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Abstract: The notion of end-user programming gains increasing attention in the context of the Internet of Things (IoT) 
as a promising way to enable users develop personalized automations by deploying visual programming 
tools. In an IoT ecosystem, devices may be either invisible to users, embedded or hardly locatable, 
sometimes physically inaccessible. In this sense, testing becomes very challenging and difficult, since 
bringing physical devices to certain states may be either impractical (e.g. window and door sensors) or 
overall unsafe (e.g. fire or smoke sensors). It is crucial that trials are carried out in a protected, virtual 
environment, not the physical one. In this context we discuss a simulated runtime that addresses the 
challenges of testing end-user automations by entirely virtualizing devices. In this runtime, tests are not 
confined to a particular location, but may be carried out anywhere and anytime, totally disengaged from the 
physical ecosystem, with all user tools residing in any typical mobile machine, capable to fully operate 
standalone in test mode. Finally, when automations involve time and scheduling, for practical reasons, time 
itself can be simulated so that testing is done on demand, not following or waiting the pace of physical time. 

1 INTRODUCTION 

The Internet of Things (IoT) is a rapidly-growing 
domain, constantly evolving in terms of 
infrastructures, integrated solutions, development 
tools and best practices. Technically, the IoT domain 
rents its roots to ubiquitous computing, which in the 
late 90s envisioned the future as ecosystems of 
distributed computation and interaction resources. In 
the context of user-interface technology this idea 
was at that time abstracted by the concept of beyond 
the desktop interactions. Some interaction paradigms 
that appeared in this early period included the 
following features: treating environments as 
displays, projecting display output on various 
surfaces, using physical objects for input, putting 
main emphasis on hand gestures and body postures, 
and deploying public shared screens and projectors.  

Such works tried to preserve computational 
ubiquity by treating interaction as an activity 
involving directly the environment. However, the 
entrance to the smartphone era caused a huge 
paradigm shift, with the vision of information and 
computation anywhere and anytime becoming fully 
instantiated. The user-interface technology for 

smartphones progressed rapidly, supported with 
novel interaction styles and advanced software 
libraries. The latter turned interaction in mobile user 
machines as the prevalent interaction paradigm in 
the new era, effectively disrupting past ideas and 
concepts related to beyond the desktop interactions.  

 
Figure 1: The disruption of the beyond-the-desktop 
metaphor well after the entrance to the smartphone era. 
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Simultaneously, IoT grew with a large variety of 
mission-specific devices, mostly in the category of 
sensors, actuators and controllers (Dachyar et al, 
2019), while large-scale infrastructures started to 
proliferate. The previous situation, which is depicted 
under Figure 1, caused a technological gap: while 
device ecosystems constantly grow, the real benefits 
to daily life for individual consumers are lacking.  

The latter is explained by the fact that everyday 
automations are highly personalized in nature, being 
technically small-scale applications, something that 
implies a niche-market with a small industrial 
interest. This also explains why the idea of end-user 
development quickly received attention and is now 
considered a very promising solution. Not only it 
may address this gap, but it is fully aligned to the 
need of everything in my mobile, enabling the 
management and execution of automations to be 
entirely handled via a typical smartphone device. 

 
Figure 2: End-user tool layers required to enable crafting 
of personalized smart automations (from Savidis, 2021). 

1.1 Contribution 

Supporting the end-user development of smart 
automations entails a number of challenges that can 
be only addressed by offering very powerful but also 
user-friendly toolchains. The required layers of 
functionality are depicted in Figure 2, with testing 
being the upper level that today is less explored and 
examined in the context of end-user development.  

Due to the highly distributed nature of IoT 
device ecosystems, it is crucial that testing can be 
carried out in a protected, virtual environment, not 
the physical one, since bringing physical devices to 
certain states may be either impractical (e.g. window 
and door sensors) or overall unsafe (e.g. fire or 
smoke sensors). In this context, out contribution is 
the full-scale implementation of a simulated IoT 

runtime, enabling end-users carry out isolated testing 
and debugging of smart-automations, with virtual 
devices and virtual-time control, independently and 
physically away of the actual IoT device ecosystem. 

2 RELATED WORK 

We briefly review most popular tools for visual 
programming in the IoT domain, judging their 
testing facilities. 

HomeKit (HomeKit, 2021) from Apple allows 
control connected home accessories (if compatible 
with the system), and supports to some degree user-
defined automations as combinations of accessory 
control actions. Not an end-user solution as such, 
focuses mostly on premade smart home solutions 
with emphasis on advanced configurations. 

Puzzle (Danado and Patterno, 2015) is a visual 
development system for automations with smart IoT 
objects adopting the jigsaw metaphor. The system is 
primitive, without the full-scale capacity of common 
VPLs, entirely lacking testing or simulation tools. 

Wia (Wia, 2021) is a cloud-based IoT 
development platform for linking devices, services 
and sensors using Wia Flow Studio. This system is 
better for service composition, while for testing only 
the real service elements can be deployed. 

Embrio (Embrio, 2021) offers a drag-and-drop 
visual programming interface for Arduino, requiring 
connection to the actual circuit and peripherals upon 
testing, lacking any debugging facilities. 

XOD (XOD, 2021) is a microcontroller 
programming platform with a visual interface. It is 
based on the node model, which can represent 
sensors, motors, or a piece of functional code like 
comparison operations, text operations, and so on. 
As with all previous systems, testing requires 
connectivity of the real devices. 

Zenodys (Zenodys, 2021) allows developers 
create IoT apps by organizing dataflow connections. 
It is an advanced platform for predictive 
maintenance, real-time control systems and product 
line automation, rather than typical non-professional 
end-users and personal automation development. All 
testing is done in the field by professionals. 

Node-Red (Node-Red, 2021) is a visual flow-
based system for wiring hardware devices with input 
and output connections, but relies on JavaScript for 
more elaborate algorithmic features. Hence, it is 
more complicated for non-professionals while, as in 
all previous tools, tests must be performed with the 
real connected devices. 
 

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

146



 
Figure 3: Software architecture of the integrated test runtime. 

In summary, there are various tools focusing on 
visual programming, some of which could be used to 
build smart IoT automations. However, testing no 
special care is taken for testing support, treated as a 
process that is carried out within real infrastructures 
and device ecosystems. The latter is impractical, 
unsafe and for certain cases even infeasible. 

3 SOFTWARE ARCHITECTURE 

Our testing tools are part of large-scale Integrated 
Development Environment (IDE) for visual-
programming, which relies on the (Blockly, 2021) 
visual programming editor and the (IoTivity, 2021) 
middleware for smart objects. The software 
architecture of our integrated test runtime is 
illustrated under Figure 3 (the rest of the IDE 
components are skipped for clarity). 

In the IoT era, heterogeneity is a fundamental 
and likely unavoidable characteristic, concerning 
networking, protocols and device APIs. In this 
context, diversity is expected to further proliferate, 
but it can be technically confined to the lower levels, 
with extra decomposition, better middleware and 
more service layers. In our architecture, for this 
purpose there is a specific layer named abstract 
object access (AOA). This layer sits on top of the 
IoTivity middleware, which is already a level of 
abstraction over device protocols. The entire 
backbone of our testing tools sits on top of the AOA 
layer, something that makes testing instruments 
resilient to scaling and tolerant to change. In 
particular, to accommodate device virtualization we 
had to allow switching between physical and virtual 
device access, at the backend, something that we 
introduced as a built-in feature of the AOA API. 

Overall, device ecosystems are expected to 
constantly grow, with decentralization becoming a 
necessity to break or avoid monoliths. However, 
certain infrastructures are naturally huge by design. 
In this framework, the notion of ecosystem 

federations appeared (see Figure 4), with cross-
federation interoperability enabling the disciplined 
orchestration and control of all constituent 
ecosystems. In our work, the AOA of a local 
ecosystem is the gateway to other ecosystems and 
encapsulates the cross-federation API. The AOA is 
already visible to, and deployable by, the entire IoT 
testing runtime, something that effectively results in 
the notion of cross-federation testing. 

 
Figure 4: Notion of ecosystem federations and cross-
federation interoperability through well-documented APIs, 
resulting in systems of systems (Savidis, 2021). 

4 VIRTUAL DEVICES 

In testing mode, virtual GUI counterparts for all 
smart devices of the local ecosystem are deployed, 
on top of the middleware, which, as earlier 
mentioned (see Figure 3), are all linked directly to 
the AOA and thus become inseparable to the 
physical devices for rest of the runtime. 

4.1 Automatic Device User-interfaces 

Smart device information is retrieved via the 
middleware, during every device scanning process, 
that is regularly initiated on-demand by the end-user 
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inside a particular local device ecosystem. Such 
information is gathered by the AOA and populates 
an up-to-date database of device meta-data (see 
Figure 3, blue arrow), containing information 
regarding device properties and operations in the 
form of typed records and typed function signatures. 
Based on such device meta-data, we apply an 
automatic widget generation technique similar to 
(Dewan, 2010), where the device GUI is composed 
by mapping device field data-types to corresponding 
widget classes (see Figure 5).  

Besides GUI creation, it is crucial to keep the 
GUI state always synced to the backend holding a 
database of the virtual device state records. This 
ensures that when visual code fragments update any 
device, the change is instantly mapped to the device 
GUI. For this purpose, upon creation of the widgets 
corresponding to device properties, the GUI 
generator will also install an internal event handler 
that keeps the two device images (GUI and backend) 
always in sync to each other (see Figure 6). 

 
Figure 5: Automatic GUI generation for interactive virtual 
devices relies on the mapping of device property types 
(left) to specific widget classes (right). 

 
Figure 6: Auto-syncing between the device GUIs and the 
respective backend device state via a common event 
handler propagating state updates. 

4.2 Visually Programmed Operations 

When trying to virtualize smart devices there is one 
issue that cannot be automatically addressed via GUI 
generation. More specifically, besides device 
properties, device operations are also enlisted within 
device meta-data with typed function signatures. 
Now, with such information we may directly 
generate a GUI so that end-users can supply all 
required argument values (if any) together with a 
push-button to internally invoke the underlying 
device operation with the supplied arguments. As we 
explain in a latter section, this feature is fully 
supported when physical devices are deployed, as 
part of a live device dashboard which enables 
directly affect the physical devices.  

 
Figure 7: Simulating the logic of device operations for 
virtual devices to mirror physical operations during test 
mode through visual programming – here the Mopping 
and Sweep operations are programmed to schedule 
respective state changes. 

However, when running in test mode, no 
physical devices are really connected, thus no 
internal device operations are there to be invoked. 
While trying to resolve this issue, we observed that 
many device operations, apart from performing 
some physical action, also update device state values 
to indicate the new operational state. In a virtualized 
testing setup, changes to these device properties 
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suffice to make the virtual device look in the 
respective operational mode. Based on these remarks 
we enabled end-users simulate the behavior of such 
operations by implementing them through visual 
code (see example of Figure 7). Typically, the visual 
code for such simulated operations will only have to 
accordingly change the state of device properties. 

4.3 Live Device Access and Control 

As mentioned earlier, device meta-data provides 
enough information to generate a fully-functional 
GUI through which device property updates and 
device operation invocations are directly possible. 
Effectively, such a GUI offers live device access and 
control, with state synced to the virtual device state, 
and invocation of operations resulting in the 
execution of the code for simulated device 
operations supplied by end-users (as explained in the 
previous section). An example of such a GUI for the 
A/C device is shown under Figure 8. 

 
Figure 8: A/C virtual device with a GUI generated 
automatically from the respective device metadata. 

It should be noted that the same GUI cannot be 
used exactly as it is in case of physical device usage. 
In particular, for most smart devices, all property 
changes will occur either in response to normal 
device functioning or as a result of operations 

requested by the end-user, but never directly as 
internal system-level requests for explicit property 
updates. In this sense, when the GUI is embedded 
inside the global device dashboard (as will be 
discussed latter) for real physical device 
deployment, all device properties become read-only, 
and all respective Update buttons are removed. 

5 SIMULATED RUNTIME 

5.1 Bypassing the Middleware 

The middleware is a necessary communication layer 
above smart device ecosystems and custom 
networking protocols, enabling to effectively handle 
heterogeneity. But in testing mode, using all 
simulation tools, we needed a way to bypass the 
basic middleware and redirect all requests and 
notifications to the virtual device backend. This has 
been accomplished through the abstract object 
access (AOA) layer in our system architecture, an 
extra layer for smart object management sitting on 
top of the real middleware (in our case IoTivity that 
has been deployed). 

Effectively, only when running under simulation 
mode the AOA internally forwards all respective 
messages related to device access and operations to 
the virtual device backend. Otherwise, the IoTivity 
middleware is directly used. 

5.2 Simulated Physical-Device Layer 

Physical layer simulation implies that smart devices 
profiles may be registered at the low-level and look 
functional for the middleware without requiring 
physical presence of the devices in the environment. 
While offering a GUI counterpart for physical 
devices is something that can be handled on top of 
the middleware, physical device simulation itself is 
only possible below middleware, or at least must be 
offered as a feature of the middleware itself. 

This ability has been critical for the early 
development phases of our tools, not for end-users, 
neither it is required during runtime as part of our 
simulation machinery. In particular, we needed very 
early a way to test our tools using the middleware, 
however, without purchasing, installing, scanning, 
registering and connecting actual physical devices 
underneath, but only simulated ones.  

For this purpose, as indicated in our system 
architecture, we used the IoTivity Simulator 
(IoTivity Simulator, 2021), an Eclipse plugin that is 
capable to simulate smart devices as OIC resources 
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(Open Interconnect Consortium, 2021). The IoTivity 
Simulator is accompanied with a service provider 
that seamlessly manages creation, deletion, request 
handling and notifications of all simulated resources. 
Furthermore, it handles requests received by clients, 
and sends appropriate responses back to them. To 
simulate smart devices through the simulator we had 
to express their REST (Representational State 
Transfer) APIs in RAML (RESTful API Modeling 
Language), the latter being a way of describing 
RESTful APIs so that they can be readable by 
humans. A REST API (also known as RESTful API) 
conforms to the constraints of REST architectural 
style and allows interaction with RESTful web 
services. In this context, we modeled the GET 
request for retrieving and the POST request for 
updating smart-device states respectively. 

5.3 Calendar and Virtual-time Tool 

The action calendar offers a live view of all 
scheduled automation actions (see Figure 9, top 
part). Every scheduled action, specified through the 
custom visual blocks in our IDE, is internally 
reported at start-up to the action calendar serving a 
twofold role for the end-user: (a) it provides an 
overview of all scheduled activities; and (b) shows 
which of such activities have been already invoked, 
with entries shown in green and a tick icon at right.  

 
Figure 9: Top part: calendar with all scheduled 
automations, showing in green those already triggered; 
Bottom part: the virtual time tool, enabling to control pace 
of time and jump to a specific time and date. 

The brief messages that appear on the calendar 
(right column, next to time or date) are the actual 
brief textual descriptions inserted by the developer 
in the corresponding scheduling visual blocks at 
development time. Although not elaborated in this 
paper, it should be mentioned that for all IoT blocks 
we introduced in Blockly, we support such a user-
defined text explanations. 

As an add-on component the activity calendar, 
our simulator also includes a virtual-time 
component, which enables very easily the testing of 
any scheduled automations, which, otherwise, would 
have to wait for action triggering following the 
normal time flow.  

The reason this does not interfere with system 
time is due to the way we have developed 
scheduling logic in our toolbox: there is a time-
access API, used throughout our runtime for 
querying the current time. In normal execution this 
is implemented to directly return the system clock 
time. However, during simulation, this API is 
implemented by the time simulator in a special way, 
enabling control the pace of time interactively (see 
9, bottom part), and thus apply the current speed 
factor the user has chosen over the returned value of 
the current time. This allows far easier and quicker 
testing of scheduled tasks, especially when 
sequentially scheduled automation are defined, thus 
avoiding to wait for the real time to pass for 
respective actions to be triggered. 

5.4 Dashboard and Activity History 

The dashboard is a useful tool (see Figure 10) 
displaying live in real-time an up-to-date view of all 
smart-devices involved in the currently running set 
of smart automations, and behaves as follows: 

 
Figure 10: Part of the device dashboard – recently changed 
properties (see yellow arrows) are highlighted. 
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• As new devices are discovered, they appeared in 
front, temporarily shown with a green border 
(e.g. Air Condition device) 

• Devices out of range are shown with a red 
border and after a while they disappear (e.g. 
Bedroom Light device) 

• When device properties change, they are 
highlighted (e.g. Air Condition, swing state or 
Alarm Clock, ring state) 

The smart-device dashboard is always synced to 
actual device sate during runtime, while it is fully 
interactive, enabling directly select any device and 
change property values (only in test mode) or invoke 
operations (test mode or real operation mode). It is 
also important to note that all such changes are 
committed instantly on the smart device itself via the 
abstract object layer, so that the end-user visual code 
will indistinguishably treat them as genuine device-
level state updates.  

Finally, the event history is an interactive live 
console (see Figure 11, coloured bubbles) providing 
an informative view of all events triggered. It is 

essentially a database of annotated events that occur 
during runtime with the following characteristics: 

 
Figure 11: History with descriptions, including both 
device-level events and automation actions. 

 
Figure 12: Defining, running and debugging automations with scheduled automation tests. 
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• All events are sequentially sorted in time, while 
they can be logically grouped following the 
smart automation they concern 

• Color encoding (with chosen colors being 
interactively configurable) is deployed to 
differentiate between scheduled actions, device 
state changes and shifting of operational modes 

Finally, the respective visual code block that 
actually handled an event appearing in the history 
can be directly tracked in the IDE by just clicking on 
the respective device icon appearing at the top left of 
every event bubble. 

6 TESTING TOOLS 

Our additional testing tools include the debugger, 
the interactive definition of automatic test suites and 
the support for custom checking blocks. The 
combined testing process using these tools is 
outlined under Figure 12 and commonly entails the 
designated steps:  

1. Setting breakpoints on blocks 
2. Defining a test suite 
3. Running tests and stopping in breakpoints 
4. Observing changes due to the test suite 
5. Tracing with the debugger like step-in 
6. Observing execution events in the history 

6.1 Block-based Debugger 

In our IDE we have incorporated and appropriately 
adapted the user-interface of an open source block-
level debugger for Blockly from the public 
repository of (Savidis and Savaki, 2019). In 
particular, as part of the traditional variable watches 
tab of the original debugger, we have inserted all 
smart devices, while we have grouped all variables 
under their respective smart automations code block. 
Finally, we also grouped breakpoints under smart 
automations, so that end-users can more easily and 
intuitively browse and manage breakpoints. 

6.2 Test Suites 

Test suites are automated tests that enable users 
easily test the visually programmed automations, 
with two types of tests currently supported. The first 
one schedules changes in device states and the 
second one allows users define warnings for specific 
device state modifications, by optionally suspending 
running automations. Every test can be either set as 
active directly after its creation, or at the beginning 

of the next execution session. For the first test type 
(scheduled) we provide a user-interface through 
which the user may define the elapsed time after 
which a device state will be triggered (see Figure 12, 
label 2), or alternatively define repeated device 
changes at regular time intervals. Multiple device 
properties may be also modified as part of a single 
test. It should be noted that in all such cases the 
virtual devices are only involved, something that 
gives end-users the opportunity to update even read-
only device fields so as to test the respective 
associated automations. 

6.3 Check Blocks 

Check blocks are a new category of visual 
programming blocks that we introduced in Blockly 
to allow more elaborate and easy testing of smart 
automations. They generally look similar to 
conditional breakpoints in debuggers or to assertions 
in programming languages, but are more close to 
data breakpoints which capture data changes. More 
specifically, they allow users define conditions 
involving device state fields, which are evaluated by 
every respective state change, and once becoming 
satisfied (i.e. true), will issue a warning or pause 
execution and open the debugger (see Figure 13). 

 
Figure 13: Check blocks and how they allow tracking 
invalid states or property values / ranges for smart devices. 

6.4 Case Scenarios 

We briefly mention a few test scenarios for everyday 
automations, all visually programmed through our 
IDE, just to give an idea of how easy and 
straightforward it is to test such automations with 
our integrated testing toolset.  In particular, to make 
all automations of Figure 14 ready for testing, it 
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suffices to provide just once a simulated 
implementation with visual programming of the 
following operations involved in the code blocks: 
• Window Blinds: Open, Close 
• Air Condition: TurnOn, TurnOff 
• Bedroom / Main Light: TurnOn, TurnOff 
• Bathroom Light: TurnOn, TurnOff 
• Coffee Machine: TurnOn, TurnOff 
• Window: Open, Close 

Once this step is performed, end-users are able to 
test all types of automations with virtual devices, in 
isolation, locally in their smartphone, by defining 
test suites, opening the calendar and dashboard, 
interacting directly with virtual device GUIs, 
viewing history logs, playing with virtual time, and 
opening the debugger on-demand as needed. All 
these activities are possible without ever connecting 
to real devices. Moreover, the exact same tools are 
usable and available when the real device ecosystem 
is involved, when testing is carried out in the field. 

 
Figure 14: Home automation case scenarios for helping in 
everyday life and healthy living. 

7 DISCUSSION 

The reported work relies on end-user visual 
programming of smart automations as a promising 
solution bridging the gap between IoT device 
ecosystems and the present lack of high-quality 
personalized user experiences for everyday life.  In 
this context, the role of an end-user programmer is 
very broad and may concern the consumer, friends 
and family, ecosystem administrators, third-party 
service suppliers, carers if applicable, volunteers, 
and so on. Although programming as such is a very 
specific profession, the scale and complexity of 
typical smart automations is very small compared to 
the expertise of professional developers. 

In particular, as outlined under Figure 15, 
learning, amateur and hobby programming are all 
programming subdomains, however, with very 
custom tools and broad target population, not 
implying or requiring the technical skills of a typical 
professional software developer. Overall, we 
consider that the basic level of programming 
knowledge typical in these subdomains is generally 
sufficient to enable end-users craft personal smart 
IoT applications. 

 
Figure 15: Different levels of programming knowledge 
with possible associations – all except the outer one are 
effectively casual or non-professional programming. 

Clearly, for such casual programming activities 
there are fields and related applications that must be 
excluded, such as mission or safety critical 
automations and those involving proprietary data or 
personal information. Initially, the primary focus for 
personally crafted automations should be on home 
ecosystems, and likely on workplaces and leisure. 
Putting such creational freedom on the hands of end-
users, with easy-to-use and powerful tools, is 
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promising, challenging and may be a real game 
changer for the progress of the IoT domain. 

The vision of IoT device ecosystems as open, 
extensible and configurable infrastructures, managed 
by end-users via tools available in their mobile 
machines, is based on the prediction that IoT can 
more rapidly enter daily life once the following 
conditions are met: 
• Smart infrastructures are integrated computing 

systems of open federated ecosystems, beyond 
existing monolithic installations of a single 
manufacturer or contractor 

• IoT technology becomes commodity hardware, 
standalone or embedded in other equipment 

• Modular IoT components become affordably 
available with many varying market options 

• Installations may require the help of 
technicians, but overall should be easy for 
consumers to handle the process themselves 

• Configuring and creating automations is treated 
as an assembly process managed and configured 
directly by the end-users 

8 CONCLUSIONS 

The Internet of Things proliferates as a dynamic and 
constantly evolving domain, constituting a primary 
technological backbone of distributed computing 
resources. Although small-scale IoT hardware 
becomes rapidly available, the chances for open and 
easier end-user development, enabling flexible 
manipulation and composition of such cross-vendor 
IoT resources, within varying hosting environments 
and device ecosystems, are still very limited. The 
present lack of user experiences for the IoT domain 
is also attributed to the disruption of past research in 
ubiquitous computing, which emphasized beyond 
the desktop interactions.  

The recent adoption of end-user programming 
for smart IoT automations is better aligned to the 
future trend for local control from a mobile device of 
IoT functionality and resources through small-scale 
automations. In this work, we focused on the 
required testing instruments and we developed an 
integrated toolset enabling end-users test and debug 
automations in a protected simulated runtime.  

We consider that more research work is needed 
in the field of end-user tools, while part of our future 
plans includes the design and development of: (a) an 
explanation wizard that can meaningfully respond to 
“why did this happen” for any event, and (b) a 
reverse tracer for the simulated runtime, enabling to 

roll back and forth in time, during debugging or 
when testing of smart automations. 
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APPENDIX  

Sample Device Profiles 

 
Part of the device properties profile for the Air 
Conditioning smart object as stored in our system, used to 
generate automatically a GUI for the virtual device. 

 

Part of the device actions profile for the Air Conditioning 
smart object as stored in our system, used to generate the 
respective operation invocation expressions that are 
necessary in the event handlers of the virtual devices. 

 

 
 

 
RAML specification for the Air Conditioning smart object, 
compliant to the OIC standard, with the implementation of 
its get and post methods. 
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