Keywords:

Abstract:

Design and Deployment of Digital Twins
for Programmable Logic Controllers in Existing Plants

Stephan Schifer!, Dirk Schottke!, Thomas Kﬁmpfel, Kiril Ralinovski',
Bernd Tauber? and Ralf Lehmann?
VHochschule fiir Technik und Wirtschaft (HTW) Berlin, Berlin, Germany
2EAW Relaistechnik GmbH, Berlin, Germany

Digital Twin, Asset Administration Shell, Middleware BaSys 4.

Digitization and network integration of production environments are two core prerequisites for changeable
production environments according to a digital factory. In addition, consistent and cross-system descriptions of
the equipment and abilities are required over the entire life cycle of plants. This descriptions can be done with
Asset Administration Shells, which are a useful tool for the design of new facilities and their system components.
Currently, industrial plants usually use programmable logic controllers, which are programmed with domain-
specific programming languages. The use of these programming languages leads to an inflexible coupling of
programmable logic controllers and their sensors and actuators with the process. If the plant configuration is
changed later, a new engineering process with extensive reprogramming is required. However, in many cases,
clarity and completeness of changes are not sufficiently addressed in the accompanying documentation. The
paper discusses the results of the project "OpenBasys 4.0”. A project goal is to retrofit a conventional existing
plant with programmable logic controllers into a reconfigurable plant design by using the BaSys 4 middleware.
A method was developed and exemplarily implemented on a prototype. The focus of the method is on the

automated generation of Asset Administration Shells and their use.

1 INTRODUCTION

In the Reference Architecture Model Industrie 4.0
(RAMI4.0), the concept of the Asset Administration
Shell (Bader et al., 2020) is presented as an essen-
tial basis for interoperability. The Asset Administra-
tion Shell (AAS) is the digital representation (Digital
Twin) of an asset in the Industry 4.0 (I4.0) environment
and enables communication with other assets. Among
other things, machines, products or control systems
are regarded as assets. An AAS consists of several
submodels in which information and functionalities
of an object are described. The information provided
by AAS consists of documents, properties, parameters
and other functions. (Kuhn et al., 2020)

Programmable logic controllers (PLC) are assigned
to the lowest RAMI level and have a close relation-
ship to production system equipment. (Cavalieri and
Salafia, 2020) This results in significant advantages
in the description of the commissioning and in the
process of reconfiguration of the plant components.
Despite the close association, there are gaps in the use.
(Bedenbender et al., 2021)

Schéfer, S., Schéttke, D., Kampfe, T., Ralinovski, K., Tauber, B. and Lehmann, R.

Design and Deployment of Digital Twins for Programmable Logic Controllers in Existing Plants.

DOI: 10.5220/0010711000003062

On the one hand, it lacks consistent self-description
and representation to neighboring systems and objects.
On the other hand, there are gaps in the consistent
preparation and use of information in the engineering
phase. In addition, there is currently no established pro-
cedure for integrating existing solutions within PLCs
in 14.0 system environments, but rather a variety of
proprietary methods. (DIN e. V., 2020) Some gaps
can be compensated for by using BMBF-funded re-
search project Basys 4.0 middleware. (Grothoft, 2018)
Fig. 1 shows how the Basys 4 middleware fits into the
plant context and will be explained later for a specific
scenario in the paper.

In order to reduce the deficits described above, a
methodical approach is required in order to be able to
generate a high benefit from the available data. For
this purpose, it is first necessary to consider the gen-
eral state of the art in the project planning of control
environments.

In various papers, the use cases are based on the ini-
tial configuration of equipment and required structures.
For example, in the modeling of a reference plant (Pick
& Place - Station) and its components (Belyaev et al.,

145

In Proceedings of the 2nd International Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL 2021), pages 145-150

ISBN: 978-989-758-535-7

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

IN4PL 2021 - 2nd International Conference on Innovative Intelligent Industrial Production and Logistics

Plant Level

BaSys 4 - Middleware

Registry Submodel
AAS*!
Server
Ethernet
Device Level
E <O
. o>
Fieldbus <O |Submodel
PLC*?
: Edge
. Gatgway
Field Level

:Il0~©

&

(@]e)e)eleYo)

*1 Asset Administration Shell, *12 Programmable Logic Controller

Figure 1: Integration of BaSys 4 middleware.

2021) extensive descriptions were made. The mod-
eling of abilities as sub models was also discussed
there. The migration/transition of existing plants to an
14.0 environment presents a different situation and a
challenge.

Because the implementation phase of functions of
a production line involves a significant engineering
effort, a review of the necessary requirements and ex-
isting reference implementations should be performed
in advance. It is possible that the requirements and the
design of the system environment have changed during
the plant life cycle, so that system components have to
be adapted.

On the one hand, not all realized requirements were
documented or functions were implemented or that
functions have been implemented in the life cycle that
were not specified in the requirements phase. This
situation can lead to unpredictable side effects when
redesigning the plant functionality. If, on the other
hand, existing and tested function modules (templates)
are already used in the modeling of the plant behavior,
this results in a large number of synergies for future
adaptations. This aspect should not be underestimated
when transferring existing plants with programmable
logic controllers to modern 14.0 structures.

146

2 USE CASE: SORTING

In the specific use case of high-quality thermal
switches, products are tested in an industrial environ-
ment during production or after the manufacturing pro-
cess. Fig. 2 shows an overview of the environment
as an example. The products are placed on a special
pallet carrier and made available for further processes.
In this environment, each product runs through prede-
fined test scenarios. At the test stations, the required
test scope, sequence and time vary according to the
product batch. The following processes are handled in
the existing environment:

e Bring and Pick up service

e Pallet handling

e Pallet delivery

e Sorting of the thermal switches

The existing classic automation solution is to be
gradually converted into an 14.0-based solution with
Asset Administration Shell (AAS) in order to achieve
synergies with the use of production data at a manage-
able cost.

In the use case, different abilities or groupings of
abilities are required for the processes, which can be
described as assets via metamodels. For example, the
“pallet delivery” process includes the ability to fix and
transport objects. The technological components are
shown in excerpts in Fig. 3.

The abilities can be seen in isolation or as a com-
bination of abilities. In the first case, the communica-
tion relationships and dependencies for higher-level
coordination must be known. In the second case, the
grouping can be based on the totality of abilities, so
that the relationships can already be implemented on
the programmable logic controller (PLC).

Figure 2: Technological scheme (excerpt).

Design and Deployment of Digital Twins for Programmable Logic Controllers in Existing Plants

Bring-/ Pallet Pallet
Pick up handling delivery

-

Sorting

* excerpt
r Pallet Pallet Positioning |
carrier fixing unit

Figure 3: Subscheme - pallet delivery (excerpt).

In the use case, the functions have already been
encapsulated on the PLC, so that the functions are
used as assets on the AAS. All abilities or groupings
of abilities are also to be synchronized at the AAS
level. For this purpose, a Pack ML state machine is
to be established for each controller and process or
subprocess. In the case that several subprocesses are
implemented on one controller, an additional higher-
level Pack ML state machine is used.

3 APPROACH

3.1 Existing Plant & Asset
Administration Shells

In order to successfully convert a plant into an 14.0-
based solution, the plant description and the programs
used must be documented in a proper manner. In the
use case, the project planning of the existing plant was
carried out with PLCs, which were programmed with
domain-specific programming languages such as IEC
61131-3. The "Codesys” platform was used, which is
popular and is based on a PLCopen compliant notation.
In this platform, a large number of libraries and vari-
ous communication protocols can be used. (Rayment,
2004) However, there are still no solutions that allow
easy integration into an 14.0 environment via Asset
Administration shells (AAS).

The challenge is the effort-reduced realization of
Digital Twins (Koulamas and Kalogeras, 2018) as 14.0
components. These can be designed as Asset Adminis-

tration shells (AAS). AASs can be separated into three
types based on a unified information metamodel. (Bun-
desministerium fiir Wirtschaft und Energie (BMWi),
2020) Type 1 AAS represents a passive AAS, which
consists of an asset description. Type 2 AAS repre-
sents a reactive AAS, which in addition to the asset
description, also contains a communication channel.
Only Type 3 AAS is a proactive AAS and is capable of
independently communicating with other AAS. Sub-
model templates are provided for modeling frequently
used asset aspects. They are equivalent to the profiles
for fieldbuses.

One tool for the description of AAS is the AASX
Package Explorer. (Belyaev et al., 2021) This enables
a structured description to be implemented using sub-
models and other structural elements. The AASX Pack-
age Explorer supports extensive export/import func-
tions. The entire asset descriptions or individual sub-
models can be exported for further processing in an
XML or JSON format, and node sets for the assets can
be imported. Detailed and further information can be
found on the AASX Package Explorer GitHub website.
(Github Repository - AASX Package Explorer, 2021)

3.2 Challenge

The SDK BaSyx 4.2 (Eclipse BaSyx Platform, 2021)
was used in the project to implement the representa-
tive. It offers the possibility of implementing AAS in
different programming environments (Java, C++, C#).

AASSs can be configured manually by using SDK
according to the general description of the structure
and its submodels in the C#. However, this means that
an IT expert has to take over the engineering sector
in the company. In many cases, however, appropriate
employees with the required knowledge are not avail-
able in the company. However, automation engineers
are already employed for the existing machinery and
equipment, who are responsible for the support of the
plant. Their knowledge and skills can be drawn upon
with regard to the design of solutions.

The mentioned method of manual project engineer-
ing of AAS is established and will not be considered
further. The question arises of how the user of indus-
trial control is enabled to use AAS in the industrial
environment. A solution is the generic preparation of
AAS without knowledge of the SDK. For this, only the
description of the Type 1 AAS asset and the modifica-
tion of the PLC program should be as requirements.

In the research project “OpenBasys 4.0” (Bun-
desministerium fiir Bildung und Forschung (BMBF),
2019), an environment for generic generation of AAS
was implemented. Type 2 AAS can be implemented
in this environment without knowledge of the SDK.

147

IN4PL 2021 - 2nd International Conference on Innovative Intelligent Industrial Production and Logistics

Start components

4 N\

<< Registry >> | << AAS-Generator >>

<< AAS[i] >>

<< PLC[i] >>

- J
Figure 4: Minimum environment in 14.0.

The company’s employees only need to make minor
corrections and additions to their PLCs. These changes
include for example the global variable list (GVL) and
the login data (AAS ID, ip address, etc.) as http request
with a JSON structure. In most cases a http requests
(GET) are supplied by libraries of PLC manufacturer.
This means that a Type 2 AAS can be generated and
stored in a container largely automatically on request,
e.g. by the PLC. The approach involves the generic
generation of AAS for a variety of use cases using
established controls.

The potential user should be able to design AASs
relatively easily with the help of this approach and
transfer it into an 14.0 compliant environment. A ma-
chine interpretation of the contents/abilities is not yet
given due to the different use of the terminology. In
the project, a separate structure was created for the use
case. In the future, each generated AAS will receive a
GUI generated to match the AAS. At the current stage
of the project, the Pack ML state machine data (Music,
2015) is transferred from the PLC and synchronized
with the AAS. With the Pack ML state machine and
the GUI, pre-testing of the components used with any
end devices is possible.

4 DESIGN OF GENERATION
PROCESS

A functioning 14.0 system requires at least a minimal
environment (Fig. 4). In the use case, this consists of a
registry and an AAS generator, which converts Type
1 AAS into Type 2 AAS. The registry is a directory
where the Type 2 AAS can register with their sub-
models. The AAS generator has a database in which
Type 1 AASs have already been stored for later use.
The sequence diagram (Fig. 5) explains the generation
process for an AAS and a required communication
interfaces. In order to convert Type 1 AAS into Type
2 AAS, the required AAS generator was developed.

148

:PLC :AAS-Generator
! ;
1 1
= I I
g i
Check
availability()
Send
parameter list()
Validate URI

parameter list() present?()

URI

. Presentl()

Read AAS
entries()

Fieldbus interface

Validate Fieldbus available?()

interface() < |

Generate
configuration data

Create
container (Docker)

Check
Validate Fieldbus fieldbus interface
interface() from container ()
Generate
AAS structure
T <—
, . I
ol ion Append
submodels
!

Figure 5: Sequence of generation process.

The structure of the AAS generator itself is a Type
3 AAS. PLCs use the generator’s RESTful interface.
(Eclipse BaSyx Wiki, 2021) It also has knowledge of
the submodels and their properties for communication.

PLC:s first check the availability of the generator
by sending a request. If the generator is reachable, the
PLC then sends essential information for identifica-
tion. Furthermore, additional information is sent to the
AAS generator for later fieldbus communication be-
tween the industrial controller and the assigned AAS.
These are, for example, IP address, port number and

Design and Deployment of Digital Twins for Programmable Logic Controllers in Existing Plants

PLC AAS-L :Registry
(Container) '
| | !
T T ,
I] |
z B M Get r
B configuration
Check fieldbus from AAS
interface generator()
availability()
Register
Change to AAS()
,Ready” state()
T an
! 1
! I
! I
> ! 1
=] 1
3 I
< !
Check h
state()
Await
request
L T
; :

Figure 6: Sequence of registry process.

communication protocol to be used.

The AAS generator reads corresponding Type 1
AAS from the MongoDB database. If an AAS with a
matching ID exists, the AAS generator reads the en-
tries for the AAS and submodels from MongoDB and
creates an instance. Now the AAS generator checks
the availability of the fieldbus communication. For ex-
ample, in the case of OPC UA communication, the
AAS generator creates a session and establishes a con-
nection to the PLC. The AAS generator now creates
a configuration file, which contains all information
of the Type 1 AAS and the submodels together with
fieldbus interfaces.

The configuration file also contains the information
needed for the communication between the AAS and
the registry. Then the AAS generator creates a Docker
container. Inside the Docker container, a Type 2 AAS
is created and filled with information.

S DEPLOYMENT OF AAS

The following sequence diagram (Fig. 6) represents
the communication between AAS, registry and the
respective PLC.

First, a process is started which reads the previ-
ously created configuration file. The process checks
the fieldbus communication again from the Docker
container. This renewed communication test is neces-

Productiv components

4 N\

<< AAS-Management >>

<< Coordinator >>

<< AAS[1] >> << AAS[2] >>
<< PLC[1] >> << PLC[2] >>
o %

Figure 7: Productive environment (excerpt).

sary to ensure that the Docker container can establish
fieldbus communication to the PLC. If the fieldbus
communication was successful, the AAS logs on to
the registry and transfers the descriptions to the reg-
istry. The descriptions of the AAS, its submodules and
their communication endpoints are now known and the
AAS is now available as an active resource.

The resources (AAS) can then be booked for use
in the productive environment (Fig. 7) in accordance
with the use case. In the current phase, their overall
coordination is still being handled by a coordinator.
The relationships between the AAS are currently still
being established manually.

6 CONCLUSION AND OUTLOOK

Programmable logic controllers (PLCs) can be inte-
grated into an I4.0 environment if they have a digital
twin as a representative. The paper discussed ways of
simplifying the design by a methodical approach and
the use of a generic approach. This approach was im-
plemented on a prototype and will be released as open
source once the project is completed. An essential pre-
requisite of the approach is that the documentation is
as complete and free of contradictions as possible.

Templates can now be generated with the ASS gen-
erator using the transformation models shown. Auto-
matically generated AAS as digital twins of their PLCs
enable plant operators to implement easier modifica-
tions in the plant. This helps to reduce the engineering
workload.

With the embedding of the ISA-88 state machine
(Pack-ML state machine) per AAS and PLC, higher-
level commands can be assigned to the processes and
described as an ability in the future. In addition, data
from the pack tags are automatically transferred to the
information model of the digital twin. This ensures

149

IN4PL 2021 - 2nd International Conference on Innovative Intelligent Industrial Production and Logistics

consistent and standardized process control and docu-
mentation.

With the prototype, an interface is made available
via AAS, which provides further information with stan-
dardized calls (RESTful, OPC-UA).

In the future, automatically generated web inter-
faces can enable the pre-testing of the components.
This will simplify the asset commissioning process
and process coordination.

To further reduce engineering processes, automated
derivation of abilities from requirements and their re-
lationship to each other will be necessary in the future.
This requires the transferability of information models
at the necessary levels.

ACKNOWLEDGEMENT

This research work called "OpenBasys 4.0 has been
funded by the federal ministry of education and re-
search BMBF (01IS1900A) and is a BaSys 4 satellite
project for application-oriented projects. The effort of
this work was made possible by the Basys 4 frame-
work. The authors thank for the support of the BaSys
4 team.

REFERENCES

Bader et al., S. (2020). Details of the Asset Administration
Shell : Part 1: The exchange of information between
partners in the value chain of Industrie 4.0. Technical
report, Berlin.

Bedenbender et al., H. (2021). Industrie 4.0 Plug-and-
Produce for Adaptable Factories: Example Use Case
Definition, Models, and Implementation. Technical
report, Miinchen.

Belyaev et al., A. (2021). VWS-Referenzmodellierung :
Exemplarische Modellierung einer fertigungstechnis-
chen Anlage mit AASX Package Explorer auf Basis
des VWS-Metamodells 2021. Technical report, Berlin.

Bundesministerium fiir Bildung und Forschung (BMBF)
(2019). BaSys 4.0 in der Anwendung - Verbundprojekt
OpenBasys 4.0.

Bundesministerium fiir Wirtschaft und Energie (BMWi)
(2020). Verwaltungsschale in der Praxis.

Cavalieri, S. and Salafia, M. G. (2020). Asset administration
shell for plc representation based on iec 61131-3. IEEE
Access, 8:142606-142621.

DIN e. V. (2020). DIN and DKE Roadmap - German Stan-
dardization Roadmap Industrie 4.0, Version 4. Techni-
cal report, Berlin.

Eclipse BaSyx Platform (2021). Ready-to-use compo-
nents and extendable software development kits (SDK).
https://www.eclipse.org/basyx/.

150

Eclipse BaSyx Wiki (2021). Accessing Asset Ad-
ministration Shells - AAS communication).
https://wiki.eclipse.org/BaSyx_/_Documentation_/
_AssetAdministrationShell.

Github Repository - AASX Package Explorer (2021).
A viewer / editor for the asset administration
shell. https://github.com/admin-shell-io/aasx-package-
explorer.

Grothoff, J. A. (2018). BaSys 4.0: Metamodell der Kom-
ponenten und Thres Aufbaus; 1st ed. Technical report,
Aachen.

Koulamas, C. and Kalogeras, A. (2018). Cyber-physical
systems and digital twins in the industrial internet of
things [cyber-physical systems]. Computer, 51(11):95—
98.

Kuhn, T., Schnicke, F., and Oliveira Antonino, P. (2020).
Service-based architectures in production systems:
Challenges, solutions experiences. In 2020 ITU Kalei-
doscope: Industry-Driven Digital Transformation (ITU
K), pages 1-7.

Music, G. (2015). A low-cost packml-based control solution
for a modular production line. IFAC-PapersOnLine.

Rayment, M. (2004). Flexible motion control using iec
61131-3. In 2004 Mini Symposia UKACC Control,
pages 27-36.

