
Path Following with Deep Reinforcement Learning for Autonomous Cars

Khaled Alomari a, Ricardo Carrillo Mendoza, Daniel Goehring and Raúl Rojas
Dahlem Center for Machine Learning and Robotics - Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany

Keywords: Deep Reinforcement Learning, Deep Deterministic Policy Gradient, Path-following, Advanced Driver
Assistance Systems, Autonomous Vehicles.

Abstract: Path-following for autonomous vehicles is a challenging task. Choosing the appropriate controller to apply
typical linear/nonlinear control theory methods demands intensive investigation on the dynamics and kinemat-
ics of the system. Furthermore, the non-linearity of the system’s dynamics, the complication of its analytical
description, disturbances, and the influence of sensor noise, raise the need for adaptive control methods for
reaching optimal performance. In the context of this paper, a Deep Reinforcement Learning (DRL) approach
with Deep Deterministic Policy Gradient (DDPG) is employed for path tracking of an autonomous model
vehicle. The RL agent is trained in a 3D simulation environment. It interacts with the unknown environment
and accumulates experiences to update the Deep Neural Network. The algorithm learns a policy (sequence
of control actions) that solves the designed optimization objective. The agent is trained to calculate heading
angles to follow a path with minimal cross-track error. In the final evaluation, to prove the trained policy’s
dynamic, we analyzed the learned steering policy strength to respond to more extensive and smaller steering
values with keeping the cross-track error as small as possible. In conclusion, the agent could drive around
the track for several loops without exceeding the maximum tolerated deviation, moreover, with reasonable
orientation error.

1 INTRODUCTION

Autonomous driving has gained exceptional atten-
tion as an essential research topic in recent years.
It is forming the future of transportation. This ten-
dency is the product of the increased efforts from sev-
eral automotive manufacturers to integrate more Ad-
vanced Driver Assistance Systems (ADAS) with var-
ious automation features in their modern cars. More-
over, they endeavor to test them on public roads
around the globe to test their stability under envi-
ronmental uncertainties (Chan, 2017). To develop
fully autonomous cars, High-performance assistance
systems are needed; developing them demands in-
tensive investigation on the dynamics and kinemat-
ics states of the system under a wide range of driving
conditions in complex environments (Martinsen and
Lekkas, 2018).

Choosing the appropriate controller, applying typ-
ical linear/nonlinear control theory methods, is not
always possible due to the non-linearity of the dy-
namics, sensor noise influence, disturbances, and
unknown parameters. Thus, artificial intelligence ap-

a https://orcid.org/0000-0001-7248-0056

proaches to design an adaptive controller that can
reach optimal performance were raised. Reinforce-
ment learning is a framework by which a control pol-
icy can be found for a system with unknown dynam-
ics (Hall et al., 2011) (Calzolari et al., 2017).

2 RELATED WORK

Reinforcement Learning (RL) is a category of ma-
chine learning in which an agent learns from interact-
ing with an environment (i.e., the agent accumulates
the perception about the environment from experi-
mental trials and simple relative feedback received).
The goal is to let the agent learn the best possible ac-
tions in an environment to attain its goals efficiently.
During the process, the agent is capable of adapting to
the environment to maximize future rewards actively
(Sutton and Barto, 2018)(Kaelbling et al., 1996).

In (Wang et al., 2018), TORCS environment was
used to train an RL-agent. Their goal was to drive
the car at high speed in the center of the road without
crashing other cars. A set of sensor data, including
track points, car speed, orientation, and the deviation
between the vehicle’s longitudinal axis and the ideal

Alomari, K., Mendoza, R., Goehring, D. and Rojas, R.
Path Following with Deep Reinforcement Learning for Autonomous Cars.
DOI: 10.5220/0010715400003061
In Proceedings of the 2nd International Conference on Robotics, Computer Vision and Intelligent Systems (ROBOVIS 2021), pages 173-181
ISBN: 978-989-758-537-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

173

track, are used as inputs for an adopted DDPG algo-
rithm. Decisions are made for either no throttle or full
throttle, no braking or full braking, or full steering to
the left or the right.

In contrast to the previous approach, Jaritz et al.
(Jaritz et al., 2018) proposed to learn the end-to-end
driving control of an autonomous car using only im-
ages from a forward-facing monocular camera. They
trained the agent in a simulated environment to learn
full control -steering, brake, gas, and even hand brake
to a pressure drifting- using the A3C algorithm. Sim-
ilarly, in (Kendall et al., 2018), they used the monoc-
ular images to train an agent to follow a lane. In (Li
et al., 2019), a perception module in the form of a
Convolutional Neural Network (CNN) is utilized to
extract track information from the image data of a rac-
ing simulator. This information is then combined with
information about the driving condition, such as ve-
hicle position, speed, and orientation, to train an RL
agent using DPG to predict a continuous steering an-
gle.

Reinforcement Learning methods are incredibly
time-consuming, and millions of experiences need to
be accumulated to learn complicated tasks accurately.
As a consequence, most of the successfully robotic
RL agents are trained in a simulation environment.
As a result, the training process can be automated ef-
ficiently, and the dangerous circumstances caused by
trial-and-error are reserved from the real world. Still,
The RL agent should be tested in a real situation.

In this paper, the state-of-the-art DRL algorithm
Deep Deterministic Policy Gradient is employed for
path tracking control of an autonomous model ve-
hicle. The RL agent is trained in a 3D simulation
environment. It interacts with the anonymous envi-
ronment and accumulates experiences to update the
Deep Neural Network. The agent is trained to gener-
ate and execute heading angles to follow a path with
a minimum cross-track error. The deviation between
the target and actual path is mainly considered, which
could be significantly reduced. The benefit of our im-
plementation is that it brings close the implementa-
tion from simulation to real-world application. More-
over, the simulator engine used has dynamic parame-
ters which make the training closer to reality. It also
has other sensors used in autonomous driving, such as
LIDAR, stereo camera, and odometry.

3 METHODS AND SETUP

This section describes in detail the methods used to
implement the environment and the reinforcement
learning agent.

3.1 Environment Setup

This subsection describes the setting up of an envi-
ronment to apply and test RL-agent. The built envi-
ronment integrates the AutoMiny-simulator (Schmidt
et al., 2019) with the open-source library OpenAI
Gym (Brockman et al., 2016). In the following,
the environment structure will be described in detail,
along with the AutoMiny-simulator.

3.1.1 AutoMiny Simulator

The AutoMiny-Simulator is integrated with ROS and
is based on the robust physics engine Gazebo. It cre-
ates a comprehensive 3D dynamic robot environment
capable of recreating the physical driving setup of the
agent. Furthermore, it emulates dynamic parameters
such as static and dynamic friction and aerodynam-
ics. It considers the vehicle dynamics parameters like
wheel acceleration, wheel material, and torque, mak-
ing it more reliable to transfer the developed algo-
rithms into the model car and test them.

The simulator is developed based on the ex-
isting AutoMiny project at the Freie University of
Berlin (Alomari et al., 2020). It provides all nodes and
topics used by the physical AutoMiny car (Schmidt
et al., 2019). The Kinematic model of the car has
been parameterized using its URDF description. All
the onboard sensors associated with AutoMiny, like
the RGBD camera, IMU, and the laser scanner, are
provided in the simulated car.

3.1.2 GazeboAutominyEnv

The developed environment, named ”GazeboAu-
tominyEnv,” links the AutoMiny-simulator with the
open-source library OpenAI Gym. Figure 1 describes
the structure of the developed environment. First, the
simulator is launched while initializing the environ-
ment class. Then, at the rate of 30 Hz, the observation
function inquires raw observation data from the sim-
ulator by subscribing to pre-defined suitable topics.
Moreover, it calls the path points. Finally, the obser-
vation function collects data and returns them normal-
ized in a box form (continuous values).

At each iteration, the step function requests the
last observation data. This supplied information de-
fines a target point on the path and formalizes a time-
related state. The state-space is fed to both the actor
and the critic networks. The actor-network processes
this data and predicts an action based on the policy.
The estimated action is sent back to the environment
and supplied to the critic network as well. The step
function controls the action and publishes it to the

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

174

RL‐Agent

State

Reward

Reset

Action

Step

Position
correction

Environment

Policy

Reinforcement
learning
algorithm

Policy
update

Simulator
Subscriber

Localization

IMU

Publisher

Steering

Speed
XOR

Observation

Trajectory(DDPG)

Figure 1: GazeboAutominyEnv Environment Setup Struc-
ture; At each iteration, the step function fed the state param-
eters to the RL-agent, which predicts an action based on the
policy. The estimated action is sent back to the step func-
tion to process it. After taking action, the reward function
evaluates the new error value and either reward the action
or penalize it.

simulator topics. After taking action, the step func-
tion requests new observation data. This data is used
to update the state and calculate the error between the
estimated and actual controlled value. Meantime, it
evaluates this error value and either reward the action
or penalize it. The reward value is delivered to the
critic network. The critic network then updates the
policy. However, the process on the agent side will be
described more in detail in Section 3.2.

Once the episode is completed or terminated, the
step function calls the reset function, which moves the
agent back to an initial position (either fixed or ar-
bitrary) using a navigation system based on a vector
virtual force field (Alomari et al., ress).

3.2 Design of the RL-agent

For this work, the Deep Deterministic Policy Gra-
dient (Lillicrap et al., 2016) is employed. It is one
of the straightforward algorithms in Deep Reinforce-
ment Learning, which is suitable for continuous and
discrete action spaces. Furthermore, DDPG has an
actor-critic architecture and concurrently learns a pol-
icy and a Q-function. The agent implementation is
utilized by Keras-rl. Keras-rl operates with the Ope-
nAI Gym environment. The deep learning part is ac-
complished in the Keras framework with TensorFlow
backend and allows us to establish custom actor-critic
networks.

Figure 2 presents the basic structure of the imple-
mentation of the reinforcement learning agent. The
process in the agent can be classified into three ma-
jor simultaneous processes. In rule one, the actor-
network µ(s|θµ) in the RL agent receives a state st
from the environment, predicts an action at based on
this state and using the policy learned, and passes it

MemoryMemory

Replay
Buffer

Memory

Replay
Buffer

EnvironmentEnvironment

StateState

RewardReward

ActionAction

PredictionPrediction

Actor-critic
Networks

Learning

Target
Actor-critic
Networks

DDPG

Update Weights

N Sample Experiences

action

State / reward

Figure 2: DDPG agent Setup Structure.

(with additional noise N) to the environment for ex-
ecution, as shown in Equation 1.

at = µ(s|θµ)+Nt (1)
Consequently, both the state received from the

environment and the predicted action are fed to the
critic-network Q(s,a|θQ) to estimate an action-state
value function Q(s,a). Once the agent ends up in
a new state st+1, an experience tuple consisting of
state, action, reward, and follower state (st ,at ,rt ,st+1)
is collected in a finite-sized cache known as replay
buffer. When the replay buffer is full, it discards the
oldest samples and stores new ones. In rule three, a
minibatch sample of size N from the collected experi-
ence in the replay buffer is delivered to a copy of the
actor-critic networks. The copy architecture is known
as target-actor µ

′
(s|θµ) and target-critic Q

′
(s,a|θQ)

networks. Those networks are used to predict for each
sample i ∈ N of the minibatch an output yi based on
the Equation 2 (Lillicrap et al., 2016):

yi = ri + γQ
′
(si+1,µ

′
(si+1|θµ

′
)︸ ︷︷ ︸

ai+1

|θQ
′
) (2)

Then, the predicted values are used to calculate
the loss function in Equation 3 (Lillicrap et al., 2016)
and update the critic network weights by minimizing
the loss. While the actor policy is updated using the
sampled policy gradient shown in Equation 4:

L =
1
N ∑

i
(yi−Q(si,ai|θQ))2 (3)

∇θµJ ≈ 1
N

∇aQ(s,a|θQ)|s=si,a=µ(si) ∇θµµ(s|θµ)|si (4)

A feedforward, fully-connected Multi-Layer-
Perceptron ANN structure with two hidden layers is
used for both actor and critic networks. Rectified Lin-
ear Unit (ReLU) activation function is applied to all
neurons in the hidden layers. The output layer is then
either the action the agent can perform or the state-
action value function. Tangent-hyperbolic (tanh) ac-
tivation function is employed to neurons in the output
layers of both structures.

Path Following with Deep Reinforcement Learning for Autonomous Cars

175

xmap

ymap

Ѱ

Ѱt

Lookahead distance

Target
point

Closest
point

el ed

Figure 3: Path following task setup; the agent is trained to
follow a given path by controlling its steering. Besides the
distance to the target ed , the cross-track-error el is measured
and minimized.

The actor-network is used to learn the determinis-
tic policy of the DDPG agent, where an explicit ac-
tion a is determined directly based on the car obser-
vation data and the target point. The critic network
learns state-action value function Q based on the cur-
rent state and the action selected in it. The action was
not included until the second hidden layer of the critic
network. Both the number of neurons in the hidden
layers of the ANN, besides the learning rate, are ar-
bitrarily selectable hyperparameters. The Ornstein-
Uhlenbeck (OU) noise process, added to the action
to guarantee the agent’s exploration, is defined by the
parameters θ = 0.15, µ = 0, and σ = 0.2.

3.3 Path Following Setup

Besides the distance to the target, the agent learns
to minimize the cross-track error to achieve the best
match between the driving path and the desired one.
Figure 3 simulates the agent in one of the possible
states. The agent is supposed to drive at a constant
speed and interact with an anonymous environment
to explore it, attempting to reach a target point. While
the agent is moving, the desired target will be updated
continuously with all other parameters, and based on
the reward function, it receives either a reward or a
penalty. In addition, the agent is modifying its orien-
tation by controlling its steering based on the reward
it receives.

Figure 4a shows the middle points of the path that
will be used to train the agent. Using several points
to train the agent will enhance its performance when
tested on other trajectories. The agent will learn how
to approach points by steering left and points on his
longitudinal axis. Still, due to the limitation of the
map, the agent might fail on the tracks that have the
right turns. The desired speed is estimated based on
the orientation error between the agent and the target
point. Figure 4b shows the relationship between the
target speed and the orientation error.

Table 1: Observation data provided through the environ-
ment.

Symbol Description Min Max
x [m] Car position on x axis -0.1 6.30
y [m] Car position on y axis -0.1 4.50

ψ [rad] Car orientation yaw −π +π

vx [m/s] Car speed on x axis -0.0 +0.8
vy [m/s] Car speed on y axis -0.0 +0.1
xt [m] Target position on x axis -0.1 6.30
yt [m] Target position on y axis 0.1 4.50

ψt [rad] Target orientation yaw −π +π

vt [m/s] Target linear speed 0.0 +0.8

Table 2: List of error measured by the environment step
function.

Symbol Description
ed Distance to target
el Cross track error
eψ Orientation error

The RL agent demands to get all associated infor-
mation about the current state of the environment to
calculate the control components and accomplish the
mission. The environment provides various contin-
uous vehicle state variables and sensors data. How-
ever, the main goal is to train the agent with as few as
possible low-dimensional data. The symbols of state
variables distinguished as necessary, including a short
description and the value range used for data prepro-
cessing, are shown in Table 1. (x,y) describes the cur-
rent position of the vehicle at the midpoint of the rear
axle, where (vx,vy) are the linear vehicle speed vec-
tor components. ψa defines the rotational movement
of the vehicle around the vertical axis of the vehicle
coordinate system. (xt ,yt ,ψt) are the target point and
orientation respectively. vT is the target speed.

Furthermore, various error measures are available,
which will be used to design the RL agents’ reward
function. Table 2 shows a list of error quantities cal-
culated in the state. ed is longitude to the Target po-
sition. In contrast, the cross-track error el describes
the deviation from the nominal to the actual path, and
the yaw angle error eψ describes the deviation in the
alignment of the vehicle. All observation quantities
and errors are normalized.

One of the key advantages of using DDPG is its
ability to operate over continuous action spaces. In
the studied challenge, the agent learns a continuous
steering angle, which can assume any value between
[−0.78,+0.95] rad. Table 3 shows the value range for
action space

Rewards are calculated each time step t after tak-
ing action a. It can be viewed as a feedback flag that
evaluates how good taking action a in state s is. In this

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

176

xmap

ymap

L
=

2
m

R = 1.65 m

(a)

-1 -0.5 0 0.5 1

e [normalized]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
es

ire
d

sp
ee

d

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)
Figure 4: (a) The path used to train the RL-agents, (b) beside the function used to predict the desired speed, while the actual
speed value before normalization can be found in Table 1.

Table 3: RL-agents continuous action space.

Symbol Description Min Max
δ [rad] Steering Command -0,78 +0,95
v [m/s] Speed Command -0.0 +0,8

task, two main errors should be minimized in each
step: the vehicle’s orientation error and the deviation
between the target and actual path of the vehicle, since
the vehicle should deviate as little as possible from
the planned line of the path planner. Therefore, the
reward function should evaluate both eψ and el .

r(t) = r(eψ)+ r(el) (5)

However, the cross-track error needs to be limited
to end the training episode and reset the agent once
exceeding it.

r =

{
−10 if ed > D

1
σ
√

2π
exp(− ((eψ+el)−µ)2

2σ2) else
(6)

A Gaussian distribution is used to determine the
rewards component, shifted by -1 with mean value
µ = 0 and standard deviation σ = 0.2.

The network structure mentioned in 3.3, and Ta-
ble 4 presents the number of neurons used in the hid-
den layers for both networks. The learning process
applied is Adam with a learning rate of 10−4 and
10−3 for the actor and critic networks, respectively.
A discount factor of γ = 0.99, and for soft target up-
dates τ = 10−3 were used. The random noise process
was added to the action output value to guarantee the
agent’s exploration during the whole training proce-
dure. It is defined by the parameters θ = 0.15, µ = 0,
and σ = 0.2.

Table 4: Number of neurons used in hidden layers for the
actor and critic networks.

h1a h2a h1c h2c
Architecture 1 400 300 400 300

4 EVALUATION

The training is set to 120 000 steps and elaborated as
a continuous task. i.e., no maximum number of steps
per episode is defined. The episode ends only when
the cross-track-error is higher than a specific value (D
= 20 cm). When the agent exceeds the defined cross-
track error, the learning process pauses, and the agent
position is set back close to the track again. Only then
does the training resume. The maximum allowed de-
viation of the target path is chosen based on the map
size and the function’s capabilities that reset the agent
position.

4.1 Reward Function Evaluation

Considering Figure 3, the setup includes three main
errors. The euclidean distance to the target point ed ,
the cross-track error el , and the orientation error eψ.
In this experiment, we will study the effect of com-
bining el with eψ in the reward function R(eψ,el), and
compare the result with using reward function R(eψ)
that only consider the eψ.

Table 5 presents a quick review of the setup used
to train the agents. For both agents, a fixed lookahead
offset of 60 cm is defined, the same network structure,
shown in Table 4 is used. Furthermore, both used the
observation space shown in Table 1. The agents were
tasked to obtain proper steering policies.

Path Following with Deep Reinforcement Learning for Autonomous Cars

177

Table 5: Comparison, of setup used to train RL-agents to verify the reward function.

Observation Action Reward Lookahead Network
Agent 1 Table 1 δ R(eψ,el) 60 [cm] Table 4
Agent 2 Table 1 δ R(eψ) 60 [cm] Table 4

0 10 20 30 40 50 60 70 80
Loop

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
ea

n
e

l [m
]

agent 1
agent 2

(a)

0 10 20 30 40 50 60 70 80
Loop

-0.1

0

0.1

0.2

0.3

0.4

0.5

M
ea

n
e

 [r
ad

]

agent 1
agent 2

(b)
Figure 5: Comparison of the two RL-agents performance
during training for 76 loops with lookahead offset of 60 cm;
(a) the mean cross-track error over each loop of the training.
(b) the mean orientation error vs. training loops.

Both agents were trained for 76 loops around the
path. In Figure 5, the mean orientation error eψ, and
mean cross-track error el are plotted vs. loops over
the whole training for both agents. As we can spot out
from the figure, integrating the cross-track error in the
reward function enhanced the agent’s ability to drive
closer to the target path without affecting the orien-
tation error. Nevertheless, both agents could drive
around the path for a full loop by the end of the train-
ing.

In order to evaluate the performance of both
agents, they were both tested after the end of the train-
ing. The idea was to let them drive around the path

0 500 1000 1500
Step

0

0.05

0.1

0.15

0.2

0.25

e
l [m

]

agent 1
agent 2

Figure 6: Comparison of the two RL-agents performance
during testing for one loop with lookahead offset of 60 cm;
the cross-track error over one loop of the testing.

Table 6: Number of hidden layers neurons in each RL-
agent.

h1a h2a h1c h2c
Architecture 1 400 300 400 300
Architecture 2 600 450 600 450

for several loops and measure the Root-Mean-Square
(RMS) for the orientation error and the cross-track er-
ror and compare the results of a quantitative perspec-
tive. Then, in the main time, observe the changes of
both errors during one loop drive.

Figure 6 plots the variations of the cross-track er-
ror during the second loop of the test. In the figure,
it is shown that agent 1 showed more steady perfor-
mance in keeping the car close to the path than agent
2. Moreover, agent 2 failed to finish one loop around
the track, and a reset position was needed to put it
back close to the track. Figure 7 shows the RMS error
over the 20 loops of the testing for both agents. As a
result, we can assess the performance of both agents
over the whole testing period.

4.2 Neural Network Evaluation

In this experiments, different agents with various neu-
ral network architectures were trained to learn the
steering policy. Two of them outperformed the other
ones. In the following, the victorious agent’s results
will be compared. Table 6 shows the number of hid-
den layers neurons in each RL-agent.

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

178

0 5 10 15 20
Loop

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

R
M

S
(e

l)
[m

]

agent 1
agent 2

(a)

0 5 10 15 20
Loop

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

R
M

S
(e

)
[r

ad
]

agent 1
agent 2

(b)

Figure 7: Comparison of the two RL-agents performance
during testing for 20 loops with lookahead offset of 60 cm;
(a) the RMS cross-track error over 20 loops during testing.
(b) the RMS orientation error vs. 20 loops.

Both agents learned on the same reward function
R(eψ,el), and were trained for 76 loops with a fixed
lookahead offset of 60 cm. Furthermore, both used
the observation space shown in Table 1. Finally, the
agents were tasked to obtain proper steering policies.
In Figure 8, the mean cross-track error el is plotted vs.
loops over the whole training for both agents. As we
can spot out from the figure, the agent used architec-
ture 2 could remain a small cross-track error by the
end of the training. Nevertheless, both agents could
drive around the path for a full loop by the end of the
training.

In order to evaluate the performance of both
agents, they were both tested after the end of the train-
ing. The idea was to let them drive around the path for
several loops and measure, at each loop, the RMS for
the orientation error, as well as the cross-track error
and compare the results of a quantitative perspective.

0 10 20 30 40 50 60 70 80
Loop

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n
e

l [m
]

architecture 1
architecture 2

Figure 8: Comparison of the two RL-agents performance
during training for 76 loops with lookahead offset of 60 cm;
the mean cross-track error over each loop of the training.

0 500 1000 1500
Step Number

0

0.05

0.1

0.15

0.2

0.25

e
l [m

]
architecture 1
architecture 2

Figure 9: Comparison of the two RL-agents performance
during testing for one loop with lookahead offset of 60 cm;
the cross-track error over one loop of the testing.

In the main time, observe the changes of both errors
during one loop drive.

Figure 9 plot the variations of the cross-track error
during the second loop of the test. As can be noticed
from the Figure, the agent with architecture 1 showed
more steady performance in keeping the car close to
the path than agent 2. Moreover, the agent with ar-
chitecture 2 failed to finish one loop around the track.
A reset position was needed to put it back close to
the track at the final curvature of the path. Figure 10
shows the RMS(el) over the 6 loops of the testing for
both agents. As a result, we can assess the perfor-
mance of both agents over the whole testing period.

The training of the agent with architecture 2 was
repeated with a double number of training steps. Still,
it was not able to show a better performance than the
presented one. For this reason, we will not consider it
in any further evaluation.

Path Following with Deep Reinforcement Learning for Autonomous Cars

179

0 1 2 3 4 5 6
Loop

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
(e

l)[
m

] architecture 1
architecture 2

Figure 10: Comparison of the two RL-agents performance
during testing for 6 loops with lookahead offset of 60 cm;
the RMS cross-track error over 6 loops during testing.

4.3 Further Evaluation

The presented experiments confirmed the importance
of rewarding the cross-track error besides the orienta-
tion error in the path tracking tasks. Agent 1 showed
an exceptional performance during testing the agent.
However, we still need to prove how dynamic the
trained agent is for changes, e.g., the lookahead dis-
tance. For this reason, the agent will be tested for dif-
ferent lookahead distances (20, 40, 80, 100) cm. By
modifying the lookahead distance, we can analyze the
agent’s steering policy strength to respond for more
extensive and smaller steering values with keeping the
cross-track error as small as possible.

0 500 1000 1500
step

0

0.05

0.1

0.15

e
l [r

ad
]

lookahead 20
lookahead 80
lookahead 100

Figure 11: Testing RL-agents performance For different
lookahead offset values;the cross-track error over one loop
of the testing.

Figure 11 shows the measured errors over one
loop during the proposed test, for some elected looka-
head offset of (20, 80, 100) cm, quantitatively. Thus,
the agent was able to drive around the track with-
out exceeding the maximum tolerated deviation (D =

20cm). Moreover, the orientation error variation is
also in an acceptable range. However, to evaluate
the test more reasonably, the test was held for several
loops, and the mean error (eψ and ed) over each loop,
for the whole testing period, is measured and plotted
in Figure 12.

0 5 10 15 20
Loop

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
e

l [m
]

lookahead 60
lookahead 20
lookahead 40
lookahead 80
lookahead 100

Figure 12: Comparison of the RL-agents performance dur-
ing testing for 20 loops with different lookahead offset; (a)
the RMS cross-track error over 20 loops during testing.

After quantitatively evaluating the agent, it is time
to evaluate it qualitatively. In Figure 13, The routes
the agent drove during testing for one loop with dif-
ferent lookahead offset are plotted as well as the op-
timal route. As we can see, the routes are very close
to each other. In order to summarize this plot infor-
mation, the mean and the Standard Deviation (SD) for
each route are shown in Table 7.

5 CONCLUSIONS

In the context of this paper, the state-of-the-art deep
reinforcement learning algorithm DDPG was selected

0 1 2 3 4 5 6
xmap [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

y m
ap

 [m
]

optimal trajectory
trained lookahead
lookahead 20
lookahead 40
lookahead 80
lookahead 100
starting point

Figure 13: Agent’s driven route during testing, with differ-
ent lookahead testing, together with the optimal path.

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

180

Table 7: Mean and Standard Deviation values for testing the RL-agent with different lookahead offset.

Lookahead 60 20 40 80 100
Mean 0.0195 0.0164 0.0188 0.0391 0.0671

SD 0.0141 0.0090 0.0110 0.0190 0.0398

as an end-to-end learning approach to take over the
comprehensive steering control for an autonomous
vehicle. The proposed agent has been trained and
tested in the AutoMiny-Gazebo environment, which
implements a realistic model of the AutoMiny model
car. The target point was updating continuously in
each iteration during training. The aim was to en-
courage the agent to follow a pre-defined path with a
minimum cross-track error. A continuous state space
includes the agent position, orientation, speed, and
the target point coordinates, and the desired orienta-
tion was employed. Both cross-track error and ori-
entation error were combined in the reward function.
Updating the target points during training made the
agent gain more experience and drove a complete
loop around the track after 80 training loops. Al-
though the achieved results seem very encouraging,
more testing is necessary to validate the agent’s abil-
ity to follow different paths with more diverse route
profiles. Moreover, enhance the approach to include
computing the optimal velocity of the vehicle depend-
ing on the path and deploying the agent in a real plat-
form.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
Bundesministerium fur Verkehr und digitale Infras-
truktur (BMVI) in Germany as part of the Shut-
tles&Co project, within the Automatisiertes, Vernet-
ztes Fahren (AVF) program.

REFERENCES

Alomari, K., Carrillo Mendoza, R., Sundermann, S.,
Göhring, D., and Rojas, R. (2020). Fuzzy logic-based
adaptive cruise control for autonomous model car. In
ROBOVIS.

Alomari, K., Sundermann, S., Göhring, D., and Rojas, R.
(in press). Design and experimental analysis of an
adaptive cruise control. Springer CCIS book series.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Ope-
nai gym.

Calzolari, D., Schürmann, B., and Althoff, M. (2017).
Comparison of trajectory tracking controllers for au-
tonomous vehicles. In 2017 IEEE 20th Interna-

tional Conference on Intelligent Transportation Sys-
tems (ITSC), pages 1–8.

Chan, C.-Y. (2017). Advancements, prospects, and impacts
of automated driving systems. International Journal
of Transportation Science and Technology, 6(3):208 –
216. Safer Road Infrastructure and Operation Man-
agement.

Hall, J., Rasmussen, C. E., and Maciejowski, J. (2011). Re-
inforcement learning with reference tracking control
in continuous state spaces. In 2011 50th IEEE Confer-
ence on Decision and Control and European Control
Conference, pages 6019–6024.

Jaritz, M., de Charette, R., Toromanoff, M., Perot, E., and
Nashashibi, F. (2018). End-to-end race driving with
deep reinforcement learning. CoRR, abs/1807.02371.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996).
Reinforcement learning: A survey. Journal of Artifi-
cial Intelligence Research, 4:237–285.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen,
J., Lam, V., Bewley, A., and Shah, A. (2018). Learn-
ing to drive in a day. CoRR, abs/1807.00412.

Li, D., Zhao, D., Zhang, Q., and Chen, Y. (2019). Re-
inforcement learning and deep learning based lat-
eral control for autonomous driving [application
notes]. IEEE Computational Intelligence Magazine,
14(2):83–98.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2016). Con-
tinuous control with deep reinforcement learning. In
Bengio, Y. and LeCun, Y., editors, 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

Martinsen, A. B. and Lekkas, A. M. (2018). Curved
path following with deep reinforcement learning: Re-
sults from three vessel models. In OCEANS 2018
MTS/IEEE Charleston, pages 1–8.

Schmidt, M., Bünger, S., and Chen, Y. (2019). Autominy-
simulator mit gazebo.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition.

Wang, S., Jia, D., and Weng, X. (2018). Deep rein-
forcement learning for autonomous driving. CoRR,
abs/1811.11329.

Path Following with Deep Reinforcement Learning for Autonomous Cars

181

