
An Open-source Testbed for IoT Systems

Augusto Ciuffoletti a

Department of Computer Science, University of Pisa, L.go B Pontecorvo, Pisa, Italy

Keywords: Internet of Things, Docker, Energy Saving, Key-value Database, IoT Testbed.

Abstract: A research team that wants to validate a new IoT solution has to implement a testbed. It is a complex step
since it must provide a realistic environment, and this may require skills that are not present in the team. This
paper explores the requirements of an IoT testbed and proposes an open-source solution based on low-cost
and widely available components and technologies. The testbed implements an architecture consisting of a
collector managing several edge devices. Security levels and duty-cycle are tunable depending on the specific
application. After analyzing the testbed requirements, the paper illustrates a template that uses WiFi for the
link layer, HTTPS for structured communication, an ESP8266 board for edge units, and a RaspberryPi for the
collector.

1 INTRODUCTION

When an IoT project reaches the point where em-
pirical evidence of consistency and performance is
needed, the team faces the new task of designing and
implementing a testbed to carry out the experimental
activity. To this end, the team needs to consider many
aspects, possibly not considered at design time, vital
for trial significance. Most likely, the skills internal to
the workgroup do not cover some key technology.

Consider, for instance, the case of an IoT system
that controls a watering system for agriculture. The
task of the project consists of developing a sensor em-
ploying new technology for watering control, for in-
stance, based on light reflection on vegetation, and
the team finally develops a new device with appropri-
ate features. After successful lab experiments, they
want to deploy the system on the field with a limited
number of sensors. The team, probably composed of
experts in sensors and hardware design, has to design
a network with a server supporting the sensors with
networking, storage, control, etc. Given the limited
experience in such fields, the team needs to call in
new participants, or the experiment will likely exhibit
weaknesses in security and data management.

This paper suggests the possibility of creating a
general-purpose framework for IoT applications that
enables the team in the above example to inject the
new sensor in a defined and easily deployable archi-
tecture and carry out a significant experimental activ-

a https://orcid.org/0000-0002-9734-2044

ity. This approach simplifies the task and improves
results in several use cases as:

• application of a proposed sensor design to a given
application, as seen above

• application of a proposed communication proto-
col in sensor communication

• application of a proposed data management in a
distributed IoT system

This paper represents an early step in that direc-
tion and, for this reason, starts discussing the fea-
tures of such an experimental framework. Such fea-
tures correspond to the non-functional properties that
need to be present to deploy a testbed. Some of them
should be tunable to suit the specific application: for
instance, the example above might not insist on secu-
rity aspects.

After the abstract discussion, the paper describes
a concrete implementation of the testbed, giving a de-
tailed description of a template architecture: the hard-
ware components are devices available off the shelf,
communication uses standard protocols, the software
architecture follows widely accepted conventions and
tools, the code is available on GitHub.

2 RELATED WORKS

Several articles in the literature propose frameworks
for the design of IoT systems. We have selected some
that help to situate the content of this paper. A search

Ciuffoletti, A.
An Open-source Testbed for IoT Systems.
DOI: 10.5220/0010710400003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 397-403
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

397



for the IoT framework keywords in Google Scholar
returns them as prominent, so they are likely to be
representative of the state-of-the-art.

Some (Gelogo et al., 2015; Pasha and Shah, 2018)
concentrate on healthcare systems, a kind of appli-
cation with a remarkable social impact. It is go-
ing to gain momentum in the coming years, also be-
cause of the COVID-19 epidemic event. The term
of u-health is introduced (Gelogo et al., 2015) to in-
dicate the ubiquitous availability of medical assis-
tance. The system has three components: a Body
Area Network (BAN), made of networked sensors, an
Intelligent Medical System that filters data from the
BAN to identify emergency conditions, and an Hos-
pital System that manages patients data and takes care
of detected emergencies. Another paper on e-health
IoT systems (Pasha and Shah, 2018) reveals the role
of specific protocols for network management, high-
lighting the role played by those explicitly designed
for constrained devices. Both papers stress the im-
portance of security issues in e-health systems but fail
to outline a solution. The former announces a future
prototype implementation, while the second reports
about the network utilization obtained from a proto-
type implementation using the Contiki operating sys-
tem (Dunkels et al., 2004).

Security issues are the focus of other papers, also
applying to a blockchain system called EdgeChain
(Pan et al., 2019). Falling in the category of permis-
sioned blockchain systems, it is more suitable to IoT
systems, characterized by constrained devices. The
IoT framework contains specific modules in charge
of implementing the blockchain service (Ethereum)
as well as a mechanism for implementing smart con-
tracts that are useful to regulate access to computing
and networking resources. The paper is exhaustive
regarding the specific issue but disregarding the pres-
ence of constrained devices and energy-saving poli-
cies. The authors report an experimental testbed using
RaspberryPi 3 Model B as edge devices and a Cisco
3850 switch.

Smart-cities are another frequently found use case
for IoT systems. The provision of open-source results
is regarded as relevant in a paper from the Univer-
sity of Bologna (Calderoni et al., 2019), which pro-
vides a reference platform that is useful as a testbed
for smart-city prototypes. The platform integrates
the networking and application functionalities, giving
the designer full access to configuration details. The
paper discusses the details of security policies intro-
duced by AWT and Microsoft Azure, but the testbed
in itself does not address the issue. Likewise, the au-
thors do not address power-saving mechanisms.

Long Sun et al. (Sun et al., 2017) propose an ab-

stract model that makes use of microservices for the
implementation of the middleware of an IoT system,
managing each of them independently. The paper de-
tails the architecture of an IoT system from the sen-
sor/actuator layer, where microservices are special-
ized to interact with a hardware device, up to the data
management layer. The paper highlights the role of
communication protocols in the interaction between
microservices and edge devices. One of the services
is in charge of managing security aspects. The model
does not take into account energy aspects. The paper
reports an experiment and illustrates the operation of
a REST API that is part of it. To this end, it provides
the source code of two functions: one to create a new
device and another to add a trigger to an edge device.

Compared to the above articles, the present pa-
per shares the intent of discussing the relevant fea-
tures of an IoT system. In contrast, the result of such
a discussion is not the generation of a collection of
modules and specifications to address a specific issue
but the identification of the basic non-functional fea-
tures that the system must exhibit. Then we outline
an abstract architecture that can be used as a refer-
ence for many use cases. The final step is a detailed
description of an instance of such an abstract architec-
ture. The implementation makes use of conventional
technologies and is exhaustively defined and publicly
available. One way to take advantage of such result is
to inject in the testbed the non-conventional solutions
under evaluation, siding, or replacing, the provided
ones in a way that has much in common with the de-
pendency injection used in software engineering.

3 SYSTEM MODEL

This section explores the abstract requirements of an
IoT testbed without reference to a specific technology.
Although experimental results strongly depend on the
adopted technology, the fundamental features of the
testbed, related to the specificity of IoT applications,
are to some extent invariant. In this sense, adopting
a shared testbed simplifies the comparison of imple-
mentations that use different technologies.

This section contains dedicated subsections for
each of the non-functional requirements that needs to
be present in the testbed for IoT.

3.1 Layered Architecture

A layered infrastructure is a widely adopted model to
ensure the scalability of an IoT system. This model
envisions edge units, sensors, and actuators as orga-
nized into clusters, each containing an infrastructure

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

398



component (here called collector but often indicated
also as sink or concentrator). Such a component pro-
vides edge units with various kinds of services, In-
ternet connectivity included. Collectors are in their
turn connected to servers, either on-premises or in the
cloud.

Figure 1: A typical layered architecture with adopted termi-
nology.

The testbed illustrated in this paper covers the last
two abstractions layers and proposes a template ar-
chitecture with one collector serving several edge de-
vices.

3.2 Flexible Support for Low-energy
Options

There are many reasons why an IoT system must be
very careful with energy consumption. When edge
components receive power from batteries, that param-
eter determines the quantity of waste produced (in
terms of exhausted batteries) and device autonomy (in
terms of the life of the edge unit if the operation is
unattended or of the frequency of operator interven-
tion). When the design includes energy harvesting
capabilities, the cost of generators and accumulators
depends on energy consumption. Instead, when edge
units receive power from the electric grid, the impact
of energy consumption is considered negligible. A
general-purpose testbed for IoT systems must allow
the researcher to experiment with a wide range of op-
tions regarding energy.

Left alone that different boards exhibit different
energy figures, duty cycling is the primary tool in the
hands of the designer to reduce power consumption.
Such a technique depends on the device’s capability
of entering a suspend state characterized by a substan-
tial reduction of energy consumption. To take advan-
tage of this, the device should remain in the suspend
state as long as possible and wake up only when its
operation is needed. The testbed should provide sup-
port to a wide range of suspend modes and implement

a one-fit-all solution to assist the researcher that is not
specifically interested in this topic.

3.3 Flexible Support for Security

The importance of security varies from project to
project. There are cases when the data gathered from
edge units are sensible at different degrees, other
where only credentials need to be kept secure. The
testbed should provide a range of vanilla solutions,
leaving the researcher free to explore other solutions
within the provided framework.

3.4 Open-source

The open-source nature of the testbed is mandatory.
The researcher must be able to modify any part of
it and to publish solutions and experimental results
without the risk of breaking copyrights. This recom-
mendation is equally valid for software, communica-
tion protocols, and hardware design.

3.5 Modularity

Modularity is one of the ways to implement a ”sepa-
ration of concern” paradigm in the design of a system.
In our case, this allows the researcher to conduct ex-
periments on a specific module disregarding, as far as
possible, the rest of the system. Also, the deployment
of the experimental infrastructure is simplified if or-
ganized into modules with moderate dependencies.

3.6 Low Cost

Given its short-term nature, a testbed needs to be in-
expensive since cost has an influence on adoption.
One example addresses a researcher developing a new
solution specific for one aspect of the IoT stack: a
testbed that requires investments not directly related
to the research focus is not attractive. Another case is
that of a team that wants to reproduce a documented
solution for further study. In this case, an expensive
testbed might dis-encourage the researchers from ex-
actly replicating it, which instead would be the best
option from a scientific point of view.

4 A TEMPLATE FOR AN IoT
TESTBED

Once defined the relevant features of a testbed for IoT
projects, the next step is to implement a template.

The template is a running implementation with all
the relevant details in place but with the flexibility

An Open-source Testbed for IoT Systems

399



needed to host a specific experiment. This section
outlines the design of such a system, with reference
to the features introduced in the previous section.

4.1 Hardware Architecture

The reference architecture features a collector in
charge of managing a set of edge devices, the sensors.
The number of supported edge devices depends on
the interconnection technology, but this arrangement
is the basis for a scalable system, possibly replicated
and rooted in a multi-layered architecture. Figure 1
illustrates a system composed of four sub-systems of
this kind.

The relevant options in the implementation of
such an architecture are the hardware components and
the interconnection technology. The aim is that the
resulting system is a vanilla solution that does not in-
troduce unneeded or exotic features.

This paper adopts an ESP8266 board for edge de-
vices and a RaspberryPi for the sink unit.

The ESP8266 is a widely available microcon-
troller with an embedded WiFi interface capable of
running HTTPS client-side sessions. The microcon-
troller runs a single program stored in a Flash mem-
ory. Many boards based on such a chip simplify the
flashing operation using an appropriate IDE. The Ar-
duino open-source IDE supports the whole process,
from coding in a C++ dialect to flashing.

One rationale for adopting the ESP8266 is its wide
commercial availability and low cost (less than 10$).
The raw board can be readily complemented with ad-
ditional capabilities using plug-in shield boards, but,
alone, has the essential features of an edge device, as
outlined below. Another with more advanced features
and a comparable price is also available (ESP32), but
here we opt for the one with lower power consump-
tion.

The board embeds a WiFi interface: this greatly
simplifies the hardware design, allowing minimal or
no cabling. In addition, its internal design is ready for
low-energy operation and provides:

• an assortment of low-energy operation modes in-
cluded a deep-sleep with power consumption in
the range of µW

• the capability of leaving low energy modes by in-
terrupt or timer event (max 1 hour period)

• an onboard SRAM to keep persistent data during
deep-sleep periods

The RaspberryPi is a one-board computer based
on a quad-core ARM-Cortex processor running a
fully featured operating system; the reference one is

Raspian, a Debian/Linux adapted to run on the Rasp-
berryPI hardware. Like ESP8266 boards, it is com-
monly available off the shelf at a price ranging from
50$ to 75$. Depending on the model, the RaspberryPI
features Ethernet and WiFi network interfaces, USB,
HDMI, and Webcam plugs. The persistent memory
for the operating system and the workspace are on an
SD card.

When both Ethernet and WiFi interfaces are
present, the RaspberryPi can be easily turned into a
WiFi Access Point, possibly providing Internet ac-
cess to WiFi stations. The RPi is sufficiently powerful
to host database systems and other services, provided
that the workload is consistent with its computing ca-
pacity.

Three RPi models are currently avaliable:
RPi 2 (2015, 900MHz/32bit), the RPi 3 (2016,
1.2GHz/64bit), and RPi 4 (2019, 1.5GHz/64bit).

The combination of ESP8266-based boards for the
sensors and an RPi as a component coupling a WiFi
access point and a data concentrator is a viable so-
lution for our testbed, being open-source and inex-
pensive. In the rest of this section, we refine our
design considering the other non-functional require-
ments: modularity, low-energy operation, and flexible
security.

4.2 Modularity

The layered architecture is the basis for a modular
(and scalable) hardware architecture. Software mod-
ularity too plays a relevant role and allows adapting
the testbed to a specific task.

As a general rule, the structure of the software
running on the ESP8266 board is application-specific
with limited margins to introduce a generic modular
pattern. The low-power modes have a well-defined
and documented IDE (Espressif, 2016) so that it is
pointless introducing an additional wrapper.

In contrast, the software architecture of the RPi
sink is complex, and a modular organization is needed
to simplify its targeting to a specific application. For
instance, regarding the configuration of the network
layer protocol (e.g., replacing WiFi with LoRaWAN),
the application layer protocol (e.g., replacing HTTP
with CoAP), the storage management (e.g., using a
relational DB or other ways to manage sensors data).

A dockerized architecture suits the need for mod-
ularity and easy configuration. The designer requir-
ing a given operation plugs in the appropriate dockers
and interconnects them in a virtual network. Follow-
ing such an approach, the RPi runs the Docker host-
ing software, and the desired Dockers are loaded and
run. Dockers can be either available from the hub

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

400



(https://hub.docker.com) or designed on purpose and
easily shareable on multiple installations (consider,
for instance, a testbed with multiple concentrators).
The configuration instructions, networking included,
are written in one single docker-compose.yml file.

The adoption of the Docker technology is limited
to configuration options that do not impact hardware
devices. For instance, switching from WiFi to Lo-
RaWAN cannot be easily managed with the Docker
technology. In this case, it is probably better to leave
the task to configuration scripts for the specific tech-
nology.

4.3 Flexible Low-energy Configuration

There are two kinds of low-energy operation: soft
and deep sleep. During a soft-sleep period, the fun-
damental computing capabilities of the system are
operational or in a low-power state, while energy-
consuming ones are disabled. For instance, the
ESP8266 has two sleep modes that can be considered
as soft-sleep (Espressif, 2016):

• modem sleep: the WiFi modem is off when un-
used, keeping into account the need to receive
beacon frames (the frequency of which is in
the range of seconds, configurable in the Access
Point)

• light sleep: suspends the CPU and disables the
modem

The configuration of a specific soft-sleep policy has a
limited impact on components outside the sensor it-
self. For instance, to tune the beacon frequency to
extend modem-sleep periods.

In contrast, the management of deep-sleep peri-
ods has an impact on system-level design. The reason
is that, during a deep sleep interval, most of the chip
components do not receive power at all. A relevant ef-
fect is that the working memory loses its content. An-
other is that the system clock stops measuring time.
To avoid zero-knowledge wake-up, the sensor needs
to backup working data and record their address to re-
trieve them when waking up. Similarly, a networked
component provides the time of the day and the cal-
endar date (if needed by the application).

Most modern microcontrollers (the ESP8266 in-
cluded) embed the functionalities needed to imple-
ment an efficient deep-sleep policy. Such support
consists of a clock with a small RAM kept powered
even during deep-sleep periods. As a general rule,
their characteristics are not for general-purpose solu-
tions, but they provide substantial help: for instance,
in the case of an ESP8266, the clock accuracy is in
the percent range, and persistent memory capacity is

of a few KBytes. Therefore the clock is appropriate
to time a periodic wake-up, and the memory can save
a link to external storage.

In the proposed architecture, the component pro-
viding storage and time services is primarily the con-
centrator. A Linux server can provide various kinds
of clock synchronization services, depending on the
accuracy required by the application. The Network
Time Protocol (Mills et al., 2010) is easily installed
and may provide microsecond synchronization on
suitable networks. If sensor operation only requires
a generic time of day with a one-second precision, a
viable alternative is piggybacking timestamps to other
messages.

Regarding the support for the remote storage of
edge devices, a suitable solution consists of using a
REDIS https://redis.io/ key-value storage: the key, a
random string, is recorded in the persistent RAM on
the edge component, while the value can be any sort
of — possibly bulky — data, like an image, a sound
spectrum, or a GPS track, that is associated to the key
in the REDIS database.

According to the Dockerized structure of the con-
centrator, a Docker container with one of the REDIS
images found in the hub implements the database.

The REDIS database access is through a REST
server hosted on the concentrator. The HTTP service
should offer three basic CRUD operations associated
with REST verbs:

• create a new key (PUT)

• record a value associated with a key (POST)

• download the value associated with a key (GET)

• deleted an unused key and the associated value
(DELETE)

The design of the REST server follows any server-
side web framework: the template uses Flask/Python.
A custom Docker image embeds the server together
with the Python libraries and other dependencies. In
this way, the deployment of architectures containing
several sinks is straightforward.

It is appropriate to introduce an HTTP proxy in
front of the Flask server to improve server security
and performance. The popular Nginx proxy is well
suited for this task and is available as a Docker image.

At this point, the internal structure of the tem-
plate testbed, summarized in figure 2, is sufficiently
defined.

4.4 Flexible Security Support

The relevance of security aspects changes depending
on the application. A watering plant produces infor-
mation that is of limited interest for a potential in-

An Open-source Testbed for IoT Systems

401



Figure 2: Outline of the internal structure of the Concentra-
tor and of the Edge device.

truder, but its design should nonetheless avoid denial
of service attacks. In contrast, an automotive control
has to be more cautious about the possibility of an in-
trusion. In the extreme, a medical system has to pro-
tect every piece of information it produces, especially
when it can be associated with an individual.

For such reason, the rules to access the key-value
service depend on the application, so that the template
has to be flexible enough to implement a range of so-
lutions.

A key-value system natively supports mild secu-
rity. If the number of keys is sufficiently high and
their values are well randomized, then it is difficult
for an intruder to find a used key and take the place of
a trusted sensor. This argument allows claiming the
GET, POST, and DELETE verbs are sufficiently se-
cured, but not the PUT, which creates a new key/value
pair. The attack pattern, in this case, consists of gain-
ing access to the network and issue PUT requests to
introduce noxious data or saturate database capacity.
In conclusion, securing the PUT operation is relevant
even for mildly critical applications. The mediation
of a trusted component, which authorizes a PUT re-

quest, solves the problem. Such a component may be
an operator equipped with a smartphone with an au-
thentication mechanism or a computer that flashes an
assigned key in the mote Flash memory.

The presence of a trusted component in the chain
does not guarantee against the possibility that this
same component steals a valid key, thus acquiring the
capability to configure an intrusive edge device or to
access data that can be associated with a specific sen-
sor. For instance, this may generate a leakage of sen-
sitive data in an e-health system. A way to avoid this
problem consists of changing the key at each GET op-
eration to make meaningless the — possibly stolen
— initial key. According to this mechanism, upon
receiving a legal GET request, the server changes the
key associated with the value and returns the requester
the value together with the new key. This technique
also marginally improves the security level provided
by a random key of a given length for the following
reason. Without the key-swapping mechanism, the in-
truder certainly finds a valid key by scanning all pos-
sible keys. Instead, with the key-swapping mecha-
nism in place, the scanning technique is not success-
ful since any key may become valid after having been
discovered as non-valid.

The above mechanism does not protect against the
case that data stored in the database are stolen by
physically removing the SD card from the concentra-
tor device. Although the data cannot be associated
with a defined sensor, the anonymized data can be
equally considered sensible for the organization. In
this case, the sensor should encrypt the data associ-
ated using a key, known solely to the sensor itself,
generated when the mote is switched on, recorded in
the persistent RAM, and used at each POST (to en-
crypt), and GET (to decrypt) operation.

With the above mechanisms in place and using
the HTTPS protocol, the testbed is resistant to a wide
range of attacks. But, in case of failure of an edge de-
vice, there is no way to recover orphaned data. Find-
ing a compromise between fault tolerance and secu-
rity is a task that a flexible IoT testbed helps to solve.

4.5 Experimental Results and Code
Availability

The tests run on a prototype confirm that the testbed is
suitable for generic experimental setups. One relevant
aspect is the capacity of the Raspberry Pi to support
a significant number of hosts. We have evidence that
the device can support a load of 100 edge devices each
running an operation every 10s with a limited impact
on service times. In contrast, the Raspberry Pi has
limits when operating as an access point, and inde-

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

402



Figure 3: Trace of one operation cycle on the Wemos board
- Current consumption is measured on a 1 Ohm shunt in
series with power supply (3.3V), which introduces an ob-
servable noise.

pendent tests1 claim that it cannot support more than
19 simultaneous connections. A typical operation cy-
cle with a negligible time spent in payload operation
has a duration of approximately 8 seconds, distributed
as follows: 5 seconds to join the WiFi infrastructure,
and 1.5 seconds each for the GET operation to re-
trieve a checkpoint from the Redis Database, and the
POST operation to store a new checkpoint back into
the database.

The software for testbed edge and collector de-
vices is available from two public Github reposito-
ries: one is dedicated to the ESP8266 (https://github.
com/AugustoCiuffoletti/IoTTemplate esp8266), an-
other to the sofware running on the Raspberry Pi
(https://github.com/AugustoCiuffoletti/kviot).

5 CONCLUSIONS

IoT systems involve a stack of technologies, from
the physical layer to the application, with specific
requirements: a research effort usually targets one
of such aspects. To validate a result, the research
team has to produce a testbed to run experiments,
frequently overlooking the details that are not the re-
search focus: this may damage the validity and inter-
est of experimental results. This paper deals with the
design and implementation of a testbed for IoT sys-
tems that allows the designer to focus on one aspect
injecting the new piece of technology in a framework
designed by convention that takes into account scala-
bility, energy-saving, and security.

We have currently tested the soundness of the
solution described in this paper. A Research-

1There are many posts on this topic with
unchecked experimental data. A reliable one might
be https://raspberrypi.stackexchange.com/questions/50162/
maximum-wi-fi-clients-on-pi-3-hotspot

Gate project with links to GitHub repositories will
report about developments: ”A framework for
IoT systems” ()https://www.researchgate.net/project/
A-testbed-for-IoT-solutions ).

REFERENCES

Calderoni, L., Magnani, A., and Maio, D. (2019). Iot man-
ager: An open-source iot framework for smart cities.
Journal of Systems Architecture, 98:413–423.

Dunkels, A., Gronvall, B., and Voigt, T. (2004). Contiki-
a lightweight and flexible operating system for tiny
networked sensors. In 29th annual IEEE international
conference on local computer networks, pages 455–
462. IEEE.

Espressif (2016). ESP8266 Low Power Solutions. Espressif
Systems IOT Team, v 1.1 edition.

Gelogo, Y. E., Hwang, H. J., and Kim, H.-K. (2015). Inter-
net of things (iot) framework for u-healthcare system.
International Journal of Smart Home, 9(11):323–330.

Mills, D., Martin, J., Burbank, J., and Kasch, W. (2010).
Network Time Protocol Version 4: Protocol and Algo-
rithms Specification. RFC 5905 (Proposed Standard).

Pan, J., Wang, J., Hester, A., Alqerm, I., Liu, Y., and Zhao,
Y. (2019). Edgechain: An edge-iot framework and
prototype based on blockchain and smart contracts.
IEEE Internet of Things Journal, 6(3):4719–4732.

Pasha, M. and Shah, S. M. W. (2018). Framework for e-
health systems in iot-based environments. Wireless
Communications and Mobile Computing, 2018.

Sun, L., Li, Y., and Memon, R. A. (2017). An open
iot framework based on microservices architecture.
China Communications, 14(2):154–162.

An Open-source Testbed for IoT Systems

403


