An Ontology based Task Oriented Dialogue

João Quirino Silva¹, Dora Melo¹,²,³, Irene Pimenta Rodrigues¹,²,³, João Costa Seco¹, Caria Ferreira¹ and Joana Parreira¹

¹NOVA Laboratory for Computer Science and Informatics, NOVA LINCS, Portugal
²Department of Informatics, University of Évora, Portugal
³Coimbra Business School—ISCAC, Polytechnic of Coimbra, Portugal

Keywords: OWL2 Ontologies, Natural Language Processing, Dialogue Systems, Semantic Web.

Abstract: An ontology based task oriented dialogue as an interface to an user developing applications using natural language instructions is presented. The dialogue system represents the domain knowledge in an OWL2 ontology that is consulted and updated in the interpretation of the user utterances. The utterances are processed using an Universal Dependencies parser whose output is then interpreted to obtain a partial semantic representation. The pragmatic interpretation computes a set of possible interpretations by matching the partial representation with the ontology information, classes, properties, instances and data properties values, such as names. The dialogue manager is able to use soft constraints to choose the set of best interpretations. A set of preliminary experimental cases with promising results is also presented.

1 INTRODUCTION

This work was done in the context of GOLEM (Auto-
mated Programming to Revolutionize App Develop-
ment)¹, a most ambitious collaboration effort Outs-
systems has pursued with academic communities. The R&D project involves the collaboration of Outs-
systems with Carnegie Mellon, NOVA Laboratory for
Computer Science and Informatics at Universidade Nova de Lisboa, and INESC-ID. The main goals of the three-year program are to automate programming and revolutionize the application development experience. GOLEM is one of a few select large-scale collaborative research projects funded by Carnegie-
Mellon Portugal partnership.

One of the modules of this project is a natural lan-
guage interface, a task oriented dialogue, that must be able to interpret the user natural language instructions in order to represent them in a predefined owl2 on-
tology that will be executed by a program synthesis module. Natural language utterances are interpreted in the context of the user dialogue and in the context of the instructions ontology that represents the previ-
ous user instructions and domain knowledge.

The goal of this paper is to present the strategies performed to semantically represent a natural lan-
guage utterance into an instruction ontology, an ori-
ented data-centric application model.

A follow up set of experimental case examples are presented in this paper and the domain knowledge considered consists of databases content (tables and attributes, attributes types, etc), display operations on tables and columns such as searchable, orderable, etc.

The remainder of this paper is divided into the fol-
lowing sections. In Section 2, the main concepts and related work are presented, as well as the main ideas followed in this work. The proposed approach is de-
tailed in Section 3 and for better understanding an il-
ustrative example is presented. Section 4 describes a set of experimental examples including the results obtained. An evaluation discussion of the proposed approach regarding the experimental examples is pre-
sented in Section 5. Finally, in Section 6, conclusions and future work are drawn.
2 RELATED WORK

Task-oriented dialogue systems are natural language interfaces for a system that executes the user instructions. Examples of spoken or written dialogue systems can be found in domains such as human-robot interaction (Fong et al., 2003), technical support (Acomb et al., 2007), natural language code specification (Atzeni and Atzori, 2018), information search in several domains (Asiaee et al., 2015; Melo et al., 2016; Abdi et al., 2018; Devi and Dua, 2017), and automatic booking (Wei et al., 2018).

The interpretation of user’s utterances is a challenging task in dialogue systems and many techniques are used.

Some of the recent dialogue systems are developed using deep learning techniques. Deep learning can require a large amount of data to learn representations in dialogue systems. Different types of dialogues, task-oriented or non-task-oriented models, may benefit from different deep learning techniques (Chen et al., 2017; Wu et al., 2021). Reinforcement learning techniques for training dialogue agents (Wei et al., 2018) is another technique used in the development of a dialogue system. In (Stoyanchev et al., 2021), deep learning for task oriented dialogues is used in a dialogue module, for action state updates.

In task-oriented-dialogues, another actual approach is the use of ontologies to represent the dialogue domain information (Wessel et al., 2019; Milward and Beveridge, 2003; Meditskos et al., 2020; Stoilos et al., 2019; Atzeni and Atzori, 2018). This approach is the one followed in this work. A processing pipeline with a module for the natural language understanding and an ontology for domain specific knowledge enabling the development of generic dialogue system components.

The natural language processing module uses a state of the art statistical English parser, Universal dependencies parser - stanza and the semantic representation of the sentences is a simplified form of a discourse representation structure (Kamp and Reyle, 1993; Geurts et al., 2020).

In (Liu et al., 2021), an Universal Discourse Representation Structure Parsing based on a Transformer architecture, is proposed. However this neural networks based tool is not available. In related literature it is possible to find other promising semantic parsers (Zabokrtský et al., 2020; Gotham and Haug, 2018; Reddy et al., 2016).

An important issue in the development of a Dialogue System is the evaluation (Deriu et al., 2020). Generally, a task-oriented dialogue system has to recognize and execute a clearly defined task. The tasks involve finding information within a knowledge base and performing an action. The evaluation of the dialogue performance can be done through a qualitative analysis modelling the user satisfaction or by a more quantitative analysis measuring the task-success rate. The task success rate can be calculated by taking into account the set of constraints and the set of requests correctly represented from the user utterance.

3 PROPOSED APPROACH

The strategy followed in the implementation of a task-oriented-dialogue system includes a pipeline for the natural language utterances processing that associates to each user utterance, a discourse representation structure, see Figure 1. The next module, called Pragmatic Interpretation, rewrites the utterance semantic
representation, into a set of utterances meaning in the context of the ontology. Finally, the Discourse Manager module infers the 'discourse acts' and the 'user intention', as well as the the set of constraints of the 'discourse acts'. This module has to choose the most plausible meaning, from the set of the possible meanings, and if needed, it can introduce questions to clarify the intended meaning of the user utterance. To choose the most plausible interpretation, the dialogue manager uses strategies to select the interpretations, such as to select those with the less number of new ontology instances, or those that has the set of the discourse act restrictions more complete.

The use of an ontology to represent domain specific knowledge enables the development of generic dialogue system components that may be used in different domains.

### 3.1 An Instructions Ontology

The ontology associated with the dialogue system must model the discourse acts and its constraints. It should also model the specific domain knowledge.

The scenario for which this ontology was developed is a written natural language interface for building applications for displaying a database content. In this scenario, the discourse acts are instructions for building the components of the application's display. The following instructions were considered:

**Show**  Display a set of the columns, from a table, in a screen.

Input example: "Show name, price and stock, of the Products, on a page Analysis."

The result of the execution of this instruction should be an application with a window, named "Analysis", where the attributes "name", "price" and "stock" of the table, named "Products", are displayed.

**DisplayValue**  Display column values operated by a value.

Input example: "Show the price, with VAT."

The price should be displayed with its values multiplied by 1+VAT.

**Filter**  Put a filter on a column for searching or ordering the values.

Input example: "Show Products, with filter name."

The display of column "name" must have a searchable attribute.

The instructions (discourse acts) are subclasses of the Class Action. The other classes considered are:

- **Action** - with subclasses: Show, Display_Filter, Display_Value, ...

- **Object** - with subclasses: Multiple_Value and Single_Value. Multiple value may represent a table or an entity set; Single value may represent a column or an attribute.

- **Page** - represents the window where the objects are displayed.

- **Operator** - Constants that can be represented as subclasses and identifies an operator of an operation, such as the subclause VAT.

This ontology represents the discourse acts enabling the inference of the user intentions. Figure 2 presents the instructions ontology with more detail regarding the classes and the relations between them. The instructions ontology is still under development.

### 3.2 Partial Semantic Representation

The user utterance representation results from applying an Universal Dependencies Parser to obtain the syntactic dependency representation of the utterance, that contains the utterance terms properly classified and the existing relations between them. And, after, an algorithm is applied to build the discourse representation structure. This algorithm is based on the Discourse Representation Theory (Kamp and Reyle, 1993) but it only takes into account some discourse phenomena, such as variables are always existentially quantified, conditional are not considered, and events and time are not represented. In the future, the algorithm defined can be extended or replaced by a new tool such as a semantic parser.

Stanza library\(^2\) is used to perform the syntactic analysis. Stanza is a Python natural language analysis package, containing a collection of accurate and efficient tools for the linguistic analysis of many human languages, in particular the English natural language. The Stanza tools can be used in a pipeline to convert raw text into lists of sentences and words to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities.

Starting from raw text and by applying a Stanza pipeline, including tokenization, part-of-speech, lemmatization and dependency parsing, a syntactic structure dependency of the raw text is obtained.

For better understanding, consider the following natural language utterance example:

---

\(^2\)https://stanfordnlp.github.io/stanza/
"Show name, price and stock, of the Products, on a page Analysis."

Figure 3 shows the universal dependency parse of the utterance example. The dependency tags are used to construct the utterance partial semantic representation, a simplified discourse representation structure (Kamp and Reyle, 1993), where:

- Each noun phrase gives rise to a corresponding discourse variable, a discourse entity.
- Each action verb also gives rise to a corresponding discourse variable, a discourse entity.
- Each subject, object and indirect object of a verb, modifiers such as propositional phrases, adjectives and adverbs, define the relations between discourse entities.

Considering the illustrative example, the utterance partial semantic representation is shown in Figure 4 as a direct graph, where the nodes represent the discourse entities and the edges represent the relations between the variables. For instance, the action verb token, 'Show', defines a discourse entity and each noun token linked to the verb through the relation obj, direct object, or obl, indirect object, also defines a discourse entity. Therefore, in the partial semantic representation the action verb token establishes a relation between those entities. The coordination of the direct object nouns is taken into account by imposing the same relation between the action and the entities representing the nouns. The prepositional phrase representation 'of Products' is also imposed to each of the coordinated nouns representation.

3.3 Pragmatic Interpretation

The pragmatic representation module consists of determining a set of possible ontology semantic repre-
sentations, based on the utterance partial semantic representation and the ontology content matching.

Starting with the utterance partial semantic representation obtained in the previous step, the problem that must be solved is to choose: for each discourse variable an instance of a class, and for each edge an object property.

The first step to solve this problem is done by applying a constraint satisfaction problem (CSP) solver. Where each variable has as domain the ontology classes and the variables are constrained by the relations in the partial representation and the object properties in the ontology.

The second step involves the constraints introduced by utterance word lemmas. For each lemma there are three possibilities: first, the lemma of the entity is the name of an existing individual in the ontology; second, the lemma of the entity is the name of a class of the ontology; or third, the lemma is the name of the new individual.

In this step the possible matches are obtained by determining the similarities between the lemmas and the ontology names, whether they are individual names or class names. A similarity method is used for this task, this method uses state of the art techniques such as Levenshtein, Jaccard and Cosine distance combined values together with a local dictionary and Wordnet (Fellbaum, 1998).

The third step consists of the matching process between the partial representation relations and the ontology properties, see Figure 5 where two possible solutions are represented.

Finally, for each solution the set of class instances and properties instances is calculated, this information is attached to each solution enabling a future choice of the best solution by taking into account the completeness of the user utterance.

The Python package Owlready23 is used to load, manage, reason and update the OWL2 Instructions Ontology. Additionally, the Python tool CP-SAT Solver4 is used to solve the constraint satisfaction problem.

Back to the illustrative example, since the ontology is not yet populated, each variable has as its domain the possibility of being the name of an individual belonging to any class, and also the possibility of representing any class name. Then, solving the corresponding CPS problem consists of determine all the possible combinations of the variable classes, taking into account the entities relations and the ontology object properties. For the example, there are 165 solutions of the problem.

After the set of possible solutions is determined, the corresponding set of possible solutions semantic representations, the agenda, is constructed, i.e., for each possible solution:

- the corresponding ontology properties semantic representation are established;
- the ontology individuals are created and linked to-

---

3 https://owlready2.readthedocs.io/en/v0.32/
together with the ontology properties belonging to the solution;
• and the missing properties and individuals are determined, taking into account the ontology rules such as the mapping cardinality.

The agenda, set of possible solutions semantic representations, obtained is the input of the next step, the dialogue manager.

3.4 Dialogue Manager

The dialogue manager consists of selecting the semantic representations, according to a set of rules that allows to restrict the agenda, and then update the discourse structure and the ontology.

When the agenda contains more than one semantic representation solution, it means that there are several ontology interpretations for the utterance representation. Therefore, it is necessary to reduce those interpretations in order to achieve the correct one. Before questioning the user about his meaning and intentions, the following weighting rules are applied:

• first, preference is given to solutions that consider the utterance token near the name of an ontology class;
• second, preference is given to solutions that minimize the creation of new individuals;
• and finally, preference is given to solutions that minimize the missing properties and individuals, i.e., with a minor solution agenda.

Considering again the example, after applying the weighting rules to the agenda, it is possible to reduce substantially its size to only two solutions. Figure 5 illustrates the two solutions filtered. The correct solution is the second one, where the entities "name", "price" and "stock" are considered instances of the class "Single_value", with the corresponding names (has_name property), and are part of (is_part_of property) the entity "Products", an instance of the class "Multiple_value".

At this point, if the agenda contains more than one solution and it is not possible to naturally reduce it, then a question is posed to the user in order to clarify the possible ambiguities. The user can clarify and also add new information to be interpreted and represented in the ontology. So each time the user post an utterance, a new iteration of the process is performed, that could add new semantic interpretation entities to the ontology or work with the already existing ontology population.

4 EXPERIMENTAL RESULTS

In this section, a set of experimental cases and the results obtained are presented.

Case 1. The first experimental case is the one presented above as an illustrative example, in Section 3. As previously presented, the utterance considered is "Show name, price and stock, of the Products, on a page Analysis." and its partial semantic representation is shown in Figure 4. In this experiment, the starting instructions ontology is not yet populated and, due to the fact that the similarity method is not applied, all the variables’ domain is maximum. A set of 165 solutions is obtained from the corresponding constraint satisfaction problem, which means that there are 165 combinations of ontologies classes and properties that match with the partial semantic representation of the utterance. The goal is to determine which of these solutions is the correct one. As explained before in Subsection 3.4, the weighting rules are applied and it is possible to reduce to only two semantic representation solutions, see Figure 5. At this step, a question is posed to the user in order to clarify if, for instance, the utterance token "Products" refers to a single value or a multiple value.

Case 2. The second experimental case is similar to the first one, except that the ontology is already populated with the individuals for the multiple value "Products", and the single values "name", "price" and "stock". When applying the weighting rule, where preference is given to solutions that minimize the creation of new individuals, the set of semantic representation solutions is reduced to just one, the correct one, see Figure 6. In this case, no question is posed to the user and the ontology is populated with the missing individuals and corresponding properties that link them together.

Case 3. This experimental case is a variant of the second case, where the token "Show" is replaced by the token "Put", i.e., the utterance considered is "Put name, price and stock, of the Products, on a page Analysis." The test goal is to evaluate the performance of the overall approach, even when the token "Put" it is not known from the ontology side. The partial semantic interpretation of this utterance is similar to the second experimental case and the resulting set of semantic representation solutions has 137 solutions, considering the ontology already populated. After applying the weighting rules, the set of semantic representation solutions is reduced to just one solution, again the correct one. The utterance partial semantic
representation and the corresponding correct solution are shown in Figure 7. As in experimental case two, it is not needed to pose a question to the user and the ontology is populated with the missing individuals and corresponding properties that link them together.

Case 4. At this experimental case, it is considered the previous utterance and the token "page" was exchanged by the token "screen", i.e., the utterance is "Put name, price and stock, of the Products, on a screen Analysis." As in the previous experiment, even when the token "screen" is not known in the ontology, it is possible to obtain a set of 232 semantic representation solutions and, by applying the weighting rules, reduce it to just two solutions. The utterance partial semantic representation is similar to the previous ones and is presented in Figure 8.

Case 5. This experimental case is a variant of the fourth case, where the token "Put" is replaced by the token "Show", i.e., the utterance considered is "Show name, price and stock, of the Products, on a page Analysis." The utterance partial semantic representation is similar to the previous ones and when applying the constraint satisfaction problem solver results a set of 144 semantic solutions, with the ontology free from individuals. After applying the weighting rules, a set of only two solutions, the same from the previous experimental cases, is obtained, see Figure 9.
Figure 8: Case 4 - (a) Partial Semantic Representation. (b) Solutions Semantic Representation.

Figure 9: Case 5 - (a) Partial Semantic Representation. (b) Solutions Semantic Representation.
Case 6. The sixth experience consists of a second iteration of the dialogue, i.e., starting with the first utterance and after its semantic interpretation and the corresponding update of the ontology population are performed, the user posts a new utterance, for instance "Show the price, with VAT." The semantic interpretation must take into account the existing information, obtained in previous iterations of the dialogue, and generates solutions according to the context of it. The fact that the token "price" is already known and represented in the ontology, the semantic interpretation must take it into account and use that knowledge to generate the solutions. The partial semantic interpretation provides the variables entities and their relations, as shown in Figure 10. The starting ontology population has now 8 individuals, including one individual of the class VAT. The set of semantic interpretation solutions has now 81 possibilities for the utterance ontology representation and after applying the weighting rules, those possibilities were reduced to only two. Figure 10 shows the correct one obtained after a question clarification.

Case 7. The last experience is similar to the previous. The utterance "Show Products, with filter name." is posed after the semantic interpretation and the corresponding update of the ontology population of utterances 1 and 6 are concluded. Similarly to the previous one, the tokens "Product" and "name" are already known and represented in the ontology. The semantic interpretation must take it into account and use that knowledge to generate the solutions. The partial semantic interpretation provides the utterance variables entities and their relations, as shown in Figure 11. Starting the ontology population with 8 individuals, the set of semantic interpretation solutions has now 130 possibilities for the utterance ontology representation and after applying the weighting rules, those possibilities were reduced to only three. Figure 11 shows the correct one obtained after a clarification question.

Table 1 presents a summary of the results obtained for each experimental case and Figure 12 presents the Ontology Population considering the experimental cases 1, 6 and 7.

5 EVALUATION DISCUSSION

The evaluation of the dialogue system can be done by verifying the correctness of the recognition of the user dialogue acts.

Consider the dialogue examples detailed in the previous Sections:

User utterance 1: "Show name, price and stock, of the Products, on a page Analysis."
User utterance 2: "Show the price, with VAT."
User utterance 3: "Show Products, with filter name."

Taking into account that the dialogue manager was able to choose the right interpretation for each utterance, the individuals existing in the ontology, after all the 3 utterances were interpreted, are represented in Figure 12. To evaluate the correctness of the interpretation, the SPARQL query below was launched in Protegé and the query answer is presented in Figure 13. The SPARQL query selects all the actions instances and their arguments names, showing that there are three actions to specify the content of the screen.
"analysis", exactly as the user intended with its utterances.

PREFIX io: <http://www.semanticweb.org/id/2021/5/onto#>

SELECT *
WHERE {
  ?action io:has_page ?y.
  ?action io:has_object ?z.
  ?z io:is_composed_of ?w.
  ?y io:has_name ?page.
  ?z io:has_name ?object.
  ?w io:has_name ?singleValue}
UNION
WHERE {
  ?action io:has_page ?y.
  ?action io:has_singlevalue ?z.
  ?action io:has_multivalue ?w.
  ?y io:has_name ?page.
  ?z io:has_name ?singleValue.
  ?w io:has_name ?object}}

The verification of the correctness of a dialogue representation has to be done by a human, but a dataset could be built to evaluate the correctness of the dialogue acts recognition.

Another evaluation for this system would be to have users evaluating qualitatively the system’s actions. This can be done when the project modules, dialogue system and action execution, are connected.
6 CONCLUSIONS

An ontology based task oriented dialogue, considered as the natural language interface to an intelligent application for helping unskilled users to build apps to display databases contents, was developed in the context of an undergoing project.

The dialogue architecture uses a domain dependent ontology to model the specific discourse acts, instructions, and the domain knowledge. The natural language module is a domain independent module that represents the user utterances in a partial discourse representation structure, which will be used to match the ontology terms in order to obtain a set of possible semantic representations of the user utterance. The module responsible for managing the dialogue is able to use general concepts to prefer semantic representation using general criteria, such as to minimize the number of instances introduced by the user, to minimize the number of missing instances that are missing in the dialogue act, or to ask a question to the user to clarify the meaning of its sentence.

The last module is still under development but the preliminary results are promising as were presented. The dialogue evaluation is still rudimentary and made by the developers. It will be further developed when the other project tasks are integrated and real users are used.

ACKNOWLEDGEMENTS

This work is funded by FEDER, POR Lisboa 2020, ANI - Agência Nacional de Inovação and Fundação para a Ciência e a Tecnologia, I.P. and Carnegie-Mellon Portugal partnership, within the scope of the GOLEM an International R&D project - GOLEM Lisboa-01-0247-Feder-045917.

REFERENCES


edge and reasoning in practical dialogue systems (IJ-CAI03), pages 9–18.


