
A RESTful Northbound Interface for Applications in Software
Defined Networks

Abdullah Alghamdi a, David Paul b and Edmund Sadgrove c
School of Science & Technology, University of New England, Armidale, NSW 2351, Australia

Keywords: Software Defined Networking, Northbound Interface, RESTful.

Abstract: Software Defined Networking (SDN) aims to help overcome the complexities inherent in traditional networks.
The main concept in SDN is the decoupling of the data layer from the control layer, the latter of which is
centralised in a controller. OpenFlow has been adopted as the standard protocol for the southbound interface,
where the controller communicates with forwarding devices. However, the northbound interface (NBI),
connecting the controller with end-user business applications, does not have an open standard. NBIs have
accelerated application development because developers can implement required functionality without the
need to consider matters related to the data layer, but there is an issue of compatibility because each SDN has
its own NBI. In this position paper we present a plan to design a RESTful NBI for SDN applications to
improve compatibility across SDN technologies.

1 INTRODUCTION

A rise in the number of devices connected to the
Internet has made network management difficult.
Some problems are widespread, including
configuration errors, increasing sizes of routing
tables, and issues related to security (Akcay & Yiltas-
Kaplan, 2017). The inflexible behaviour of traditional
network elements makes it hard for network
administrators to manage them.

Software Defined Networking (SDN) is a
relatively new technology to design and control
networks (Singh & Jha, 2017). It is a network
programming framework that allows administrators
to intelligently and centrally control networks using
software applications. SDN networks are
inexpensive, relatively easy to implement, and
provide opportunities to innovate with new
applications (Zhang, Cui, Wang, & Zhang, 2018).
SDN has support from many vendors, including
Google, Cisco, and HP (Shahid, Fiaidhi, &
Mohammed, 2016).

Network applications can be written to achieve
different functionalities in a network, such as
improving security or traffic management. To ensure

a https://orcid.org/0000-0003-0616-4121
b https://orcid.org/0000-0002-2428-5667
c https://orcid.org/0000-0002-8710-9900

network applications perform correctly, it is
necessary for them to understand the current state of
the network. An SDN architecture changes the way
network state is maintained and made available to
applications (Scott-Hayward, Kane, & Sezer, 2014).

SDN separates the control function from
forwarding devices, logically centralising the control
function that maintains network state in a controller,
and having it send instructions to forwarding devices
in the data layer. The forwarding devices then use
these instructions to forward incoming packets
appropriately. The interface between the controller
and forwarding devices is called the Southbound
Interface (SBI). The Open Network Foundation
(ONF), which works to popularise SDN techology
through the development of open standards (Open
Networking Foundation, 2021), considers OpenFlow
(McKeown et al., 2008) to be the standard SBI.

However, for SDN to reach its full potential, it is
also necessary for applications to communicate with
an SDN controller, both to determine the current state
of the network, and to give commands which can be
applied over the forwarding devices. SDN
applications can either be internal, reacting to events
that occur on the network, or exernal, proactively

Alghamdi, A., Paul, D. and Sadgrove, E.
A RESTful Northbound Interface for Applications in Software Defined Networks.
DOI: 10.5220/0010713300003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 453-459
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

453

modifying the network without considering network
events.

The interface between applications and an SDN
controller is called the Northbound Interface (NBI)
and there is currently no open standard NBI that can
be used by all controllers (Du, Lee, & Kim, 2018).
Instead, different incompatible interfaces have been
implemented for various SDN controllers (Latif et al.,
2020). This leads to a loss of compatibility, requiring
significant time and resources to port applications to
different controllers (Coutinho, 2017).

The motivation for this paper is to contribute to
efforts to standardise the NBI to enhance portability
of SDN applications and interoperability between
SDN controllers. To better define the problem,
Section 2 reviews SDN, and especially the NBI, in
more detail. Section 3 then describes some
requirements for an open RESTful Application
Programming Interface (API) to allow both external
and internal SDN applications to communicate with a
controller. Finally, Section 4 concludes the paper to
summarise our position and describe the next steps
required in this research.

2 LITERATURE REVIEW

2.1 Software Defined Networking

In a traditional network, both the control and data
planes are contained within a single entity. The
control plane acts as the brain of the network, adding
instructions to tables that are then consulted by the
data plane to determine how to handle incoming and
outgoing packets. Network nodes utilise the control
plane to communicate with other nodes in the
network through the use of distributed protocols such
as BGP (Rekhter, Li, & Hares, 1994), OSPF (Moy,
1998) or MPLS (Rosen, Viswanathan, & Callon,
2001). Data from other nodes can then be used to
modify the information stored in each node’s tables.

SDN separates the control functions from
forwarding devices in the hope of overcoming
limitations in traditional networks (Haji et al., 2021).
Figure 1 presents a high-level overview of a typical
SDN architecture. The figure shows that the control
layer communicates with the data layer through a
southbound interface (SBI) using the OpenFlow
protocol (Priya & Radhika, 2019). There is also a
northbound interface (NBI) from the control layer
that allows communication with applications, though
there are no open standard protocols for this purpose
(Latif et al., 2020).

In the lowest layer, forwarding devices could be
either traditional hardware switches that provide a
programmable interface, or software switches such as
Open vSwitch (Wang et al., 2020). When a packet
arrives at an SDN forwarding device, the forwarding
device parses the packet’s header to determine
whether it already knows how to handle the packet,
or whether it needs to communicate with the control
layer.

Figure 1: SDN architecture.

The control layer is implemented as a logically
centralised network operating system called a
controller. The controller has a global view over all
forwarding devices in the data layer and uses the SBI
to communicate packet forwarding instructions (e.g.,
whether to modify, drop, or forward the packet) to
them. These instructions are called flows, and
forwarding devices deny by default unless a flow
specifies otherwise. The SBI is also used to alert of
packet arrivals, notify of any status change, and to
provide statistical information. OpenFlow is the
standard protocol for all interactions between a
controller and any forwarding devices (Dang et al.,
2019).

To allow proper management of the network,
controllers maintain some core services. These
typically include:

• Topology service: builds a network topology
graph by instructing switches to send certain
packets and discovering where they arrive.

• Inventory service: tracks SDN devices
attached to the network and records basic
information about them.

• Host tracking service: discovers IP and
MAC addresses of hosts connected to the
network.

• Statistics service: provides network statistics
based on counter information in switches.

The controller can use these services to provide a
view of the network to any network application using
its NBI. Unlike with the SBI, there is no standard

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

454

protocol for the NBI, with different SDN controller
implementations providing their own interface. For
example, some controllers only offer a Java API
(Goransson, Black, & Culver, 2016), or, when a more
open RESTful API is provided, it is not standardised
and is designed only to work with one particular
controller (Comer & Rastegarnia, 2019).

Regardless of the implementation, the NBI
provides an abstracted view of the network to any
network applications. This abstracted view does not
necessarily match the physical network
implementation. For example, it is often sufficient for
a network application to view the entire network as a
single large switch, even if the network is actually
implemented using many different forwarding devices.

The controller uses the NBI to notify applications
of events that occur in the network. Such an event
could be a packet being received by the controller or
a change in the network topology. Applications can
also invoke methods on the controller through the
NBI to effect change on the network. For example, a
firewall application may modify which packets
should be dropped by forwarding devices after
detecting a potential denial of service attack.

2.2 SDN Applications

SDN network applications can be classified into two
different types: internal or external. Internal
applications are reactive – a packet arrives at a
forwarding device and the device does not know what
to do with it, so it contacts the controller. The controller
then notifies the application, which determines how the
packet should be handled and informs the controller to
implement the new policy. External applications, on
the other hand, are proactive and modify network
policy without requiring a packet to arrive first.

Further, internal applications typically create
resources that are added to the network and can be
accessed by other applications. For example, a load
balancer may expose its resources so other
applications can query it or modify its behaviour.
Thus, an internal application becomes part of the
programmable network, whereas an external
application can only be controlled from the outside.

The controller’s NBI consists of two parts: the
Listener API and the Response API. The Listener API
allows applications to register listeners for any
relevant events. Registered listeners are then sent any
relevant packets that arrive at the controller. The
Response API allows applications to modify the
network managed by the controller. The generic
design of an internal application is presented in
Figure 2. An internal application processes packets

obtained through the Listener API and then makes
calls to the Response API based on the packets it
receives. External applications are similar, except no
listeners are required, so the Listener API is not used,
and the Response API is called without first requiring
a packet to arrive.

Figure 2: Generic design of an internal SDN application.

A RESTful interface is often used for the
Response API because it offers the following
advantages:

• Simplicity: REST utilises simple HTTP
methods to access data and resources.

• Flexibility: All data and resources are
represented as URIs, meaning there are no
complicated schemas.

• Extensibility: New resources can be
accessed by simply using the appropriate
URI.

• Security: Communications can be secured
by using HTTPS.

While the Response API is typically provided as
a RESTful API, the Listener API is required to
provide asynchronous notifications of incoming
packets (Goransson et al., 2016). Since RESTful APIs
operate on a request-response basis, which does not
allow for such asynchronous notification, the Listener
API is typically implemented as a native API on the
controller (Banse & Rangarajan, 2015).

Unfortunately, in current SDN implementations,
even the Response API is not standardised. The
situation is even worse for the Listener API, where
the interface provided typically depends on the
language in which the controller is implemented
(Goransson et al., 2016).

2.3 Northbound Interfaces

There is currently no standard NBI API defined for
SDN. Instead, each SDN controller defines its own
specific definition. Unfortunately, this means that
applications that are written for one controller

A RESTful Northbound Interface for Applications in Software Defined Networks

455

typically cannot be used in a network using a different
controller without substantial redevelopment. This is
despite the fact that the NBI is often considered the
most important interface in an SDN architecture
(Tijare & Vasudevan, 2016) because it is what allows
the network to truly be programmable.

The typical approaches to overcome the issue of
incompatibility between different SDN controllers
are to either create applications on an ad-hoc basis,
just for the controllers they need to interact with, or
to use an SDN programming language that
implements translators to convert application
requirements into service requests for supported SDN
controllers (Tijare & Vasudevan, 2016). While
translators for different SDN programming languages
are useful, this approach does require new translators
to be developed any time a new controller or SDN
programming language is developed. Thus, both
approaches are quite inefficient.

The task of standardising an NBI is difficult
because different SDN applications can have very
different requirements. For example, a load balancer
is likely to have significantly different needs than a
security application. Because of this, many different
NBIs have been proposed (Tijare & Vasudevan,
2016), though they typically only cover a limited set
of operations or technologies.

Because each controller implements its own NBI
API, there are numerous existing interfaces that can
be studied. For example, NOSIX (Yu, Wundsam, &
Raju, 2014) and SFNET (Yap, Huang, Dodson, Lam,
& McKeown, 2010) provide ad-hoc APIs customised
to each controller’s needs. Others use SDN
programming languages, such as Nettle (Voellmy &
Hudak, 2011), Pyretic (Reich, Monsanto, Foster,
Rexford, & Walker, 2013), Procera (Voellmy, Kim,
& Feamster, 2012), or Frenetic (Foster et al., 2011),
which can provide a variety of powerful abstractions
but depend on control functions and data layer
behaviour of particular controllers (Tijare &
Vasudevan, 2016). Still others do provide a RESTful
API, but these often change between different
versions of a controller, leading to incompatibility
(Li, Chou, Zhou, & Luo, 2016).

3 DISCUSSION

Our aim is to design an open, flexible, and
independent NBI API for SDN. Most existing
proposals suffer from having been designed in the
early stages of SDN when there were few SDN
controller implementations and limited practical
experience writing applications for such systems, and

have since been modified as systems have developed.
We believe the time is now right to consider the
lessons that can be learnt from the existing
implementations, including their limitations, to
design a complete new NBI API. We will design this
API based on RESTful ideals, keeping it open to
strengthen interoperability and portability of
applications. Our design will follow the ONF
guidelines (Open Networking Foundation, 2016) and
contribute by recommending an NBI that covers a
wide range of use cases.

As mentioned in Section 2, the NBI of an SDN
controller can really be split into two different
interfaces: the Listener API and the Response API.
The purpose of the Listener API is to allow
notification of events, while the Response API should
allow applications to get information from the
controller and to program the network.

For the Listener API, notifications should be
available for at least the following events:

• Flow added
• Flow removed
• New device added to network
• Device removed from the network

The Response API can be divided into reading
actions, which give details of the current state of the
controller/network, and writing actions, which
modify the network.

Reading actions should include:
• Read topology
• Read statistics
• Read flows
• Read controller information
• Read incoming packet

Writing actions should include:
• Insert flow
• Modify flow
• Delete flow
• Forward packet
• Set priority

3.1 Listening API

As mentioned in Section 2.2, internal applications
register listeners with the SDN controller to be
notified of relevant events. Since this event
notification requires communication outside of a
typical REST request-response, a RESTful service
offered by the controller is not appropriate. Instead,
internal applications are typically implemented using
a native API (Goransson et al., 2016). For example,

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

456

Floodlight (Project Floodlight)uses Java as its native
language, so its modules are created as Java packages.
These modules can then access underlying methods
which may not be directly accessible via a REST call.
To abstract over internal functions of a controller,
programming languages such as Procera (Voellmy et
al., 2012) or Frenetic (Foster et al., 2011) are often
used, though this requires them to have support for
the desired controller.

What we propose is having a REST-like service
to allow registration of listeners with a controller.
This service is only REST-like because the controller
is required to maintain details of which applications
are registered to particular events. Then, when a
relevant event occurs, the controller calls a RESTful
service implemented on the application side to notify
it of the event, to which the application then responds
appropriately.

3.2 Response API

In many regards, the Response API is the easiest to
standardise into a RESTful service because it better
fits the request-response pattern of REST (Goransson
et al., 2016). Further, RESTful APIs are already
offered by controllers such as ODL (OpenDaylight)
and Floodlight (Project Floodlight). These APIs offer
data about the network and methods to modify its
behaviour, but are incompatible, even between
different versions of the controller (Latif et al., 2020).

Thus, our aim is to provide a stable, extensible
API that can be supported by multiple controllers.
The API must support the entire lifecycle of SDN
applications (Natanzi & Majma, 2017). This includes
adding the application to the network, registering it
with the controller, and conducting the required read
and write actions.

The difficult part is defining minimal
requirements for compliance, while allowing
extensibility for controllers that offer more than the
minimum. For example, after considering existing
implementations, we believe that resources that must
be supported by the API include: hosts; switches;
applications; messages; network topology; statistics;
and events, though other resources might be needed,
and the exact details available for each resource might
be different between implementations.

3.3 Backwards Compatibility

One of the advantages of this suggested approach is
that it should be possible to allow backwards
compatibility for compliant controllers and
applications. Provided a controller offers the minimal

functionality required by the API we are proposing, a
small program could be written that converts requests
to the new API into the native requests of the
controller. This small program could then be used as
the controller, with all other parts of the system
unaware that it is communicating behind the scenes
with another controller.

Similarly, from the application side, a small
program could convert requests made by the
application to the existing controller’s native
interface into the REST calls of the new proposed
API. This small piece of code could also implement
the RESTful interface of the Listening API to allow
compatibility with internal applications that respond
to network events.

This backwards compatibility can also allow
evaluation of the new NBI API: if these small
converter applications allow an application to
function correctly with a controller that it does not
natively support, then the new interface could be
considered a success.

4 CONCLUSION

Traditional networks are difficult to control because
the control and data layers are both integrated inside
individual network devices. Further, each device
typically has its own configuration and management
interface. SDN separates the control and data layers
and offers a programmable interface to dynamically
control the network.

In SDN, controllers communicate with
forwarding devices through a southbound interface,
typically using the OpenFlow standard. However, the
utility of SDN is really because applications can
communicate with the controller via a northbound
interface to query and modify the state of the network
programmatically.

Despite its importance, the northbound interface
has not been standardised. This means that different
controllers and applications are incompatible. While
some partial solutions exist, such as SDN
programming languages that are compatible with
multiple controllers, the better solution would be to
define a standard open and extensible API for
communication between an SDN controller and any
networking applications.

The position argued in this paper is that the time
is right to study existing SDN implementations to
design a new RESTful API for the northbound
interface of SDN controllers. This API will provide
all necessary functions to support both external
(proactive) and internal (reactive) applications.

A RESTful Northbound Interface for Applications in Software Defined Networks

457

The success of such an API can be determined by
using small shim applications to allow a network
application to correctly work with a controller it does
not natively support.

A standardised northbound interface really is one
of the big missing pieces in SDN. By examining the
lessons from existing systems, an open, future-proof
northbound API can improve compatibility of
existing SDN implementations, saving time and
effort and making adoption of SDN even easier.

REFERENCES

Akcay, H., & Yiltas-Kaplan, D. (2017). Web-Based User
Interface for the Floodlight SDN Controller.
International Journal of Advanced Networking and
Applications, 8(05), 3175-3180.

Banse, C., & Rangarajan, S. (2015). A secure northbound
interface for sdn applications. Paper presented at the
2015 IEEE Trustcom/BigDataSE/ISPA.

Comer, D., & Rastegarnia, A. (2019). Toward
Disaggregating the SDN Control Plane. IEEE
Communications Magazine, 57(10), 70-75.

Coutinho, D. R. (2017). Contributions for the
Standardisation of a SDN Northbound Interface for
Load Balancing Applications.

Dang, V. T., Huong, T. T., Thanh, N. H., Nam, P. N.,
Thanh, N. N., & Marshall, A. (2019). Sdn-based syn
proxy—a solution to enhance performance of attack
mitigation under tcp syn flood. The Computer Journal,
62(4), 518-534.

Du, S. G., Lee, J. W., & Kim, K. (2018). Proposal of grpc
as a new northbound api for application layer
communication efficiency in sdn. Paper presented at the
Proceedings of the 12th International Conference on
Ubiquitous Information Management and
Communication.

Foster, N., Harrison, R., Freedman, M. J., Monsanto, C.,
Rexford, J., Story, A., & Walker, D. (2011). Frenetic:
A network programming language. ACM Sigplan
Notices, 46(9), 279-291.

Goransson, P., Black, C., & Culver, T. (2016). Software
defined networks: a comprehensive approach: Morgan
Kaufmann.

Haji, S. H., Zeebaree, S. R., Saeed, R. H., Ameen, S. Y.,
Shukur, H. M., Omar, N., . . . Yasin, H. M. (2021).
Comparison of software defined networking with
traditional networking. Asian Journal of Research in
Computer Science, 1-18.

Latif, Z., Sharif, K., Li, F., Karim, M. M., Biswas, S., &
Wang, Y. (2020). A comprehensive survey of interface
protocols for software defined networks. Journal of
Network and Computer Applications, 156, 102563.

Li, L., Chou, W., Zhou, W., & Luo, M. (2016). Design
patterns and extensibility of REST API for networking
applications. IEEE Transactions on Network and
Service Management, 13(1), 154-167.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., . . . Turner, J. (2008).
OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review,
38(2), 69-74.

Moy, J. (1998). OSPF version 2.
Natanzi, S. B. H., & Majma, M. R. (2017). Secure

northbound interface for SDN applications with NTRU
public key infrastructure. Paper presented at the 2017
IEEE 4th International Conference on Knowledge-
Based Engineering and Innovation (KBEI).

Open Networking Foundation. (2016). Intent NBI –
Definition and Principles. Retrieved from
http://opennetworking.wpengine.com/wp-
content/uploads/2014/10/TR-
523_Intent_Definition_Principles.pdf

Open Networking Foundation. (2021). Retrieved from
https://opennetworking.org/

OpenDaylight. Retrieved from https://www.openday
light.org/

Priya, A. V., & Radhika, N. (2019). Performance
comparison of SDN OpenFlow controllers.
International Journal of Computer Aided Engineering
and Technology, 11(4-5), 467-479.

Project Floodlight Retrieved from https://www.project
floodlight.org/floodlight/

Reich, J., Monsanto, C., Foster, N., Rexford, J., & Walker,
D. (2013). Modular sdn programming with pyretic.
Technical Reprot of USENIX, 30.

Rekhter, Y., Li, T., & Hares, S. (1994). A border gateway
protocol 4 (BGP-4). In: ISI, USC Information Sciences
Institute.

Rosen, E., Viswanathan, A., & Callon, R. (2001).
RFC3031: Multiprotocol label switching architecture.
In: RFC3031.

Scott-Hayward, S., Kane, C., & Sezer, S. (2014).
Operationcheckpoint: Sdn application control. Paper
presented at the 2014 IEEE 22nd International
Conference on Network Protocols.

Shahid, A., Fiaidhi, J., & Mohammed, S. (2016).
Implementing innovative routing using software
defined networking (SDN). Int J Multimedia
Ubiquitous Eng, 11(2), 159-172.

Singh, S., & Jha, R. K. (2017). A survey on software
defined networking: Architecture for next generation
network. Journal of Network and Systems
Management, 25(2), 321-374.

Tijare, P., & Vasudevan, D. (2016). The northbound APIs
of software defined networks. International journal of
engineering sciences and research technology, 5(10),
501-513.

Voellmy, A., & Hudak, P. (2011). Nettle: Taking the sting
out of programming network routers. Paper presented
at the International Symposium on Practical Aspects of
Declarative Languages.

Voellmy, A., Kim, H., & Feamster, N. (2012). Procera: a
language for high-level reactive network control. Paper
presented at the Proceedings of the first workshop on
Hot topics in software defined networks.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

458

Wang, H., Xu, H., Qian, C., Ge, J., Liu, J., & Huang, H.
(2020). PrePass: Load balancing with data plane
resource constraints using commodity SDN switches.
Computer Networks, 178, 107339.

Yap, K.-K., Huang, T.-Y., Dodson, B., Lam, M. S., &
McKeown, N. (2010). Towards software-friendly
networks. Paper presented at the proceedings of the first
ACM asia-pacific workshop on Workshop on systems.

Yu, M., Wundsam, A., & Raju, M. (2014). NOSIX: A
lightweight portability layer for the SDN OS. ACM
SIGCOMM Computer Communication Review, 44(2),
28-35.

Zhang, Y., Cui, L., Wang, W., & Zhang, Y. (2018). A
survey on software defined networking with multiple
controllers. Journal of Network and Computer
Applications, 103, 101-118.

A RESTful Northbound Interface for Applications in Software Defined Networks

459

