
A Survey Study and Analysis of Task Scheduling Approaches for the 
Major Computing Environments 

Dalia Kamal A. A. Rizk1, Hoda M. Hosny1, El-Sayed M. El-Horbaty2 and Abdel-Badeeh M. Salem2 
1Faculty of Computer Science, The American University in Cairo, Egypt 

2Faculty of Computer & Info. Sciences, Ain Shams University, Egypt 

Keywords: Task Scheduling, Cloud Computing, Grid Computing, Fog Computing, Workflow-based, Static Tasks, 
Makespan. 

Abstract: Nowadays, task scheduling is the central point of attraction with respect to cloud computing. Retrieve, store, 
or compute /analyse data on the cloud are typical types of such tasks. Due to the huge amount of data that are 
found on the cloud and the need for deep analysis and heavy computation; the importance of task scheduling 
in an appropriate way for execution increases. In this paper, we present diverse types of algorithms for task 
scheduling on different environments namely: cloud, grid, and fog under the two widely known types of task 
representations (task-based and workflow-based). 

1 INTRODUCTION 

The infrastructure used to grow frameworks like 
healthcare systems, should give high computing 
ability, abundant capacity volume, and solid 
communication with the goal that the task can be 
completed within the time constraint (Sahoo et al., 
2018). Cloud computing is broadly utilized, joined 
with the advantages of diminishing expense through 
sharing computing and storage resources. Additional 
benefits of cloud computing are found in its 
reliability, security, and scalability features. The task 
scheduling choice should ensure proficient utilization 
of cloud infrastructure with least task execution cost 
conceivable while guaranteeing the application's 
quality of service (QoS) requirements. Different tasks 
going to the cloud request a specific kind of Virtual 
Machine (VM). Because of the idea of open settings 
in the cloud computing, the needs for information 
increase rapidly. Accordingly, this issue can be 
addressed by appropriate usage of tasks alongside 
accessible resources in order to minimize the required 
time of execution (Nayak and Padhi, 2019). Most 
algorithms developed to assign the suitable task to the 
right resource are task dependent where the most 
important feature about these scheduling algorithms 
is to optimize resource utilization. The makespan is 
the most used measuring factor for almost all 
scheduling algorithms. It is the total time taken to 

execute all tasks by the resources. Although, tasks are 
divided into static or dynamic ones, most studied 
algorithms dealt with the static tasks only. 
Furthermore, algorithms could be executed on 
different environments such as: cloud, grid, or fog 
computing. Another important aspect that deals with 
the scheduling process is that the tasks could be either 
task-based or workflow-based. 

Section 2 covers the surveyed task-based 
representation approaches and associated algorithms. 
Section 3 covers the surveyed workflow-based 
representation approaches and their algorithms. 
Section 4 presents our comparative analysis of the 
surveyed approaches and section 5 concludes our 
analysis results. 

2 TASK-BASED 
REPRESENTATION 
APPROACHES 

Task scheduling is an effective method to accomplish 
a performance perfection of the cloud system. The 
cloud scheduler should coordinate the heterogeneous 
tasks to the best-fit VM instance which is picked 
based on the goal of task scheduling like energy, cost, 
or time minimization, etc (Sahoo et al., 2018). Task 
priority or urgency strategy depends on the weight of 
the task that has a remarkable ability for proficient 

412
Rizk, D., Hosny, H., El-Horbaty, E. and Salem, A.
A Survey Study and Analysis of Task Scheduling Approaches for the Major Computing Environments.
DOI: 10.5220/0010711300003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 412-421
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



task scheduling and improved output of the system. 
There are many strategies to assign a priority to a task 
based on a selected algorithm. The following 
subsections summarise some of the most widely used 
algorithms under those strategies within the various 
environments (Cloud, Grid, and Fog). 

2.1 Cloud Computing 

Task scheduling is an important way for enhancing 
the performance of running applications on the cloud. 

2.1.1 PCA (2015) 

The authors (Al-Sammarraie et al., 2015) here are 
presenting a schedule algorithm for enhancing the 
usage of the resources along with providing 
acceptable cost for the presented services. They 
achieved their goal by giving priorities to the tasks 
based on their profits. They took into consideration 
two important factors of the cloud computing which 
are the service performance and cost. Their literature 
survey mentioned a lot of readings, but unfortunately, 
they just wrote the reference numbers without further 
explanation. The only explained algorithms in the 
literature survey were for the ones they are going to 
use later on for comparison. The proposed algorithm 
is called the Performance and Cost Algorithm (PCA) 
because it doesn’t only target the minimization of the 
cost service for the user and the maximization of the 
profit for the provider, but it also targets the 
enhancement of the services completion time through 
minimization and the resources consumption through 
maximization. Therefore, the proposed algorithm 
provides cost economical services along with high 
performance by taking into account the completion 
time as well as the cost-priority. This is accomplished 
by optimizing the resource utilization and minimizing 
the maksepan. 

2.1.2 TS-GA (2016) 

The authors (Hamad and Omara, 2016) of this 
manuscript altered the way of execution of the 
original Genetic Algorithm (GA) to present a new one 
which minimizes the completion time and the cost of 
tasks, while maximizes the resource utilization. They 
introduced task scheduling as one of the resource 
management topics where the algorithm should 
consider the huge number of tasks versus the number 
of available resources on one side, while on the other 
side the point of interest issues to the Cloud user and 
provider. Those interest issues could be completion 
time and cost from the Cloud user’s side, and resource 
utilization from the Cloud provider’s side. They 

studied 8 different genetic algorithms that target 
modifications in the original GA in order to achieve 
better performance from the Cloud either user’s side 
or provider’s side. According to the authors, task 
scheduling is an optimization problem that has 
different parameters as minimum makespan, 
resources utilization, and minimum cost and it can be 
solved by a heuristic algorithm. 

The original Genetic Algorithm (GA) consists of 
five steps whereas the proposed Tournament 
Selection Genetic Algorithm (TS-GA) consists of six 
steps. The TS-GA applies some modifications to the 
original GA and introduces a new step which is “Keep 
Best Solution”. This final step uses the new 
population along with the old one. The first step of 
the algorithm in the GA is the “Initial Population”: 
which are all individuals that are used in the GA to 
find out the ideal solution, then after some operations, 
a new generation is developed based on specific 
criteria used for the mating chromosomes. The same 
step is proposed by the new TS-GA, but with defining 
that the initial population is from a random generation 
of binary encoding. The second step is the “Fitness 
Function”: which is the motivation factor in the GA 
as the individual survive or die based on its function 
value. The TS-GA used the same step by showing the 
method of computation to achieve a reduction in the 
completion time for executing all tasks on the existing 
resources. The third step in the original Genetic 
algorithm is the “Selection”: which is the way to 
choose the best chromosomes using different 
strategies: roulette wheel, tournament selection, 
Boltsmann strategy, or rank selection. The TS-GA 
used the tournament selection strategy as its third step 
in order to overcome the impediment of the 
population size. “Crossover” is the fourth step and it 
is the creation of new individuals through the 
hybridization operation in the GA. In the proposed 
TS-GA, they altered this step to include the parents of 
the new individuals to the new population as new 
children. The final step in the original GA is the 
“Mutation”: which is the evolution operator that 
diverse the gene values when a homogeneous state 
occurs to the chromosomes. This final step is not 
found in the proposed TS-GA; however, it is replaced 
by two other steps: “Initialize Subpopulation” and 
“Keep Best Solution”. The “Initialize Subpopulation” 
is responsible to add the new generated population 
after the crossover to the old parent population. While 
the “Keep Best Solution” returns the solution chosen 
during the crossover process back to the old 
population presuming that it has been the satisfying 
solution for the fitness function. 

A Survey Study and Analysis of Task Scheduling Approaches for the Major Computing Environments

413



The authors used the CloudSim toolkit to run their 
experimental tests by comparing their proposed 
algorithm results against the Round-Robin (RR) and 
the original GA. They compared their results using 
five parameters: completion time, cost, resource 
utilization, speedup, and efficiency. Their results 
showed a better performance for all five parameters 
using their proposed algorithm. 

2.1.3 Pricing Models (2016) 

The authors (Ibrahim et al., 2016) presented an 
enhancement algorithm to reduce the makespan and 
the price of executing independent tasks. According 
to the authors, they used the static scheduling as it 
takes into account the pre-getting of the needed data 
and the pipelining of the various phases of task 
execution. Static scheduling also forces minimum 
runtime overhead. The main target of their 
enhancement algorithm was to allocate users’ tasks to 
VMs based on processing power and taking into 
consideration the price of the VMs. The authors used 
Amazon EC2 and Google as their pricing models.  

The authors first calculated the total processing 
power for all existing virtual machines (VMs). Then 
calculated the total processing power requested by the 
tasks. Then the proposed algorithm designated for 
each VM a partial amount of the total power 
requested based on its power factor. Next, they 
calculated the ratio between the needed power by the 
allotted users’ tasks and the total processing power of 
the available resources. Finally, the algorithm 
calculated the execution time and the price of each 
task per each VM.  

The authors then explained their experimental 
environment where they used the CloudSim simulator 
to evaluate the proposed enhancement algorithm and 
the other algorithms used for comparison. As a 
Cloudlets benchmark, they used the formatted 
workload generated by the High-Performance 
Computing center HPC2N. They compared their 
results against the default First Come First Services 
(FCFS), the Genetic Algorithm (GA), and the Particle 
Swarm Optimization (PSO). The results showed the 
efficiency of the enhancement algorithm over other 
algorithms by reducing makespan and decreasing the 
price of the running tasks. 

2.1.4 DPQ-PSO (2017) 

The authors (Ben Alla et al., 2017) here proposed a 
task scheduling algorithm based on Dynamic 
Priority-Queue (DPQ). The proposed algorithm 
guaranteed good performance along with task priority 
and load balancing while improving the resource 

utilization. The proposed DPQ is based on the 
Analytic Hierarchy Process (AHP) and Particle 
Swarm Optimization (PSO). The authors conducted 
their survey over six previous researches that mainly 
dealt with prioritization of tasks based on different 
perspectives. Accordingly, they believed that an 
appropriate task scheduling algorithm should consider 
task prioritization depending on multiple criteria. 

The authors’ main objectives for their proposed 
algorithm were first to calculate the task prioritization 
according to the various rules using the AHP. Then 
communicate these tasks between dynamic Priority-
Queues according to the choice distribution and the 
priority. Finally, the tasks should be scheduled 
according to the meta-heuristic algorithm PSO. The 
authors used the Analytic Hierarchy Process (AHP) 
as it is the most common method for Multi-Criteria 
Decision Making (MCDM). The importance of AHP 
lies in its sub-dividing a problem into three levels: 
objectives, attributes, and alternatives. Moreover, 
they chose Particle Swarm Optimization (PSO) as 
their meta-heuristic algorithm because they supposed 
that it is the best choice against other optimization 
algorithms for the sake of its easiness in 
implementation and its capabilities of converging to 
an acceptable solution. 

The architecture of their system starts by 
receiving tasks and storing them based on their arrival 
time in the global queue. Then the AHP prioritize the 
tasks and save them in the global priority queue based 
on the objective, attributes, or alternative level. The 
authors used: task length, waiting time, burst time, 
and deadline as their criteria for the attributes level. 
Then they used the Dynamic Priority-Queues 
algorithm (DPQ) to classify the tasks using a quartile 
method into the prioritize levels: low, medium, high. 
These prioritized queues reach the scheduler and 
according to the PSO module in the DPQ algorithm, 
the queues are scheduled for appropriate VMs. The 
usage of the PSO guaranteed the execution of tasks 
with a minimum makespan and cost of resource 
usage, while maximize the resource utilization.  

The authors also used the CloudSim as their 
evaluator platform for their proposed algorithm and 
compared their makespan results to those of FCFS 
and PSO alone. The proposed DPQ-PSO algorithm 
showed better results in performance and in resource 
utilization. This is due to the execution of the high 
priority tasks first with high privilege from the VMs. 

2.1.5 TCA (2018) 

The authors (Sahoo et al., 2018) proposed a task 
scheduling algorithm taking into consideration the 

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

414



time and cost constraints. Accordingly, they proposed 
two versions of their Time and Cost efficient (TCA) 
scheduling algorithm. The first takes the best fit into 
consideration while the second takes the first fit.  

They presented a scheduling algorithm to 
minimize both the execution cost and execution time 
of a task. The Time and Cost efficient (TCA) 
scheduling algorithm takes into consideration the 
deadline constraint. They assumed that the cloud 
consists of a number of VM where each is featured by 
its speed and execution cost. They featured each task 
by its arrival time, length or size, and deadline. 
Accordingly, they considered the heterogeneity of 
both the task and the VM during mapping each task 
to an appropriate VM. The scheduler they proposed 
consisted of a task priority calculator, a real-time 
controller, and a resource allocator. On the arrival of 
a new task, the scheduler starts by giving a priority 
value to the task based on its deadline and the worst-
case execution time (WC ET). The following step is 
to sort these tasks by their priority value. The real-
time controller then chooses which task can comply 
with its time constraint or not. In the event that there 
is no VM that can complete the task within its time 
limit, the real-time controller notifies the resource 
allocator to add new VMs. Finally, if the task’s time 
limit can be met, at that point the resource allocator 
appoints a suitable VM to the task. Therefore, the 
real-time controller and the resource allocator 
cooperate together to fulfil the task’s timing 
prerequisite and afterwards diminish the execution 
cost by passing on to the best fit VM. 

The presented algorithm is divided into two parts: 
the first computes for each task its priority value 
through using a calculator module. Then all tasks are 
sorted by their priority value in descending order. The 
second part of the algorithm is composed of two for 
loops nested inside each other; the first one is for each 
task in the previous sorted list, the second for loop is 
for each VM. Here, the start time, the execution time, 
and the finish time are calculated per each VM. Then 
for each VM, a check for whether the finish time is 
less than or equal the deadline time is met or not. If it 
is met, then a utility function is computed. This utility 
function is used to choose the best VM from both time 
and cost perspectives versus time only or cost only 
algorithms. Otherwise, if the finish time of any VM is 
not less than the deadline time of the task then a new 
VM is added. Finally, a best fit VM is selected for the 
current task and then the final combination is saved 
in the schedule plan (SCH). Then a new task from the 
sorted list is being introduced to be executed. 

They examined the presented algorithm through 
extensive simulations and experiments. They used 3 

measuring factors: guarantee ratio (GR), average cost 
(AC) and average execution time (AET) to show the 
effectiveness of TCA over some existing 
arrangements. The GR is the ratio of the total tasks 
sustaining their deadline limits against the whole total 
number of tasks. The AC is the average cost needed 
to finish a task within the known constraints. Finally, 
AET is the average execution time for the whole 
system including all the tasks. In conclusion, the 
offered algorithm showed best results for the 3 
measuring factors against the other two compared 
algorithms: Heterogeneous Earliest Finish Time 
(HEFT) and the Cost Aware Algorithm (CAA) where 
the HEFT depends on the earliest finish time only, 
while the CAA depends on the execution time only. 

2.1.6 Heuristic Approach (2018) 

The authors (Gawali and Shinde, 2018) here are 
presenting a hybrid algorithm as they combined five 
different technologies to form the proposed heuristic 
approach. The five used technologies are: the 
“analytic hierarchy process (AHP)”, but they added 
some modifications to it. The second and third 
technologies used are the “bandwidth aware divisible 
scheduling (BATS) + BAR optimization”, but 
combined in one algorithm. The fourth technology 
they introduced was the “longest expected processing 
time preemption (LEPT)”. Finally, they used the 
“divide-and-conquer method”. Their targeted 
performance metrics which they measured were the 
turnaround time and the response time. According to 
the authors, the turnaround time is the duration of 
time per each task from its submission to its 
completion, yet the response time is the required time 
to check the request against the readiness of the 
resource. They used both the Cybershake and 
Epigenomics scientific workflows as their testbeds.  

The proposed system started by using the AHP to 
arrange the tasks based on their length and their 
runtime and then give ranks to these tasks; however, 
the authors modified this segment by calculating new 
ranks for the succeeding tasks to the current tasks at 
the server. The following step in the proposed system 
is to allocate the cloud computing resources mainly 
the CPU, memory, and bandwidth by using the BATS 
algorithm. However, they also modified this section 
in order to choose the correct task to be executed next. 
This modification was done by using the bar systems 
algorithm (BAR) where they also used a bipartite 
graph to help in the detection of the next task to be 
executed. The third step in the proposed system is the 
preemption methodology which is conducted through 
the LEPT policy. This policy deals with checking the 

A Survey Study and Analysis of Task Scheduling Approaches for the Major Computing Environments

415



usage of a virtual machine when there is 
accumulation of tasks on this VM, then a preemption 
is required in order to redistribute the waiting tasks to 
other virtual machines. The final stage in the 
proposed system is the divide-and-conquer technique 
which takes the waiting tasks in the previous step and 
redistribute them among other VMs.  

According to the authors, using this presented 
heuristic approach, they covered both aspects of task 
scheduling and resource allocation simultaneously. 
They tested their system against the existing BATS 
and IDEA frameworks using the Cybershake and 
Epigenomics as their testbeds. The carried 
assessments were to evaluate the turnaround time, the 
response time, and the utilization of CPU, memory, 
and bandwidth. The results of their proposed system 
showed justifiable results than the existing BATS and 
IDEA frameworks. 

2.1.7 Mapping Independent Tasks (2019) 

The authors (Nayak and Padhi, 2019) proposed an 
algorithm which is intended to manage variable 
length tasks by taking the upsides of the distinctive 
heuristic algorithms and guarantees ideal task 
scheduling with difference accessible resources to 
upgrade the quality of the medical services 
framework. According to the authors, they knew that 
the transferred data in the case of cloud computing is 
huge and to guarantee a better service of transferring, 
there should be a suitable uninterrupted resource 
scheduling algorithm. This procedure satisfies both 
the managing of task load along with the dynamic 
assignment of task while taking into account the non-
requirement features such as: availability, flexibility, 
scalability, and the minimal cost. The scheduling 
process begins when the user submits a task to the 
scheduler. This task could be either inserting, 
processing, or accessing data. Then the scheduler 
plans the task to the available resource. 
The authors listed with description the performance 
metrics for effective load balancing, but they focused 
on one specific metrics that they related it to their 
algorithm which is the “Makespan (MS)”. It tends to 
be characterized as the maximum time needed for the 
system to go through the whole data center. It is 
directly proportional to load balance; therefore, a less 
makespan means a less load balance and this is a 
significant quality of acceptable task scheduling 
algorithm. 

The authors discussed some different algorithms 
such as the MinMin and the MaxMin who use the 
completion time as their main criteria. The MinMin 
algorithm is suitable for small/short tasks as they are 

usually assigned to available resources based on the 
minimum calculation of completion time. However, 
large/long tasks are left unattended due to their long 
completion time. On the other hand, MaxMin 
algorithm is the opposite of MinMin where it fulfils 
the large tasks at the favor of the small ones. 

Their proposed algorithm is a mixture model in 
order to overcome the starvation problem of the 
MinMin and MaxMin algorithms. They execute their 
algorithm based on the number of small tasks versus 
the number of large tasks. If the number of small tasks 
is more than the number of large tasks, then the large 
tasks are assigned the resources first in order to 
enhance the efficiency and manage the maximum 
completion time. Whereas when the number of small 
tasks is less than the number of large tasks, then the 
small tasks are assigned the resources first in order to 
improve the computing performance and to avoid 
starvation. 

2.2 Grid Computing 

Grid systems which are one of the parallel computing 
structures, require task scheduling as one of their 
most important factors. 

2.2.1 MMBLB (2015) 

The authors (Daood et al., 2015) here are presenting 
a task scheduling algorithm which is based on load 
balancing. Their algorithm takes into consideration 
that small tasks to be executed on slower resources 
while the larger tasks be executed on the faster ones. 
They achieve the load balancing of resources 
utilization while reducing the total completion time. 
According to the authors, the presented algorithm is 
an extension to the Min-Min algorithm, and therefore, 
they called it: Min-Min Based on Load Balancing 
(MMBLB) algorithm. The proposed algorithm also, 
changed the completion time matrix to be called: 
Expected Sum Completed Time (ESCT). 

The proposed algorithm consisted of two phases 
where the first phase is the Min-Min algorithm, while 
the second phase overcome the disadvantage of the 
Min-Min which is improving the load balancing. The 
Min-Min algorithm is firstly used to assign the small 
tasks for execution on slower resources. Then the 
second phase of the proposed algorithm is to 
concurrently execute the large tasks on the fastest 
resources. This improvement enhances the chance of 
simultaneous execution of tasks on resources.  

A new performance matrix (ESCT) is also being 
introduced in this algorithm which is a modification 
of the Expected Complete Time (ECT) matrix that is 

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

416



being used by almost all scheduling algorithms. This 
ESCT works on both increasing the load balance and 
optimizing the makespan outputted from the Min-
Min algorithm. It also works on reducing the usage of 
resources by using this ESCT instead of the ECT and 
the Expected Execution Time (EET). According to 
their outcomes which showed an optimization in the 
makespan and an enhancement in the productivity 
usage of resources. Consequently, this proved that 
their development is producing better results than that 
of using Min-Min algorithm alone. 

2.3 Fog Computing 

Although, Aladwani (Aladwani, 2019) presented a 
chapter on a survey about the different task 
scheduling algorithms for the cloud computing 
environment, the author previously proposed to use 
the fog computing especially for healthcare tasks. The 
author presumed that there will be latency time during 
the process of handling healthcare tasks over the 
cloud. The proposed algorithm contains a new 
method for Task Classification and Virtual Machines 
Categorization (TCVC) based on tasks importance. 
Aladwani, classified the tasks to high, medium, and 
low important tasks based on the patient’s health 
status. She referenced some of the advantages of fog 
computing for the IoT applications to support the idea 
of using the fog computing along with the healthcare 
IoT applications. Moreover, she gave the tasks 
scheduling algorithms the following definition: “a set 
of rules and policies used to assign tasks to the 
suitable resources (CPU, memory, and bandwidth) to 
get the highest level possible of performance and 
resources utilization”.  

The literature review presented by Aladwani, 
covered 4 reviews only regarding the tasks scheduling 
algorithms in the fog computing. Aladwani, then 
moved to the architecture of the healthcare system 
where she introduced fog computing layer. She 
referenced what each of the three layers 
(Devices/Sensors Layer, Fog Computing Layer, 
Cloud Computing Layer) consists of and how they 
communicate with each other briefly.  

Furthermore, in the motivation section of her 
research, which was mainly about giving priority to 
the tasks based on their importance instead of their 
length. She believed that this means unfairness and 
load unbalance to tasks that are of higher importance. 
The algorithm, Aladwani presented to solve this 
problem is to schedule the tasks after arrival into three 
groups according to their importance. Then inside 
each group, the tasks are resorted according to the 
MAX-MIN scheduling algorithm. Finally, each 

group of tasks is assigned to the appropriate VMs 
group to be executed. According to the proposed 
algorithm, the author assumed that the VMs should be 
of different capabilities and performance.  

Finally, the author showed the simulation that was 
conducted on the CloudSim simulator of the proposed 
algorithm and its output versus the output of the 
MAX-MIN algorithm alone. The comparison 
conducted by the author, showed that the proposed 
TCVC scheduling algorithm is better than the MAX-
MIN scheduling algorithm alone with regards to the 
Average Waiting Time (AWT), Average Execution 
Time (AET), and Average Finish Time (AFT). 

Unfortunately, Aladwani’s literature review 
didn’t justify why fog computing is better than cloud 
computing with IoT healthcare applications. It also, 
didn’t mention from where or what was the reference 
she used for the patient’s health status to accordingly 
classify the tasks to high, medium, and low important 
tasks. The proposed schedule algorithm classified the 
tasks based on critical, important, and general tasks 
without giving the reference health information. 

Regarding the survey about the different task 
scheduling algorithms for the cloud computing, 
Aladwani (Aladwani, 2020) chose to work on three 
major static algorithms. The three task scheduling 
algorithms under investigation were:  Fist Come First 
Service (FCFS), Short Job First (SJF), and the MAX-
MIN. According to the author, the parameters used 
for the measurement of their influence on different 
tasks were: algorithm complexity, resource 
availability, Total Waiting Time (TWT), Total 
Execution Time (TET), and Total Finish Time (TFT). 

The author believed that the biggest challenges in 
cloud computing are task scheduling and load 
balancing. She further divided the scheduling 
algorithms into two levels: one at the host and the 
other at the Virtual Machine (VM), but the author 
focused on the VM level. Accordingly, the author 
started mentioning the advantages of all task 
scheduling algorithms, then explained how 
algorithms work in the cloud computing environment 
by being divided into three levels. Cloudlets is the 
first level where it is the set of tasks that needs to be 
executed, then mapping the different tasks to the 
appropriate resources in order to highly utilize the 
resource while maintaining a minimum makespan. 
The last level in the task scheduling algorithms is the 
set of VMs that are used for executing the Cloudlets 
tasks which is furtherly divided into two steps that the 
author referenced them. 

Further on, the author started discussing the 
advantages, the disadvantages, and the mechanism of 
each of the surveyed algorithms (FCFS, SJF, MAX-

A Survey Study and Analysis of Task Scheduling Approaches for the Major Computing Environments

417



MIN). The results for each task scheduling algorithm 
are also given when using fifteen tasks against six 
VMs with the assumption of different properties for 
the VMs. The simulation of these tests was conducted 
on the CloudSim simulator. Finally, a comparison for 
the TWT and TFT only for the three static task 
scheduling algorithms was conducted.  

However, throughout the chapter, the calculations 
given never showed any values to the parameters: 
algorithm complexity, resource availability, and TET 
which were mentioned earlier. Another concern in 
this chapter, is when discussing the arrangement of 
tasks per each VM in the FCFS algorithm. The author 
represented the tasks to the VMs differently in the 
figure that discusses the “FCFS work mechanism” 
from the table that discusses “waiting times of tasks 
in FCFS”, where she swapped two tasks when waiting 
for the VMs. Accordingly, there were some errors in 
the calculations and even in the comparison table. 

3 WORKFLOW-BASED 
REPRESENTATION 
APPORACHES 

The following subsections summarise some of the 
most widely used algorithms based on the workflow 
representation.  

3.1 ICTS 

The authors (Amoon et al., 2018) proposed a 
workflow-based scheduling algorithm for 
applications to the virtual machines (VMs) in the 
cloud computing environment. The proposed 
algorithm is divided into three parts: level sorting, 
task prioritization, and then virtual machine selection. 
They named the proposed algorithm as ICTS that 
stands for Improved Cost Task Scheduling since their 
target was to improve the schedule length and to save 
the monetary cost simultaneously. They introduced 
the directed acyclic graph (DAG) as the 
representation used for the workflow in the cloud 
computing. This DAG consists of nodes and edges. 
They conducted a survey of eight previous researches 
regarding the scheduling method in cloud computing. 
Accordingly, they found that most of the scheduling 
process targets the minimization of makespan while 
not taking into consideration the monetary charges. 

The algorithm architecture is based on cloud 
clients presenting their workflow jobs to be executed 
using the cloud interfaces, then these jobs are 
subdivided into more basic tasks along with their 

dependence. The subdivided jobs/ tasks act as nodes 
in the DAG, while their dependence acts as the edges. 
Then, the DAG is passed to the Scheduler which is 
responsible to assign the tasks to the appropriate 
virtual machines to complete the execution process. It 
is worth mentioning that the cloud customers pay 
according to either the number of used VMs and their 
types or the number of needed CPU cycles. The 
authors used here the second type which is the 
number of needed CPU cycles. Therefore, the authors 
believed that their algorithm has faced a major 
challenge which is solving the competition between 
minimizing the time cost while at the same time 
minimizing the monetary costs. 

The algorithm is divided into three stages; the first 
stage is the level sorting which is conducted through 
traversing the DAG from top to bottom grouping 
tasks into levels based on their dependency, and then 
sorting these levels. The second stage is that for each 
level; the tasks are ranked through a computed 
equation then sorted in a new task list based on their 
decreasing order of ranks. The final stage is that of 
VM selection, which is conducted through calculating 
the Makespan-on-Cost Ratio (MKCR) for each task 
per each virtual machine. Finally, the VM with the 
largest MKCR gets its related task. According to the 
authors, this arrangement attempts to profit from the 
idle time slots between scheduled tasks per each VM 
to limit the finish time of a DAG. The authors also 
defined the “time complexity” to be the time needed 
to appoint each task to a particular VM based on a 
special priority. 

In conclusion, the authors presented their 
evaluation of the proposed algorithm through the 
makespan and the monetary costs metrics. They 
normalized these metrics through calculated equations 
to get the schedule length ratio (SLR) and the monetary 
cost ratio (MCR) respectively. They used random 
generated number of tasks that ranged from 80 to 400 
tasks per a DAG. They compared their performance 
results to that of the Hybrid algorithm. As a result, the 
ICTS proposed algorithm showed better results for 
both SLR and MCR over the different number of 
ranges of tasks than the Hybrid algorithm. Their 
justification was because the ICTS when calculating 
the rank of any task took into account both the 
correspondence times between the parent tasks and this 
task in addition to the correspondence times between 
the same task and its successors. Accordingly, the most 
complex tasks in the DAG will be sorted at the top of 
the ranked list in the ICTS and thus processed first. On 
the other hand, in the Hybrid algorithm, the calculation 
of the task’s rank was only for the correspondence 
times between a task and its successors only. 

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

418



3.2 NMMWS 

This paper (Gupta et al., 2018) dealt with generating 
a schedule plan for mapping tasks of a workflow to 
active virtual machines on a cloud server while 
achieving their two goals: minimize the makespan 
and maximize the average cloud utilization. The 
proposed algorithm used the min-max normalization, 
then calculated a dynamic threshold for the 
assignment of tasks to virtual machines (VMs). The 
workflows they used are of course represented by a 
directed acyclic graph (DAG) where the nodes 
represent the tasks and the edges represent the data 
dependency. The authors stated that: “The problem of 
workflow scheduling in cloud computing is to map 
each task to a suitable VM and to schedule the tasks 
for their execution.” Accordingly, they did an 
extensive survey regarding diverse aspects such as: 
different scheduling algorithms either for 
independent tasks or for workflow applications, least 
makespan and maximum cloud resource utilization, 
cost optimality, minimum energy consumption, or 
maximum reliability. Since the authors used the 
workflows scheduling then they used the 
communication-to-computation ratio (CCR) value in 
order to categorize the workflows into data-intensive 
and/or compute-intensive. The lower the CCR, then 
the workflow is a compute-intensive; the higher the 
CCR, then it is a data-intensive. 

The authors used performance parameters for 
evaluating the effectiveness of the proposed 
algorithm against the other existing algorithms. The 
definitions given by the authors for these parameters; 
the makespan (MS) and the average cloud utilization 
(CU), are as follows: 

Makespan (MS): is the complete processing time 
of a workflow application. 

Average Cloud Utilization (CU): is the average 
utilization of all installed VMs on a single cloud 
server where the utilization of the VMs is the time 
consumption rate of any VM relating to the cloud 
server. 

The algorithm presumably consisted of the 
following “actors”: 

1. Workflow manager: who receives a workflow, 
then splits it into separate tasks to be 
forwarded to the “Global Cloud Manager”. 

2. Global cloud manager: acts as the cloud 
scheduler which receives the tasks and starts 
scheduling them to the VMs. 

3. VM manager: is responsible for creating and 
deleting VMs. 

The authors used matrices to represent the Data 
Transfer Time (DTT) and the Estimated Computation 
Time (ECT). For the DTT, they used the upper 
triangular matrix to represent the time for data 
transfer between task nodes. The assumption they did 
regarding the DTT was that for any two VMs 
belonging to the same cloud server, the DTT is 
negligible. For the ECT, which is the execution time 
taken per each task on the different VMs can be 
calculated through using any estimation routine 
technique. Although the authors referenced two types 
of these routine techniques, but unfortunately, they 
didn’t mention which one they used for their 
calculation. Other assumptions taken by the authors 
were that the runtime of the tasks should be known 
prior, a task per each VM at a particular time, and no 
stopping for any task once allocated to a VM. 

The main algorithm calls three different sub-
algorithms. The first module of the proposed 
workflow scheduling algorithm is the min-max 
normalization of the estimated computation time 
(ECT) for all tasks. The second sub-algorithm is 
responsible for the computation of the Earliest Finish 
time (EFT). Then the last module uses the dynamic 
threshold value for dividing the tasks in the ready 
queue into small and large batches. These batches are 
assigned to the VMs in the main algorithm as their 
final step. The authors did a profound simulation on 
various benchmarks: scientific or real-life workflows 
such as: Cybershake, Epigenomic, Inspiral, Sipht, and 
Montage. The results of the simulation were 
compared against four well-known algorithms 
namely: heterogeneous earliest finish time (HEFT), 
dynamic level scheduling (DLS), Min-Min, and Max-
Min. According to the results, they reported from the 
simulation of the proposed algorithm NMMWS 
against the others, it was shown that the NMMWS is 
providing far better results for both the makespan and 
the average cloud utilization. Finally, the authors did 
another hypothetical test using the statistical ANOVA 
for validating the results which also showed 
remarkable results for their proposed NMMWS. 

4 COMPARATIVE ANALYSIS 

All the aforementioned scheduling algorithms dealt 
with how to arrange tasks for execution in the 
different computing environments. Table 1 
summarises our comparative analysis of the 
characteristics of each approach and its points of 
strength.  
 
 

A Survey Study and Analysis of Task Scheduling Approaches for the Major Computing Environments

419



Table 1: Comparison between the studied task scheduling algorithms under the studied approaches. 

Approach Reference Characteristics Points of Strength 

PCA 
(AL-Sammarraie 

et al., 2015) 

The proposed algorithm works on 
optimizing the resource utilization as well 

as minimizing the maksepan. 

Their results of applying the algorithm 
and comparing them with previous known 
algorithms showed better performance in 

makespan and resource utilization.

TS-GA 
(Hamad and 

Omara, 2016) 

The proposed algorithm is a modification 
to the original Genetic Algorithm (GA). 
The algorithm also contains a new step: 

“Keep Best Solution” which uses the new 
population solution along with the old one.

The results of their proposed algorithm 
showed a minimization of completion time 

and cost of tasks, and maximization of 
resource utilization at the same time. 

Pricing 
Models 

(Ibrahim et al., 
2016) 

It deals with the processing power of 
virtual machines versus the processing 

power required by the users’ tasks as well 
as makespan and cost.

They gave evidence of the success of their 
novice calculation of the processing power 

in addition to the makespan and cost 
reduction effectiveness. 

DPQ-PSO 
(Ben Alla et al., 

2017) 

The proposed algorithm is a task 
scheduling algorithm which guarantees 

good performance while taking into 
consideration task priority and load 

balancing which together improved the 
resource utilization.

Application of the Priority of tasks and 
appropriate scheduling while achieving a 
minimum makespan and cost of resource 
usage and maximum resource utilization. 

TCA 
(Sahoo et al., 

2018) 

Two algorithms: best fit and first fit. The 
features required for each task were: 

arrival time, length / size, deadline. The 
proposed algorithm consists of: task 

priority calculator, a real-time controller, 
and a resource allocator.

The algorithm considers both the 
execution time and the execution cost of a 
task. The utilization function chooses the 

best fit VM per each task. 

Heuristic 
Approach 

(Gawali and 
Shinde, 2018) 

The proposed algorithm is a hybrid one 
which consists of five technologies 

namely: AHP (Analytic Hierarchy 
Process), BATS + Bar, LEPT (Longest 

Expected Processing Time), and 
“divide -and-conquer method”

The compared values for the turnaround 
time, the response time, and the utilization 
of CPU, memory, and bandwidth showed 

major progress as promised. 

Mapping  
In-dependent 

Tasks 

(Nayak and 
Padhi, 2019) 

The proposed algorithm’s target is to 
manage tasks based on their variable 

length. The claim is that the algorithm 
guarantees ideal task scheduling with 

difference accessible resources.

The mixture of MinMin and MaxMin 
showed higher performance of the overall 

system based on Makespan. 

MMBLB 
(Daood et al., 

2015) 

The proposed algorithm addresses the 
deficiency of the Min-Min algorithm. It 

works on both small and large tasks 
simultaneously. They also introduced a 

new performance matrix (ESCT).

The proposed algorithm tried to overcome 
the weak point in the original Min-Min 

algorithm by giving the large tasks 
concurrent time as the small tasks and 

hence achieves lower makespan.

TCVC 
(Aladwani, 

2019) 

The proposed algorithm uses the Fog 
computing instead of Cloud computing. 
The algorithm sorted the tasks based on 
their importance instead of their length. 

Using the CloudSim simulator the results 
showed lower Average Waiting Time 

(AWT), Average Execution Time (AET), 
and Average Finish Time (AFT) from the 

output of the proposed algorithm 
compared to the MaxMin algorithm.

ICTS 
(Amoon et al., 

2018) 

It is a workflow scheduling algorithm 
which is divided into: level sorting, task 

prioritization, and virtual machine 
selection.

The proposed algorithm took into account 
both the makespan and the monetary costs 

metrics and showed improved results in 
both measurements. 

NMMWS 
(Gupta et al., 

2018) 

It is a workflow scheduling algorithm 
where they first used the min-max 

normalization. Then a dynamic threshold 
is calculated for the assignment of tasks to 

the virtual machines.

The communication-to-computation ratio 
(CCR) value used to categorize the 
workflows. The proposed algorithm 

showed better results for both the 
makespan and average cloud utilization.

 

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

420



5 CONCLUSION 

In this survey, we tried to present and compare the 
most widely applied types of static task related 
scheduling algorithms under the different 
environments: cloud, grid, and fog. We showed the 
different representations of tasks under the task-based 
and workflow-based approaches. Based on this 
analysis, we found that the most effective 
measurement factors are: optimization (resource 
utilization), makespan, and cost. Other measurement 
indicators could be load balancing, processing power, 
ESCT, and CCR. The algorithms which paid more 
attention to those measurement factors are: TS-GA, 
DPQ-PSO, and TCA. Of course, other algorithms 
consider either one or more of these factors, but not 
all the three factors together. Another important issue 
that was noticed through this analysis is that some 
algorithms prefer to do task prioritization based on 
different aspects. Some use the length of the task such 
as the DPQ-PSO and Heuristic Approach algorithms. 
Others use the importance of tasks such as TCVC and 
ICTS whereas ICTS uses a specific computed 
equation to rank the tasks. Another algorithm, the 
TCA uses the deadline and the WC ET as their 
reference for the prioritization of tasks. The aim of the 
above comparison is not to give any ranking to the 
methods, but rather to help the developers select the 
most suitable algorithm for their appropriate 
requirements and needs. Hence, based on the 
developer’s preference of the factors’ priority, the 
most relevant approach and associated algorithm 
would be selected. For example, if resource 
utilization is of highest preference, then the task-
based approach may be selected with the PCA 
algorithm. Whereas if all three measurement factors 
are required with equal priority, then the task-based 
approach along with any of the three algorithms  
(TS-GA, DPQ-PSO, and TCA) may be applied. 

REFERENCES 

Aladwani, T. (2019). Scheduling IoT Healthcare Tasks in 
Fog Computing Based on their Importance. 16th 
International Learning & Technology Conference, 560-
569. 

Aladwani, T. (2020). Types of Task Scheduling Algorithms 
in Cloud Computing Environment. Chapter at 
IntechOpen: 10.5772/intechopen.86873. 

AL-Sammarraie, N., Al-Rahmawy, M., Rashad, M. (2015). 
A Scheduling Algorithm to Enhance the Performance 
and the Cost of Cloud Services. International Journal 
of Intelligent Computing and Information Sciences, 
15(1), 1-14. 

Amoon, M., El-Bahnasawy, N., ElKazaz, M. (2018). An 
efficient cost-based algorithm for scheduling workflow 
tasks in cloud computing system. Neural Computing 
and Applications, 31, 1353- 1363. 

Ben Alla, H., Ben Alla, S., Ezzati, A., Touhafi, A. (2017). 
An Efficient Dynamic Priority-Queue Algorithm Based 
on AHP and PSO for Task Scheduling in Cloud 
Computing. Proceedings of the 16th International 
Conference on Hybrid Intelligent Systems (pp. 134-
143). 

Daood, J., Abuelenin, S., Elmougy, S. (2015). Enhanced 
Min-Min Task Scheduling Algorithm Based on Load 
Balancing in Grid Computing. International Journal of 
Intelligent Computing and Information Sciences, 15(2), 
15-29. 

Gawali, M., Shinde, S. (2018). Task Scheduling and 
Resource Allocation in Cloud Computing Using a 
Heuristic Approach. Journal of Cloud Computing: 
Advances, Systems and Applications, 7(4), 1-16. 

Gupta, I., Kumar, M., Jana, P. (2018). Efficient Workflow 
Scheduling Algorithm for Cloud Computing System: A 
Dynamic Priority-Based Approach. Arabia Journal for 
Science and Engineering, 43, 7945-7960. 

Hamad, S., Omara, F. (2016). Genetic-Based Task 
Scheduling Algorithm in Cloud Computing 
Environment. International Journal of Advanced 
Computer Science and Applications, 7(4), 550-556. 

Ibrahim, E., El-Bahnasawy, N., Omara, F. (2016). Task 
Scheduling Algorithm in Cloud Computing 
Environment Based on Cloud Pricing Models. World 
Symposium on Computer Applications & Research (pp. 
65-71). 

Nayak, B., Padhi, S. (2019). Mapping of Independent Tasks 
in the Cloud Computing Environment. International 
Journal of Advanced Computer Science and 
Applications, 10(8), 314-318. 

Sahoo, S., Sahu, S., Rath, T., Sahoo, B., Turuk, A. (2018). 
TCA: A Multi Constraint Real-Time Task Scheduling 
Algorithm for Heterogeneous Cloud Environment. 
International Conference on Information Technology 
(pp. 132-136). 

A Survey Study and Analysis of Task Scheduling Approaches for the Major Computing Environments

421


