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Abstract: In 3D reconstruction applications, matching between corresponding point clouds is commonly resolved using
variants of the Iterative Closest Point (ICP). However, ICP and its variants suffer from some limitations,
functioning properly only for some contexts with well-behaved data distribution; outdoor scene, for example,
poses many challenges. Indeed, the literature has suggested that the ability of some of these algorithms to find
a match was reduced by the presence of geometric disorder in the scene, for example. This article presents
a method based on the characterization of the eigentropy and omnivariance properties of clouds to indicate
which variant of the ICP is best suited for each context considered here, namely, object or outdoor scene
alignment. In addition to the context selector, we suggest a partitioning step prior to alignment, which in most
cases allows for reduced computational cost. In summary, the proposal as a whole worked satisfactorily to the
alignment as a multipurpose registration technique, serving to pose correction of data from different contexts
and thus being useful for computer vision and robotics applications.

1 INTRODUCTION

In three-dimensional image processing, the problem
of point cloud registration associated to small objects
as well as to wide outdoor environments has been in-
tensively studied in the last few decades for its im-
portance in a wide range of applications, including
human recognition (Siqueira et al., 2018), agricul-
ture (Chebrolu et al., 2018) and autonomous driving
(Levinson et al., 2011). These two categories of sce-
narios differ in many aspects, including the 3D im-
age size, the susceptibility to cluttering, the influence
of surface deformations among sequential shots, etc,
what poses different challenges to algorithms dealing
with one or other category. Indeed, in the literature
there has always been an effort to associate the scene
context and the registration technique that best suits
the given scenario. For example, objects have been
dealt with from Iterative Closest Point-based regis-
tration algorithms. Especifically, ICP point-to-point
implementation has been reported in many contribu-
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tions (Besl and McKay, 1992). Although it is a pi-
oneer technique, limitations regarding the computa-
tional efforts have led to many variants; one of such is
the approach presented in (Souza Neto et al., 2018),
in which registration is performed on sub-cloud space
after a cloud partitioning of the original data. As an
iterative technique, ICP is susceptible to falling into
local minima, and the literature has provided impor-
tant advances in that matter, as it is the generalized
algorithm named GICP (Segal et al., 2009). In view
of that association between registration technique and
the context regarding the scenario, we have posed the
problem of automatic identifying them as a prior step
to the registration itself. The contribution brought in
this paper is not on the selection only, but it is one that
comprises the use of the registration algorithm as the
alignment core in a point-cloud partitioning approach.

2 RELATED WORKS

2.1 Point Cloud Registration

Since the introduction of the ICP algorithm (Besl and
McKay, 1992), a number of variants have been pro-
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posed in the literature to overcome its limitations. For
example, random (Zhang, 1994) or uniform down-
sampling (Vitter, 1984). Although the classical sam-
pling strategies may be very useful for computational
reasons when dense clouds are concerned, for sparse
point clouds they might lead to loss of relevant infor-
mation instead. An efficient approach to registration
3D data from outdoor scenes is demonstrated in (Se-
gal et al., 2009). It explores planar patches in both
point clouds, which takes to plan to plan concept.

For real-world applications involving 3D scene
perception, time-performance is a must, and naturally
a look at recent applications is worth. In (Forte et al.,
2021), authors solved a problem related to UAV-pose
estimation from a point-cloud registration assisted es-
timation algorithm relying on the linear version of
Kalman Filter. In that case, the solution achieved 10%
correction in volume estimation of a large coal stock-
pile in a thermal power plant. To be stressed that the
registration algorithm relied on a cloud-partitioning
approach (Souza Neto et al., 2018) with GICP (Segal
et al., 2009) as alignment core.

Despite the fact that all those techniques provided
self-consistent and comprehensible description of the
manipulations and transformations done in the point
clouds during the registration itself, it is to be men-
tioned the proposition of deep learning approaches in
the field. In that domain, it is worth mentioning the
recent contribution in (Kurobe et al., 2020), which in-
troduces Corsnet, a solution working on the basis of
many intermediate convolutional layers of local and
global data retrieved directly from the 3D image sam-
ples. Since point clouds are particularly dense data
in its essence, and deep learning methods represent a
completely different paradigm regarding data repre-
sentation, in the present work no additional attention
is paid to that, though we recognize its relevance and
the recent rise of interest of the scientific community.

2.2 Eigen-features

Important works in the literature of 3D image process-
ing report on spatial representation of surfaces from a
geometric description point of view. In many of them,
parameters calculated from the eigenvalues of the co-
variance matrix associated to the point cloud are used
as features for classification or recognition purposes.
For example, in (Hackel et al., 2016), authors were
able to perform efficient countour detection in 3D out-
door scenario.

Other important papers are (Demantké et al.,
2011) and (Donoso et al., 2017). In [(Demantké et al.,
2011), authors introduced a vicinity-based approach
for lines, surface and sphere detection from entropy-

like measurements of the point clouds. In (Donoso
et al., 2017), eigentropy is revisited and seems to ap-
ply well to the points selection problem, but details on
the normalization of the entropy associated measures
are missed or neglected in the discussion.

We highlight that those papers are mostly inter-
ested in segmentation; furthermore, in the biblio-
graphic search done so far, we have found no pa-
pers suggesting to use entropy or covariance matrix-
derived parameters as descriptors for scene context
identification. This appear as a gap in literature,
which we intend to cover for in the present contri-
bution.

3 MATHEMATICAL
FORMULATION

The technique here proposed is a registration algo-
rithm with dual-context selection alternative. It is
a cloud-partitioning approach in the sense that input
data are segmented into smaller groups of points. Fig-
ure 1 illustrates that. Sections in the following pro-
vide details on the sub-cloud grouping, on the choice
of partitioning direction and on the dual-context se-
lection procedure for the alignment core.

Figure 1: In (a), we have the Hammer model and the repre-
sentation of the respective directions, while in (b), we have
an analogy to partitioning, where j is the index for each
partition.

3.1 Cloud Partitioning Approach

Let (S) and (T ) be the source and target models to
undergo registration; partitioning is here defined as
the grouping operation of the whole point sets into
smaller groups, or sub-clouds, which are here indexed
by j, with j = 1 to k groups. It starts with a or-
dering procedure similar to quicksort implementation

Dual-context Identification based on Geometric Descriptors for 3D Registration Algorithm Selection

151



along a given ξ-axis, which can be one of the princi-
pal x̂, ŷ, ẑ-axes. Details on the axis choice for parti-
tioning is given in the next section. The vectors Q~si e
Q~tm represent the points lying within source and target
models after the ordering. They sub-clouds can then
be defined according to the following sets:

S j = { Q~si | ( j−1) · NS

k
< i < j · NS

k
} (1)

Tj = { Q~tm | ( j−1) · NT

k
< m < j · NT

k
} (2)

,
in which NS e NT are the size of source and tar-

get models, respectively. The reader should note that,
from the formation law of the above equations above
show that the grouping is nothing else than a collec-
tion of points taken contiguously in lots of NT

k or NS
k

points.

3.2 Choice of Partitioning Axis

In the current version of the partitioning approach, the
choice regarding the axis along t which the grouping
is done relies on the spatial distribution of points. It
starts with the calculation of the centroid coordinates
of the points and an offset in the whole points set,
making them zero-mean centered:

µ =
1
N

N

∑
i=1

~xi. (3)

~xk =~xi−µ,∀i,k ∈ [1,N] (4)

The covariance matrix can then be calculated

ΣX =
1
N

N

∑
i=1

~xi~xi
T (5)

and its eigenvalues can be put in order

λ3 ≤ λ2 ≤ λ1 (6)

where λ1, the largest one, is chosen as the partitioning
axis.

3.3 Alignment Core Selection Criterium

Besides being useful for the partitioning-axis choice,
the data spatial distribution information as measured
by the eigenvalues and eigenvectors of the covariance
matrix can be used to calculate descriptors for the
point clouds. In the present work, we investigated
the sum of eigenvalues, omnivariance, eigentropy, lin-
earity, planarity, sphericity, anisotropy and surface
change for a large dataset of objects and outdoor

scenes. In that preliminary study, the goal was to see
which of those descriptors could lead to acceptable
inter-class discrimination between object and outdoor
scene contexts. The analysis counted on 2D plots of
those characteristics, for a total of 64 pairwise com-
binations. The dataset had 100 samples equally dis-
tributed into the two classes. Table I synthetizes that.

During the analysis, we got results as those shown
in Figure 2, and two particular descriptors revealed as
promissing measurements for good discrimination in
the dual-context identification, namely the eigentropy
and the omnivariance. For the other pairwise combi-
nations (even those not shown here for brevity), sig-
nificant overlap in the 2D space were observed. The
robustness of those two descriptors may be explained
by the fact that they are less susceptible to data size
and density, making them suitable for situations in
which intraclass discrimination is not a goal.

Figure 2: Pairwise dispersion diagram of geometric descrip-
tors for the datasets of each context. In (a) we have the
anisotropy plot × eigentropy, in (b) flatness × linearity, in
(c) sum of eigenvalues × omivariance and in (d) scattering
× change of curvature.

In the present work, the geometric descriptors
named eigentropy and omnivariance are calculated di-
rectly from the covariance matrix eigenvalues, with
no additional normalization on them, according to:

Eλ =−
3

∑
i=1

λilog(λi); (7)

Oλ =
3

∏
i=1

(λi)
1/3. (8)

For what concerns the preliminary study reported
in Figure 1, the calculated geometric descriptors were
collected for a large set of samples of objects and
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Table 1: Division of data used in the regression process.

Class Dataset Instances

Objects
Stanford (Levoy et al., 2005)

(36 samples)

Bunny: Rotations: 0 to 315 degree;
Buddha and Dragon: 0 to 336 degrees;

Armadillo: 0 to 270 degrees.

Parma (Aleotti et al., 2014)
(14 samples)

Horse: 0 and 180 degrees;
Hammer: 0 and 45 degrees;

Fustino grande: 0 to 270 degrees;
Fustino piccolo: 0 to 315 degrees.

Scenes

Bremen (Wulf, 2016)
(13 samples) –

Hannover (Oliveira and Tavares, 2014)
(10 samples) –

Priority dataset
(27 samples)

Department (Two samples);
Camp (Fifteen samples);
Stockpile (Ten samples);

outdoor, as well. For both measurements, when
they are taken independently, a threshold of nearly
' 0.4619 provided good separation line between the
two classes investigated. Following the reasoning
given in (Donoso et al., 2017), we associate low val-
ues of entropy-based measurements to well-behaved
points distribution like in solid and compact objects
(less disorder), whereas higher entropy suggests in-
creased disorder and, as such, points to uncontrolled
outdoor environments. This leads to the very simple
decision rule for a given input point cloud model:

i f log(ES
λ
,OS

λ
)≤ 0.4619, core = ICPpp

otherwise, core = GICP.
(9)

Once the context is identified, (if object or outdoor
scene), then the registration itself is triggered. When-
ever an object is identified, the point-to-point version
of the ICP algorithm adapted to the cloud-partitioning
framework discussed so far is used. One of the main
differences of this adaptation regards the cost func-
tion of the ICP registration, which is now in sub-cloud
space calculated as:

E j(Ψ)ICP =
k
N

N
k

∑
i=1
‖M j−ΨS j ‖, (10)

where the index j refers to partitions undergoing reg-
istration in a given iterative step, N is the cloud size
and index i refers to a given point lying on the parti-
tion j. In the equation, Ψ gives the rigid transforma-
tion relating input source and target models, which is
the expected outcome of a registration algorithm. On
the other hand, if an outdoor scene is identified, GICP
algorithm adapted to the cloud-partitioning frame-
work discussed so far is used. Compared to the tra-
ditional version (Segal et al., 2009), the adaptation
regards the cost function equation of the GICP algo-

rithm, which now in sub-cloud space calculated re-
sembles like:

E j(Ψ)GICP =
k
N

N
k

∑
i=1

d(Ψ)T

i (Σ
M j
i +ΨΣ

S j
i Ψ

T )−1d(Ψ)
k ,

(11)
where d(Ψ)T

i gives the pointo-to-point distance in the
correspondence step, and Σ

S j
i and Σ

M j
i give the covari-

ances for the vicinity of points in the j− th subclouds
of source and target models. The whole registration
approach proposed in the present work is summarized
in the flowchart of Figure 3.

4 RESULTS

In this section, we discuss results for different reg-
istration experiments through a comparative analysis
among algorithms. They include Go-ICP (Yang et al.,
2016), CP-ICP (Souza Neto et al., 2018), CP-GICP
(Forte et al., 2021), ICP variants (Besl and McKay,
1992) (Chen and Medioni, 1992) (Segal et al., 2009),
the one named 3D-NDT (Magnusson et al., 2007),
also the 4PCS (Aiger et al., 2008) and, finally, the
algorithm SAC IA+ICP (Liu et al., 2020). For what
concerns the 3D models, the dataset of objects in-
cludes samples from (Levoy et al., 2005) and from
(Aleotti et al., 2014). The samples of outdoor scenes
are the ones from (Wulf, 2016) and also some shots
acquired after aerial imaging at an university cam-
pus (Forte et al., 2021). The whole set of algorithms
were C++ written in the PCL framework (Rusu and
Cousins, 2011), except for the Go-ICP whose exe-
cutable was made available and run on a 12 GB Intel
Core i5-8265U.

For additional information regarding the sim-
ulations (code implementation and parameters),
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Figure 3: Flowchart of the proposed method. We have, respectively, in (1) the partitioning step, in (2) the choice of the
alignment algorithm and in (3) the verification of the registration.

the reader is suggested to check the material
available at https://github.com/pneto29/. For vi-
sualization of every result discussed in this paper,
refer to https://drive.google.com/drive/folders/
1Mt5tavDks5LPtBNFumdW6rhgaSXE5fxO?usp=
sharing.

4.1 Heatmap of Geometric Descriptors

Initially, we report on the use of the geometric de-
scriptors and their ability to get the scene context.
Figure 4 represent the pairwise similarity of Eigen-
tronpy and Omnivariance measurements as a heat
map, thus allowing for a simple perception of how
good they are to distinguish between objects and out-
door scenario classes. We see how those two mea-
surements are good at preserving intraclass similar-
ity whilst separating well interclass sample pairs. For
better comprehension of the above mentioned, in the
color bar at right, the separation line between objects
and outdoor scenes are shown for each geometric de-
scriptor assessed.

4.2 Pairwise Registration of Objects

We report here on the pairwise registration of ob-
jects; it can be thought of as a validation experiment,
since the ground-truth (GT) is available. For quantita-
tive assessment of matching goodness, Table 2 brings
the root-mean square error between source and tar-
get models after registration. To help comparing the
methods, Tables 3 and Tables 4 report the achieved
pose correction (along with the ground-truth) and the
time spent by each algorithm during registration.

Globally, we see that, although our technique is
not the fastest in every case, it reaches a very good
trend when analyzed under the presence of matching
goodness requirement. In other words, ours can be
lazier when Dragon model are subject to matching,
but it is very good at doing the matching in both qual-
itative (see Figures 5(a) to 5(d)) and quantitative as-

sessment (see Tables 2 and 3).
It is worth mentioning some words about 4PCS al-

gorithm. Although it is a feature-space algorithm, and
thus conceptually different to points-coordinate space
approaches as ICP variants, its close efficiency and
good time performance achieved in some of the in-
vestigated cases would suggest that it deserves some
attention, perhaps in the context of a future investiga-
tion of a cloud-partitioning approach with 4PCS fea-
ture representation embedded in the sub-cloud space.

Table 2: RMSE obtained from registration between pairs of
objects.

(∗10−3) Bunny Dragon Happy
Buddha Hammer

ICPp2p 2.026 1.835 2.537 3.535
4PCS 2.664 2.311 2.791 9.001

SAC IA 2.823 2.205 3.123 3.544
Go-ICP 89.000 55.000 32.000 207.000
CP-ICP 11.985 1.886 2.565 4.017

Our 2.222 1.886 2.621 3.807

Table 3: Rotation obtained from the registration of pairs
of objects. Note the first row of the table, with the numbers
highlighted. These values refer to the ground-truth available
in the databases (*Ground-truth).

(degree) Bunny Dragon Happy
Buddha Hammer

GT* 45.000 24.000 24.000 45.000
ICPp2p 41.300 23.862 21.679 45.577
4PCS 42.582 24.423 23.744 44.673

SAC IA 39.992 23.491 20.626 44.691
Go-ICP 34.480 61.281 15.612 36.198
CP-ICP 16.498 24.009 22.543 44.590

Our 43.245 24.009 24.039 45.042

4.3 Pairwise Registration of Outdoor
Scenes

This is an experiment in which the challenges of out-
door scene perception are posed to the registration al-
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Figure 4: Heatmap-like images of Eigentropy and Omnivariance corresponding to Euclidean distances between pairs of the
investigated samples. The darker areas correspond to close samples in the given space. The line in the color bar refers to the
separation threshold between the classes.

(a) (b)

(c) (d)

Figure 5: Result of alignment of Dragon and Bunny models.
In (a) we have the initial dragon pose, in (b) the registration,
in (c) the initial Bunny pose and finally, in (d) the registra-
tion of the Bunny model.

gorithm. Indeed, the surfaces to be matched are no
more rigid ones and, therefore, the use of a rigid trans-
formation approach for pose correction may simply
fail. If the reader is less aware of the concept, think
of the existence of moving people or cars and also of

Table 4: Time in seconds to correct the pose of pairs of
objects.

(in sec.) Bunny Dragon Happy
Buddha Hammer

ICPp2p 9.427 7.527 17.084 0.356
4PCS 7.425 0.646 51.388 187.40

SAC IA 342.34 276.90 245.93 21.999
Go-ICP 36.537 35.847 36.288 36. 198
CP-ICP 5.916 3.503 9.297 0.157

Our 4.043 3.301 3.015 0.294

trees with moving leaves in the different acquisition
shots of the scenario; they all represent disturbance to
the surface representation which could require local
transformation matrices (or other nonrigid approach)
for proper pose correction.

Results are brought in Tables 5 and 6, which report
once again the root-mean square error between source
and target models after registration and the elapsed
time in the task. Compared to the other techniques, it
is remarkable the impressive time-efficiency achieved
by the proposed algorithm. The goodness of matching
as measured by the RMSE metric showed to be good
enough for many of purposes concerning scene 3D
perception, as it can be illustrated in Figures 6(a) to
6(d), for example.
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Table 5: RMSE obtained from registration between pairs of
outdoor scenes.

Hannover Gasebo Camp Depart.
ICPp2pl 0.406 0.309 15.597 3.047
GICP 0.451 0.429 32.655 4.582
NDT 0.408 0.324 12.714 8.084

CPGICP 0.336 0.201 13.097 2.708
Our 0.341 0.222 12.484 3.631

Table 6: Time in seconds to correct the pose of pairs of
outdoor scenes.

(in sec.) Hannover Gasebo Camp Depart.
ICPp2pl 4.141 13.014 198.00 92.291
GICP 6.479 27.994 288.64 318.21
NDT 5.752 36.111 197.37 87.797

CPGICP 6.939 117.69 265.25 1968.06
Our 0.648 11.582 86.642 29.345

(a) (b)

(c) (d)

Figure 6: Result of the Department and Gasebo models
alignment, respectively. In (a) we have the initial pose and
in (b) the alignment for the Department model, in (c) the
initial pose and in (d) the register for the Gasebo model.

5 CONCLUSIONS AND FUTURE
WORK

In the present paper, it was introduced a registra-
tion algorithm for point-clouds originating from two
different contexts, namely objects and outdoor envi-
ronment. A look at the geometric descriptors based
on the covariance matrix eigenvalues revealed that
eigentropy and omnivariance can be used as features

and are able to simply and successfully separate the
data samples corresponding to the mentioned con-
texts, whilst preserving the intraclass similarity for
the whole and wide dataset prepared for the present
investigation.

As future work, there is an improvement to pur-
suit regarding the possibility to switch among sev-
eral registration cores, thus opening up the way to a
many-context aware registration approach. Although
this is strictly dependent on the availability of ad-hoc
knowledge about the correspondence between a given
technique and the context itself, which in turn relies
on huge efforts of bibliographic reports surveying, it
does pave the way towards fully-automatic registra-
tion methods to be embedded in robots or autonomous
vision systems. Such an automatic system would ob-
viously rely on very good stop criterion, which sug-
gests a second relevant issue to deal with later: the
search for alternatives to RMSE as registration qual-
ity measurement, since it often gives false or unac-
ceptable quantitative representation of the goodness
of matching.
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Improved Cloud Partitioning Sampling for Iterative
Closest Point: Qualitative and Quantitative Compar-
ison Study. In 15th International Conference on In-
formatics in Control, Automation and Robotics.

Vitter, J. S. (1984). Faster methods for random sampling.
Communications of the ACM, 27(7):703–718.

Wulf, O. (2016). Robotic 3d scan repository.
Yang, J., Li, H., Campbell, D., and Jia, Y. (2016). Go-

ICP: A Globally Optimal Solution to 3D ICP Point-
Set Registration. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.

Zhang, Z. (1994). Iterative point matching for registration
of free-form curves and surfaces. International jour-
nal of computer vision, 13(2):119–152.

Dual-context Identification based on Geometric Descriptors for 3D Registration Algorithm Selection

157


