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Abstract: In this paper we introduce a theoretical basis for reconfigurable makespan scheduling that is computationally-
efficient and general purpose in manufacturing. A full-scale scale case study for batch production in the 
aerospace industry is shown. A knowledge-based Discrete-Event System, based on a Timed Petri Net, is 
injected with the initial - current - state and simulated to generate trajectories that represent valid possible 
schedules or policies analogous to the Monte-Carlo Tree Search (MCTS) planning algorithm. A new, concise, 
evolutionary metaheuristic is proposed called Elitist Trajectory Mutation (ETM) in order to exploit high 
performing schedules in localising search and optimisation. The advantage of this approach is 
reconfigurability, extensibility and ability to be parallelised to enable satisficing performance for real-time 
applications such as intelligent industrial cyber-physical systems scheduling, autonomous control of 
distributed systems and active industrial informatics. 

 INTRODUCTION 

Autonomous systems require abilities to discover and 
execute rapid planning in or near real-time to exhibit 
continuously intelligent control and behavior. Highly 
valuable autonomous systems are of a distributed, 
discrete-event nature and are characterized 
dynamically complex, holonic, chaotic, non-linear 
and emergent properties. Markov Decision Processes 
(MDP) may be modelled efficiently using Discrete-
Event Systems (DES) [or Discrete-Event Dynamical 
Systems (DEDS)] and controlled using event-graphs 
or schedules; a powerful, high-level contextual 
abstraction.  

This paper discusses a Monte-Carlo Tree Search 
(MCTS) approach in which autonomous supervisory 
agent is embodied with a compositional, knowledge-
based DES model. This is used as a computationally 
efficient Markovian representation for discovering 
what possible actions are available to a state. The 
process is recursive; by inferring what actions 
(controlled events) are logically possible (or feasible) 
from a given state, and selecting an action, a new state 
is generated, time is incremented and this loop is 
repeated, generating useful data in a rapid planning 

process. This replicates the lookahead process in 
Artificial Intelligence (AI) to generate, bifurcate, and 
traverse state space trees. However, in this case, time 
is modelled explicitly, allowing significant depth – 
i.e. planning or scheduling horizons, to be traversed 
for search, optimisation and presentation of 
controlled system performance, regardless of inherent 
combinatorial state explosion. 

We show how DES can be used as a ‘scheduling 
machine’, modelled using prior knowledge of 
deterministic processing time intervals and 
dependencies to define a short reconfigurable 
scheduling program written in MATLAB®. By seeing 
a task as a composition of sub-tasks, and using 
knowledge of their respective durations and 
dependencies, makespan scheduling may be cast as a 
stepwise planning problem. 

In 1.1 we discuss previous work and claims; 1.2 
define contributions and remark on previous claims. 
In 2, we show a Timed Petri Net model for a full-scale 
industrial case study from aerospace manufacturing 
and the search process [i.e. simulation] to generate 
trajectories; in 2.5 a new metaheuristic we call Elitist 
Trajectory Mutation (ETM) that exploits high-
performing trajectories is described and 3 closes with 
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some important observations and extensive 
considerations for further work. 

1.1 State-of-the-Art 

It is necessitated by the subject that previous work 
must be considered in discrete sections whilst 
retaining a manufacturing perspective; 1) discusses 
scheduling in an applied context, the raison d’etre 
along with contemporary themes, 2) discusses 
scheduling as a mathematical or computational 
problem, including Petri Nets and useful 
classifications, 3) discusses Discrete-Event System 
Simulation (DESS) and finally, 4) identifies broad 
fields of inspiration. 

1.1.1 Scheduling in Contemporary 
Manufacturing 

There have been a number of observations on the 
significant gap between scheduling theory and 
scheduling practice (Maccarthy & Liu, 1993); (Chen 
& Shukla, 1996). Scheduling is often a high-level 
abstraction of a discrete control or optimization 
problem, relating to Systems-of-Systems (SoS) 
(Zeigler, Bernard P., Sarjoughian, 2013), Multi-Agent 
Systems (MAS) (Ferber, 1999); (Wooldridge, 2009) 
and Distributed Systems (DS). Issues include 
deficient accuracy (poor prior predictions of task 
durations, neglecting inclusion of domain 
knowledge) or brittleness of schedules (exogenous 
events rendering the schedule infeasible) that 
discourage the use of scheduling systems. 

(Cowling & Johansson, 2002) noted scheduling 
models and algorithms are unable to utilise real-time 
information, implying that existing offerings are 
exclusively offline and manual. This is in 
contravention with the advent of the Cyber-Physical 
Systems (CPS) paradigm, and the broader theme of 
‘Industrie 4.0’ (Oztemel & Gursev, 2020)  that 
provides a real-time substrate for machine perception 
and environment observation via computer models 
and algorithms that enable continuous large-scale 
intelligent behaviour through physical control. 

The development towards Cyber-Physical 
Manufacturing Systems (CPMS) (Váncza & 
Monostori, 2017); (Lee, Bagheri, & Kao, 2015) 
followed by Autonomous Manufacturing Systems 
(AMS) is an international priority since high-
productivity, sustainable (Ambrogio, Guido, Palaia, 
& Filice, 2020), adaptive, self-organising, self-
optimising supply chains are in significant 
commercial demand (Romero-Silva & Hernández-
López, 2020) and represent the ultimate goal of 
contemporary industrial systems. 

A connection to the manufacturing system 
through a so-called Digital Twin (Feldt, Kourouklis, 
Kontny, & Wagenitz, 2020); (Li, Wang, Zhu, & Liu, 
2020) which we define as a computer or data  model, 
provides means to capture or observe the current 
actualised state of the system and input it as an initial 
state (or initial conditions) of a simulation or planning 
system. (Luo, Fang, & Huang, 2015) discussed the 
use of Radio Frequency Identification (RFID) with 
application to real-time scheduling to enable shop 
floor visibility. In regards to real time data acquisition 
and ingestion, the paradigm CPMS (Cheng et al., 
2018) demands deployment of high-volume and low-
latency data ‘plumbing’, as mentioned by (Rossit, 
Tohmé, & Frutos, 2019) and many others.  

1.1.2 Scheduling as a Mathematical and 
Computational Problem 

(Charpentier & Thomas, 2005) made comments 
regarding concept of ‘model reduction’ - a core idea 
in Artificial Intelligence - on manufacturing system 
scheduling in 2004, whilst literature suggests a sharp 
distinction between ‘simulation’ and ‘mathematical 
modelling’ approaches. 

Automatic generation of schedules without 
knowledge is compute-intensive; classically NP-Hard 
problem (non-polynomial time class of 
computational complexity). The Multiway Number 
Partitioning Problem (MNPP) is an example of a NP-
Hard decision problem with well-established solvers 
in which a multiset of integers must be partitioned 
into a fixed number of subsets, where the sum of 
subsets is as equal as possible. This is often cast as 
contextually relevant to makespan minimization and 
the multiprocessor scheduling problem.  
Unfortunately the MNPP exploits what would be 
hidden or unactualised information in the case of 
choice, dependencies and where processors have 
different speeds (also known as task durations). 

Brucker & Schelie were one of the first to address 
the Flexible Job Shop Scheduling (FJSSP) problem 
(Brucker & Schlie, 1990). Although the FJSSP 
structure relates to a specific type of manufacturing 
system, if tasks are equivalent to jobs, characteristic 
features arise - significant dependencies between 
tasks, task transformations (or relabelling), variation 
in processing duration (or speed) and complex 
relations between tasks and resources. 

(Chan, Bhagwat, & Chan, 2014) outlined a 
methodology for the study of manufacturing system 
control with respect to routing flexibility, sequencing 
and dispatching rules, and argued that as a systems 
flexibility increases, so does the importance of 
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optimal decision making. (Tuncel & Bayhan, 2007) 
extensively reviewed the application of Petri Nets to 
production scheduling. (Baruwa, Piera, & Guasch, 
2016) combined Timed Coloured Petri Nets (TCPN) 
and a reachability graph Heuristic Search (HS). 

Semiconductor fabrication has been a popular 
application of manufacturing scheduling problems 
featuring re-entrant flows and close integration of 
Autonomous Material Handling Systems (AMHS), 
where (Ghasemi, Azzouz, Laipple, Kabak, & Heavey, 
2020) conducted a recent case study in a Bosch 
facility. 

(Ouelhadj & Petrovic, 2009)’s work brought 
particular clarity to classification of dynamic 
scheduling or real-time scheduling problems into 
categories of completely reactive, predictive–
reactive and pro-active scheduling. 

Reactive scheduling is the dominant approach; 
myopic, low-level decentralised production or 
dispatching rules; decisions that are inferenced in real 
time, forming ‘atomic components’ of a schedule; an 
appealing online approach in dynamic scenarios 
where uncertainties and disturbances are prolific. 
Similarly to this work, the search process results in 
the construction of schedules – may be seen as 
discovering or training a knowledgebase in the form 
of a lookup table, where the engine is a set of states 
that are time-indexed with an associated action or 
controlled event. The controller is then simply 
‘looking up’ by inputting the current time to find the 
output action. An immediate weakness (besides the 
lack of reconfigurability, i.e. the complete 
configuration space must be exhaustively covered by 
the engine) is in its general lack of ‘informatics’ or 
decision support – it is difficult for users to examine 
or interpret the effects of control in a global, 
emergent, cumulative system context over time 
intervals, nor could it manage a different goal. A 
visual representation of system behaviour that is 
‘predictive’ or ‘forecasted’ is key deliverable for the 
next generation of industrial informatics. 

Predictive schedules which take place a priori 
(before) or upon the episode start, and cover the bulk 
of contemporary research, these constructed methods 
are far more computationally demanding on account 
of having to manage exploration of state space that is 
subject to combinatorial explosion. Hence, they are 
reconfigurable insofar as sufficient time is available 
for an acceptably high-performing schedule to be 
generated. 

The third type, to which this work belongs, 
predictive-reactive scheduling or 
online/dynamic/real-time scheduling, where 
classification as real-time is deeply application 

specific. Here, the ability to continuously refine or 
rapidly re-generate new event-driven control policies 
to repair or rapidly reschedule appears; schedules are 
revised in response to observed real-time events. The 
difficulty is rapidly rediscovering a rule base that is 
near-optimal in the ‘space of all rule bases’ when 
disturbances potentially render the existing rule-base 
invalid. An a recent example of this conventional, 
knowledge-free approach is discussed by (Mejía & 
Pereira, 2020), using a small case study (Petri Net 
structure) and metaheuristic Non-Sorting Genetic 
Algorithm (NSGA-II) using a High-Performance 
Computing (HPC) cluster. This again leads us directly 
into concerns relating to computational complexity. 

1.1.3 Discrete-Event Simulation as a 
Surrogate Model for Search and Tree 
Generation 

(Negahban & Smith, 2014) claimed that Discrete-
Event System Simulation (DESS) is a 
“computationally expensive tool”, followed by 
(Shiue, Lee, & Su, 2018) regarding multi-pass 
simulation as “inappropriate for shop floor control 
because it requires intensive computational effort to 
select the best scheduling method for each scheduling 
period”. (Negahban & Smith, 2014) suggest “the use 
of simulation as a basis for real-time system 
controller is still a hard task due to the response time, 
data collection and aggregation issues”. 

An avenue for future work in achieving higher 
performance is in Parallel Discrete-Event System 
Simulation (PDESS) (Fujimoto, 2016) (Pellegrini & 
Quaglia, 2017) research while the broader scientific 
community are shifting numerical workloads such as 
training Machine Learning (ML) models to an 
Graphics Processing Unit (GPU).  

1.1.4 Inspirational Background Work 

In laying theory for optimization-and-simulation 
based scheduling [see (Negahban & Smith, 2014) for 
a wide review of manufacturing informatics 
applications], inspiration was found in (Ramadge & 
Wonham, 1989) that covers early theoretical work 
behind DES control, (Sutton & Barto, 2018)’s 
Reinforcement Learning (RL) (also covered by 
(Bertsekas & Tsitsiklis, 1996)) especially in its use of 
the Markov Decision Process (MDP) formalism 
(Howard, 1960) to use policies over ‘episodes’ (see 
(Dietterich & Zhang, 1995) for early work on 
scheduling).  

Learning Classifier Systems (LCS) (Butz, 2015) 
(Bull, 2015); (Urbanowicz & Moore, 2009) for 
automatically discovering interpretable 
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knowledgebases that achieve rule-chaining, efficient 
tabular learning and credit assignment. We also note 
similarities between this work and Temporal Logic or 
Tense Logic; a system of rules for representing and 
reasoning about propositions qualified in terms of 
time, and introduces a concept of branching time 
independently replicated here. A final observation is 
that Petri Net structures are similar to the Recurrent 
Neural Network (RNN)(Sepp & Jurgen, 1997) in that 
once instantiated, models systematically allow 
persistence of data, constraining dimensionality in 
temporally dynamic behaviour. 

1.2 Contribution & Claims 

It has been observed that in many scheduling 
problems that relate to real systems retain a similar 
structure in that the task types and duration observed 
are consistent and deterministic, only the state data 
(e.g. number of tasks, resource configurations, etc) 
and the definition of the objective function [a 
generalised term for optimal behaviour] change over 
episode instances. In order to exploit this, 
reconfigurability has been a principal research 
objective – the scheduling problem changes; a 
reconfigurable scheduling system can react to this 
change by adjusting system parameters and structure 
- a framework which has the capability to solve 
scheduling problems in the same universe of 
discourse by serving all possible state configurations 
with minor added complexity. 

The most interesting prospect to commercial 
industry that keep developmental and computational 
requirements low are symbolic reasoning approaches 
and lightweight simulation frameworks. We suggest 
that simulation and optimisation frameworks need to 
be built with a ‘real-time application’ mentality where 
clear limitations on what is computationally tractable 
for real-time use should be considered from the 
outset.  This requires revisiting foundational theory in 
DES - graphical models, such as Petri Nets, need only 
define the relations or dependencies between 
variables followed by intentional programming to 
minimise the number of computer operations. 

Real time information is essential in order to 
establish the state of the controlled system. “Industrie 
4.0” applications enable this via data from the CPS 
layer that enables easy injection of the initial state for 
rescheduling. This will address concerns regarding 
immediate response expected from real-time control 
and rescheduling that adapts to these disruptions or 
disturbances automatically. In the context of these 
two points, we have found a fruitful analogy is 
viewing the control of DES (in applications such as 

real-time scheduling of manufacturing systems) 
through the lens of path or trajectory planning in 
Robotics. 

The apparent distinction between mathematical 
and computational approaches is superficial in that 
strictly speaking, the representational power of both 
are along the same continuum and the trade-off is 
between the ease of model definition, model 
verification and computational tractability for 
complex manufacturing systems. Graphical models, 
such as Petri Nets, are mathematical and 
programmatic representation hybrids that define rules 
of interactions between variables as a form of model 
reduction - the logical, formal systems description 
directly relates to exhibited computational efficiency. 
DES Simulation (DESS) complexity is largely an 
extension of Petri Nets using Finite State Automata 
(FSA) or Finite State Machines (FSM) and 
supporting software for data collection, visualisation 
and statistics gathering capabilities.  

On the one hand, all systems will experience some 
form of combinatorial state explosion and many will 
be sufficiently complex to make rule base discovery 
intractable for long planning horizons. On the other 
hand, DESS software used by manufacturing 
researchers focus primarily on ease-of-use; user 
interfaces, 3D representations and other such features 
which do little to optimize the speed of simulation 
itself - some of the very earliest programming 
languages [such as Fortran, Simula67 and Simscript] 
initially targeted scientific and numerical computing 
followed by simulation modelling, including DESS, 
through the introduction of objects, classes etc. Since 
that time, we have had a monumental increase in 
computational processing which has been unutilised 
by prioritizing the aforementioned features used in 
research, or overlooked as a software requirement by 
developers and vendors. We make some observations 
in regards to parallelisation of our technique and 
algorithm in Section 2.4. 

In addition to use of inefficient simulation models, 
we observe that approaches in existing work do not 
combine the simulation and optimization/search 
process together into the same program, but instead 
deploy a low bandwidth approach where the 
optimisation algorithm (typically an evolutionary 
metaheuristic) generates a complete possible solution 
with combinatorial complexity of the space of actions 𝚺𝑪  to the power of episode length 𝒆𝒕  that is then 
evaluated by the simulation for both feasibility 𝑭 
(Boolean) and multi-objective (𝑶𝟏, 𝑶𝟐, … , 𝑶𝒏) 
performance (or cost). (Sutton & Barto, 2018) 
addressed this oversight directly; ‘Evolutionary 
methods ignore much of the useful structure of the 
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reinforcement learning problem: they do not use the 
fact that the policy they are searching for is a function 
from states to actions; they do not notice which states 
an individual passes through during its lifetime, or 
which actions it selects’. 

 

 
Figure 1: Rolling windows; breaking down continuous time 
into episode lengths, and conducting scheduling processes 
within these spaces, where the left hand node is the initial 
state and the triangular shape represents the bifurcating 
search in future state space. 

The finite set of possible states for DES is  
exceptionally large and using this model free 
approach means many generated solutions are likely 
to be logically impossible or unfeasible; 𝑭 = 𝟎 
(False), thus waste valuable computational search 
[removing the possibility of real-time scheduling and 
forcing use of HPC] since they do not exploit the tree-
like compositional structure of DES process 
trajectories (see Fig. 3), nor capture the full detail of 
the system behaviour in the simulation at each time 
instance, particularly in regards to dynamically 
varying constraints. 

Further, we advocate that the simulation need only 
be at the so-called supervisory level of abstraction so 
that the branching factor (choice – the number of 
feasible actions) is manageable on a case-by-case 
basis. This is analogous in older literature to 
Hierarchical Task Decomposition (HTD) (Moore & 
Flann, 1999) and Hierarchical Task Networks (HTN) 
(Dvorak, Bartak, Bit-Monnot, Ingrand, & Ghallab, 
2014) (Cao & Sanderson, 1994) and more recently the 
idea of general idea of attention (Wang, Hao, & Cao, 
2020) - an intelligent system can only consider so 
many possibilities at once in order to be tractable. Our 
approach is that secondary effects of sub-actions or 
sub-tasks, (for instance, the use of transportation or 
logistics systems, setting-up of resources), are 
procedurally generated after the higher-level decision 
to assign a task to a resource has been made. The 
ramifications of these tasks are therefore experiential 
and observed only in the resulting, constructed 

schedule and respective statistical data but are not 
considered a priori as part of the decision itself.  

 METHODOLOGY 

The approach discussed here exploits the Timed Petri 
Net as an explicit model to represent a state transition 
function. This allows construction of each solution by 
first defining this model (in 2.1), taking an 
observation or percept as input (in 2.2), recording this 
input as an initial state marking, which is a basic form 
of object permanence, querying the DES model 
(which is conceptually our knowledge representation) 
to find only the logically feasible components of the 
solution at each time step (in 2:3), followed by a 
policy for selection over the space of feasible actions 
(a Monte-Carlo selection used, resulting in Monte 
Carlo Tree Search (MCTS)). This casts it as a 
planning problem - analogous to a fully observable, 
non-stationary MDP formalism as a stepwise 
stochastic decision process, which is the source of its 
reconfigurability whilst avoiding the need to ‘solve’ 
the MDP using sample-inefficient and potentially 
unstable methods seen in RL. This results in a fast, 
elegant and efficient depth-first search and 
deliberation process that belongs to the class of 
anytime optimal algorithms which run continuously 
and give the optimal-so-far when queried.  

2.1 Modelling Scheduling Processes 
through DES 

In the context of Industrie 4.0, scheduling problems 
are applicable to some physical environment or 
system under control that are continuously evolving 
in real-time. This ‘infinite’ time horizon (i.e. the 
continuous physical reality) may be divided into in a 
rolling window of sequential episodes using a 
receding horizon. Fig. 1 illustrates this concept 
graphically. Our definition of a schedule is an event-
driven control policy over some time interval that is 
optimized towards a mixture of emergent or 
cumulative properties and the occurrence of specific 
events. Systems that are scheduled orient around 
sequencing tasks in concurrent systems and use 
categorical, symbolic relations between tasks (or  
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Figure 2: The Timed Petri-Net Structure of the Discrete-Event System; we have 7 part (task) types, each passing through as 
many as 32 sequential sub-tasks completed on 36 workcenters (resources). 200 controlled events, the links, represent actions 
- routing rules - that indicate the assignment of a sub-task to a resource. Conceptually, tokens represent the presence of a part, 
and will move around this diagram as the process is simulated. 

jobs) and resources (or processors) that are executed 
dynamically in serial or in parallel.  

The ‘Petri Net’ is a form of DES model and was 
conceptualised by Carl Adam Petri in 1962 in his PhD 
thesis “Communication with Automata” and are 
particularly suitable for the modelling of systems 
characterised by concurrency, parallelism, conflicts, 
causal dependency, synchronisation and crucially, 
choice. Stochastic Petri Nets (SPNs) and Generalised 
Stochastic Petri Nets (GSPNs) are extensions which 
aim to model unpredictable behaviour, whilst Timed 
Petri Nets (TPNs) extend PN to include time 
representations such as time delays or durations to be 
associated with transitions, places and arcs. This 
enables TPN to become applicable in scheduling 
problems; temporally dynamic behaviour [a DES 
‘trajectory’] is driven entirely by sequentially indexed 
asynchronous events. Two terms, selected on account 
of their semantic generality, define the fundamental 
components of scheduling problems; tasks and 
resources. A ‘task’ represents some contextual 
process abstraction from some lower-level system. In 
computer programs; instantiation and deployment of 
specific controller or an on-line discriminatory 
statistical model, in hierarchical multi-agent robotic 
swarms; task decomposition for an individual robot, 
a manufacturing system; a machine, in a computer 
system; a processing unit. Meanwhile, a ‘resource’ 
represents some finite affordance; utilization of a sub-
system. 

Petri Nets are a directed bipartite graph, where 
mathematical topological structures model the 
pairwise relations between objects; these relations 
represent ‘domain knowledge’ within the system. 
Task type queues and resources are the nodes or 
vertices and the links or edges are the relations. There 
are two types of nodes; places and transitions. 
Transitions are durationless events representing 
decisions to dynamically map tasks to resources. 
Tasks are represented by tokens that are unit 

variables; they provide logical information in that 
their presence indicates a true condition and 
additionally represent queues by using real-valued 
integers for volumes. The Petri Net structure may be 
defined as a mathematical incidence matrix that 
relates tasks to resources. Provided these 
relationships are represented, it is not important how 
this is implemented in a computer program – 
emphasis should be placed on high performance; e.g. 
sparse arrays or hash maps. 

This system belongs to Safran Landing Systems 
(SLS), Gloucester, and produces large titanium and 
steel structural components for landing gear for the 
next generation of civil aircraft. There are parallel 
machines, multi-part machines, re-entrant flows and 
significant scope for assignment conflicts. Taking one 
part as an example, there are 1440 unique possible 
paths through the system and any number of possible 
parts in the system (provided maximum number of 
tokens is not exceeded) at any one time (i.e. a given 
state).  Tokens represent tasks or in this case, parts. 
Tokens belong to places. Petri Net ‘places’ are of two 
forms; task type queues (the rectangular elements in 
‘Part Distributions’ on the top of Fig. 2) or the 
resources or processors (which are the circular 
elements on the bottom of Fig. 2 that are denoted as 
‘Workcenters’). Events 𝚺𝒊  are encoded with unique 
integer keys and are executed as single asynchronous 
or multiple synchronous state transitions (central in 
Fig. 2 as ‘Routing Rules’ which are controlled events 𝚺𝑪  exclusively; rules which we want the agent to 
discover by searching through different firing 
sequences). The complex relation between resources 
and the tasks are indicated by the edges - defining a 
holistic, irreducible system of rules. In this work, we 
introduce a concept known as task transformation – 
when a task or part leaves a process or resource via a 
uncontrolled event 𝚺𝑼  it is transformed or ‘re-
labelled’ by going into the subsequent task queue. 
The  set  of  𝚺𝑼  is  not shown  in the diagram Fig. 2.,
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Figure 3: Trajectory Mutation; all represent state space in the vertical and time in the horizontal. On the left we show a purely 
exploratory process, each trajectory is recorded, the highest relative performance (the elite trajectory) is shown by a red trace. 
In the centre, we show the unexplored controlled events associated with the elite trajectory. By selecting, at random, elements 
from this set of unexplored controlled events, we ‘branch off’ from the elite trajectory. On the right, we show these new 
trajectories from their branching points in blue. The process is repeated iteratively. 

since they are a mirror of the controlled events, with 
this small variation only. In this way, a task persists 
through as many intermediate states or sub-tasks as 
required by the application, even where these 
intermediary states have different processing 
requirements. This inventive step was driven by the 
complex modelling requirements inherent to the 
highly flexible case study, and this contribution 
exploits the procedural processes inherent to 
hierarchical task decomposition. 

2.2 Percepts & Inputs in DES 

When the agent takes an observation of the real 
system under control, tokens are initialised and 
distributed into their respective places and any 
anticipated uncontrolled events are added to the event 
list to isomorphically represent the state. The concept 
of future events being associated to the present state 
is a further important contribution. A similar concept 
is employed in continuous-time domain control as 
systems of differential equations, since these too 
allow the controller to delineate inputs by providing 
data a predictive property. 

2.3 Inferring Logically Feasible 
Controlled Events 

We use a process of deduction that exploits the 
persistence of data (tokens) discussed in 2.2 so that 
the compositionality of the process is retained. 
Constructing only feasible trajectories from the initial 
state exploits the explicit mapping between state and 
possible events. Once the Petri Net is marked – i.e. 
injected with state, the subset 𝚺ிா஺ௌூ஻௅ா஼ ⊆  𝚺஼ must 
be discovered by applying propositions first, 
followed by executing singular or combinations of 
controlled events in a trial and error method. The 
propositions are; 
Proposition 1: No element in instances of the state or 
marking vector, (i.e. the Petri Net values) can be less 
than 0. 

Proposition 2: The value of an integer in a resource 
place cannot exceed the maximum task-capacity of 
the respective resource.  

Once discovered, elements in 𝚺ிா஺ௌூ஻௅ா஼  are 
selected until the set  𝚺ிா஺ௌூ஻௅ா஼  becomes empty. This 
means that over a given number of assignments, in-
process tasks are blocking the processing of out-of-
process tasks, or that the resources available cannot 
process waiting tasks.  In which case the system is in 
an Invariant Behaviour (IB) state, in which 
unmodelled, lower-level processes are observed. 

The maximum branching factor of sequential 
decisions is far smaller – one controlled event per 
time step 𝚺௧஼ = 1, in combination, the upper bound is 𝚺௧஼ = 2𝚺𝑪 − 1 . Although the blocking mechanism 
will reduce this value significantly. The process of 
discovering neighboring states through controlled 
events is recursively repeated until the pre-defined 
episode length is reached or the goal is completed – 
i.e. tokens or processes have reached an acceptable 
intermediate or finished state. The states which the 
model passes through define the Behaviour 
Permutation (𝑩𝑷) and respective Controlled Event 
Permutation ( 𝑪𝑬𝑷 ) as a dimensional map or 
permutation of selected controlled events. Together, 
these define feasible trajectory over an episode of 
time. This could also be called a policy, a plan, or 
simply a schedule. This is because at each time 
instance 𝒕, the system is fully defined - there is an 
expected state 𝑩𝑷𝒕  and control decision 𝑪𝑬𝑷𝒕 . In 
addition to these maps, we include a truth table or 
bitmap 𝑪𝑬𝑷𝑼   that records unexplored CEP 
elements, shown centrally in Fig. 3. This is used in 
the new algorithm discussed in 2.5. A number of 
trajectories conceptually creates a complex tree 
structure of branching time, where the initial state is 
the root node, the trajectory a branch the final state is 
the leaf node, shown at the left of Fig. 3. 
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Figure 4: Results; on the far left, we have the mean of individuals for each simulation step, where the CTRL is pure MCTS 
shown in black. The other colours are various types of MCTS-ETL, with a 5, 10, 25 and 50 individual population types with 
a two-term power curve fitting. Although MCTS has some optimisation capability as a result of sampling the space, MCTS-
ETL search outperformed MCTS in both discovery of the minimum makespan and the population average makespan. On the 
right is the underlying data for the MCTS-ETL-POP:10 for each processor core. 

2.4 Real-time Robust Control 

There are many ways in which disruptive events 
change the initial state input to the system – new 
orders, order deletion, re-routings, changes in due 
dates or random resource unavailability/breakdown, 
errors in gathering state data and changes to futures 
events [e.g. a resource is scheduled for maintenance 
which is recorded as an anticipated event]. 

Any Disturbances or Are Reflected in the 
Updating of the Initial State and/or an Adjustment to 
the Event List Respectively. This Essentially Defines 
a New Problem and Triggers an Entirely New Search 
Process, but Because Trajectories Are Generated 
Rapidly, the Claim for Real-Time System Control 
Remains Intact. Further, Because Multiple Instances 
of the DES Are Independent, and the Initial 
Population Is Purely Exploratory, the Search May Be 
Conducted using Parallel Processing, Increasing the 
Speed of Rescheduling Dramatically. 

2.5 Elitist Trajectory Mutation 

A final contribution is the presentation of a simple 
tabular metaheuristic inspired by ideas from 
evolutionary computing called Elitist Trajectory 

Mutation (ETM). Because each trajectory has an 
inherent branch-like structure, any direct exploitation 
of its information content must be maintained in order 
to localise search and converge to near-optimal 
makespan performance. This makes many highly 
popular exploitation approaches, such as crossover in 
Genetic Algorithms, non-sensical. Instead, the 
mutation operator here is restricted to feasible, pre-
discovered mutations. The emphasis on a tabular or 
memory-based approach is reflective of an overall 
attempt to keep computational requirements low. 

As shown in in Fig. 3 (left), the search process 
hitherto described generates an initial population that 
is purely exploratory by sampling the state space 
generated by the TPN – a Monte-Carlo Tree Search 
(MCTS). The highest performing trajectory (the elite 
individual) is used as the phenotype. The sum of 
unexplored controlled events of this individual is used 
as the upper limit on a pseudo-random real-valued 
integer, where the lower limit is 1. The integer 
generated selects an element in 𝑪𝑬𝑷𝑼  from this 
individual’s map, selects the respective controlled 
event (the mutation) and constructs a new trajectory 
from that point, using MCTS as normal. This means 
that every mutation is verified as feasible and 
guarantees feasible trajectories are generated. 
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Figure 5: Industrial Informatics; in the top plot we have the schedule itself, 672 parts (tasks) comprised of 19200 processes 
(sub-tasks) that are distributed over a period of 5x105 minutes; approximately 347 days on the 36 workcenters (resources). 
Workcenter ‘WC:06’ shows exceptional utilization. Note that a continuous colour block indicates continuous processing. 
Factory utilization varies significantly over the time period. Using a maximum partially processed sub-task volume limit of 
30, there is a largely linear production rate shown in the lower two plots. 

This process may be repeated using generation-based 
populations or hill-climbing. Convergence to local 
minima is avoided by selection of elements in 𝑪𝑬𝑷𝑼 
that are ‘early’ in the trajectory (thereby are in effect, 
more exploratory), whilst ‘late’ elements mutations 
are more exploitative.   As shown in Fig. 4, in addition 
to being attractively simple and computationally 
cheap, we found this metaheuristic to converge 
quickly and effectively in industrial test cases, far 
exceeding the performance of purely exploratory 
search alone. 

 ANALYSIS & DISCUSSIONS 

The main difficulty is that DES model development, 
verification and validation from knowledge is 
exceptionally time-consuming. A software approach 
to take a description to a working DES model would, 
at a minimum, reduce development time and could 
help avoid human modelling errors. Initial efforts 
have been discussed in (Helliwell, Morgan, & 
Mahfouf, 2021). It may be possible to reduce the 
model’s computational complexity further by using 

adjusting the number of significant figures used in 
variables. In complex scheduling problems, 
exploiting this imprecision could be a useful pre-
processing step. In a small set of cases where 
‘scheduling problem’ or ‘scheduling machine’ is 
defined as a DES, we believe some areas of state 
space are unexplored by the naïve trajectory-
generation process used - we intend on covering these 
cases in a short paper in future. 

The makespan minimization approach is a single 
objective; further detail could include adding more 
costs or objectives, for instance, resource context 
switching: apply a reward or punishment to the 
complete system upon a change in state for a 
resource. Complex or mixed utility functions as 
programs or collections of terms, assigning credit to 
occurrence of certain events at certain times, 
cumulative rewards, rather than a closed-form single 
or multiple scalar objectives (i.e. multi-objective) 
seen in typical optimisation or reaching ‘goal states’ 
in planning. 

Interval scheduling of industrial systems that have 
choice, hidden information and high number of 
dependencies lack a standard problem that could 
facilitate benchmarking different approaches in 
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methodology, software architecture (including 
memory structures and processes), programming 
language choice, implementation into hardware 
(including considering the trends in heterogeneous 
and parallel computing) and algorithm design. 

We see the next step in real-time manufacturing 
operations control is the final type discussed by 
(Ouelhadj & Petrovic, 2009); robust pro-active 
scheduling, which attempt to integrate risk into 
predictive models, essentially pre-empting the effects 
of uncertainty and disruptions to minimise the effects 
on performance measure – indeed, there are 
significant possibilities in combining Uncertainty 
Quantification (UQ) with global optimization of 
industrial systems. Precalculation of schedules is 
using the simulation models to consider unactualised 
initial states, possible configurations that have not 
been expressed by the system under control – 
generating hypothetical scenarios in the form of 
experiments to utilise unused computational 
resources. For instance, the initial state could be 
gathered from the CPS layer, followed by a random 
generation of resource unavailability, variations in 
delivery requirements, and variations of constraints. 
The difficulty here is transferring the learning from 
these cases into a flexible knowledge representation 
that can help inform future searches rather than a 
brittle tabulation or memoisation approach. We are 
seeing similar ideas manifest in ML as self-supervised 
learning and self-play. 

Two aspects relate to the frameworks overall 
computational intelligence; brute computation and 
better algorithmic processes. It is challenging to 
establish a clear relationship between the proposed 
approach and ML approaches. Pre-trained black-box 
metamodels have been recently explored in the 
context of Deep Reinforcement Learning (DRL) by 
(L. Hu et al., 2020), (Xia et al., 2020) and (H. Hu, Jia, 
He, Fu, & Liu, 2020). The challenge is establishing 
objectively just how reconfigurable these approaches 
are and whether they can ensure a significant 
generalisation capability, and if required, the training 
or optimisation process is sufficiently 
computationally demanding to conflict with real time 
applications. 

A further weakness in an ML approach is that the 
model cannot be easily updated. In many industrial 
applications, it is inevitable that the structure of the 
controlled system is subject to variation (e.g. new part 
or resource) and the configuration space defined is 
therefore new. This would need a complete re-
training in the case of an ML approach. In the 
proposed method, this would only require updating 
the explicit Petri Net structure, whilst the scheduling 

mechanism itself remains intact. Independence 
between trajectories indicates this could be an 
example of an Embarrassingly Parallel (EP) 
[Processing] problem, in which case framework 
deployment in multi-core CPU or Graphical 
Processing Unit (GPU) would allow multiple DES 
evolutions occurring in parallel, rapidly exploring 
state space. In this research, we have successfully 
used a multi-core approach, but believe that GPU will 
be more performant. 

In future work, we envisage probabilistic 
approaches that integrates ML as a supportive ‘black-
box’ sub-system. The existing method operates as a 
first operation that creates self-supervised, synthetic 
data (of near-optimal trajectories) that can be used to 
train a generalised function such as Artificial Neural 
Network (ANN). The output of such a function would 
weight the space of feasible actions (a policy) as a 
secondary operation. This would enable faster-still 
real-time control of those systems with high 
branching factors (e.g. large DES models that express 
high flexibility and high feasibility). Candidates that 
have inspired such an approach include high-
performing online graph-based metaheuristics, such 
as Ant Colony Optimisation (ACO). 

4 CONCLUSIONS 

In this paper we show how an extended TPN can be 
used to define a computationally efficient MCTS 
scheme for makespan minimisation of full-scale 
industrial batch-scheduling problems. We show how 
this can be extended into the ETM algorithm specific 
to DES to localise search and optimisation. 
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