considered singularly,
as in Exp.1, the algorithm can recognize anomalous
peaks. Exp.2 demonstrates good performances in de-
tecting sensor faults or point anomalies in the major-
ity of sensors, but when the percentage of anomalies is
very high (above 5%) the detected anomalies also in-
clude unusual traffic conditions. Thus, when the per-
centage of anomalies for a sensor is low (less than
1%) a good solution to find unusual traffic conditions
is to perform anomaly detection for that single sensor,
as in Exp.1. The set of parameters of Exp.3 guaran-
tee the identification mainly of sensor faults. Indeed,
in Exp.4, both sensor faults and unusual traffic condi-
tions are identified.

6 CONCLUSIONS

This work describes the implementation of an al-
gorithm able to cluster spatio-temporal data and
recognize different types of anomalies: contextual
point anomalies and contextual collective anoma-
lies. The adopted algorithm combines ST-BOF and
ST-BDBCAN in cascade and has several parameters
which have to be heuristically optimized. Several
tests are needed to define the set of parameters suit-
able for the application and the type of anomalies
that need to be detected (e.g. sensor faults or sen-
sor unusual behavior). We released a Python imple-
mentation of the algorithm and tested it with differ-
ent configurations to find anomalies on traffic sensor
data in the city of Modena, Italy. The obtained re-
sults are promising and show the potential of consid-
ering the geographical features of the data in anomaly
detection. Thanks to this work, some unresolved
challenges can be highlighted: managing the spatio-
temporal distance is quite complicated and could ben-
efit from more sophisticated distance functions able
to capture the topology of the street, the traffic corre-
lations, and assign optimized weights to the features.
Still, this work could be a baseline for future improve-
ments. In order to reduce the execution time of the
algorithm, in the future, we will work on the imple-
mentation of Approx-ST-BDBCAN, which is the par-
allelized version of the algorithm described in (Dug-
gimpudi et al., 2019).
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