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Smart Grids (SG) represent one of the key critical infrastructures. Over time, several ontologies were defined

in the SG domain to model aspects such as devices and sensors integration, and prosumers’ communication
needs. In this paper, we review the state of the art regarding semantic web reasoning in the domain of SGs. We
compare five main ontologies in terms of descriptive statistics (e.g., number of axioms), load time and reason-
ers runtime performance. Results show that not all the ontologies in the SG domain are readily available, and
that some of them might be more appropriate for deployment in devices with limited computational resources.

1 INTRODUCTION

Smart Grids (SG) have become one of the most
important Critical Infrastructures (CI) and Cy-
ber—Physical Systems (CPS) in the modern society.
The potential for the improvement of the energy sec-
tor has been seen as a key factor, driven by the smart
integration of users’ behaviour leading to a more sus-
tainable and secure electricity supply driven by re-
newable energy sources (Yu et al., 2011). How-
ever, as a representative of a typical CPS, the grid
has many complexities in the integration of cyber re-
sources (e.g., computing algorithms, communication
and control software) with physical parts (e.g., sen-
sors, smart meters) (Farhangi, 2009).

To tackle the complexity of SGs, the Smart Grid
Architecture Model (SGAM) (Bruinenberg et al.,
2012) was proposed, aiming at dividing the complex-
ity into several layers and their integration: a com-
ponent layer (the physical devices), a communication
layer (protocols), a data layer (information data mod-
els), a function layer (functionalities to be provided),
and a business layer (the business requirements). At
the data layer level, the adoption of domain ontolo-
gies aims at allowing reasoning over the many devices
and interactions with different goals like tracking in-
formation about reliability of devices or their integra-
tion (Zhou et al., 2012; Catterson et al., 2005; Gillani
et al., 2014; Schachinger et al., 2016).
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Many ontologies have been defined over time for
the energy sector (e.g., SEPA’s Smart Grid Ontology,
Open Energy Ontology, like we will discuss in sec-
tion 3). Yet, there is no comprehensive evaluation of
the proposed ontologies related to the current state of
the art. In this paper, we want to provide evaluation
of existing SGs ontologies: what is their availability
/ support, how much are they usable, and what is the
performance overhead considering the possibility of
deployment in devices such as smart meters with rel-
atively low computational power available.

In particular, we are interested into looking at the
impact of each different ontology in terms of per-
formance (execution time) of the reasoner — It has
been shown that different ontologies have better or
worse performance depending on the reasoner they
are loaded in (Kang et al., 2014; Kang et al., 2012).

We have one main Research Question (RQ) for
this paper: What is the state of different Smart Grids
domain ontologies that were defined over the years?
We answer this RQ by looking both at the availability
of ontologies, some descriptive statistics of the on-
tologies representing the size, and at the performance
when used in a reasoner, taking into account the po-
tential limited resources of embedded devices such as
smart meters.

The paper is structured as follows. In Section 2,
we provide related works in the area of SGs ontolo-
gies and related semantic technologies, reasoners im-
provements, and ontologies performances. In Sec-
tion 3, we discuss existing ontologies for the SG do-
main. In Section 4, we analyze the main SGs ontolo-
gies identified, in terms of metrics related to size, and
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performance of the reasoners. In Section 5 we present
the main results of the analysis. In Section 6, we con-
clude the paper.

2 RELATED WORKS

There are several research articles that focus on the
topic of SG, ontologies, and semantic web reasoners.
These papers can be classified in three different cate-
gories. First of all, we have papers that introduce new
ontologies or semantic technologies relative to the do-
main (Section 2.1); secondly we have papers that de-
scribe ways to improve the performance by defining
new semantic web reasoners or updating already ex-
isting ones (Section 2.2). Finally, the third category
refers to papers that focus on measuring the metrics
of a number of ontologies, usually in more general
way and without focusing in a domain or another,
but providing an invaluable value for this article (Sec-
tion 2.3). With this in mind we proceed to describe
each paper in relation to these categories.

2.1 SG-related Ontologies and Semantic
Technologies

Regarding SG-related ontologies, (Zhou et al., 2012)
main aim is to introduce an ontology with the benefit
of being extensible to other domains close to the SG
domain. Authors provide a case study on Complex
Event Processing (CEP) with the use of SPARQL,
that should be, or can be, as lightweight as possible.
In the same vein, (Cuenca et al., 2017) defines the
OEMA ontology created to deal with energy manage-
ment. The ontology has high modularity to allow for
very specific domain applications without wasting re-
sources.

Another ontology to be used in the SG domain
is presented in (Gillani et al., 2014). It describes a
series of cases for which it could be useful and the
whole ontology is divided into classes applicable to
many different infrastructures. Finally, authors in-
troduce inductive inferences going over patterns that
could be identifiable thanks to the ontology and a non-
monotonic approach. In the end, they propose the
ontology to be used for CEP. Similarly, (Hippolyte
et al., 2016) describes the implementation of an on-
tology for Multi Agent Systems (MAS) in SGs for
the automatic negotiation between different members
of a network, adding to the flexibility of the system.
They base the work on a Java-based implementation,
providing a tool to convert the ontology into a code-
based implementation.
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Yet another ontology for energy management in
SGs is introduced in (Schachinger et al., 2016). The
main aim of the work is to unify the domain of SGs.
Authors provide theoretical testing of the ontology
to showcase all the relations between classes and in-
stances of the ontology which ends up being shown
in a comprehensive diagram. Finally, (Li et al., 2019)
develops an ontology focused on key performance in-
dicators to show the elements that require more en-
ergy given their power consumption patterns. Fur-
thermore, the authors intend to use the ontology as a
way to interchange data between different stakehold-
ers of the network, thus enabling potential support to
Big Data scenarios.

Nevertheless, describing the provided ontologies
in the SG domain is not enough if there are no seman-
tic tools to work with them. In this sense, (Atanasov,
2015) describes in great detail a semantic model for
prepaid smart metering devices. They gloss over all
the data that is generated from the smart meters, and
define all the semantic labels required for the data
to be processed. The main strength of the work re-
sides in the fact that just from time and volume (of
power consumption) we can derive some effective se-
mantics. The work of (Santodomingo et al., 2015) is
devoted to standardizing the different data types that
might come into play in a SG. It offers an advantage
and usage scenario if the same ontology has not been
used in all the devices or if the sources are not based
on Web of Things (WoT).

The state of the semantic technologies can be seen
in (Dogdu et al., 2014), where authors reflect on the
state of the art implementation of semantic technolo-
gies in SGs, giving a precise overview of what they
are good for and how they behave better and are more
conveniently than usual data models. The work done
is based on a real-world implementation of seman-
tic technologies in SGs. Similarly, (Donohoe et al.,
2015) acts as a survey about which technologies are
available when dealing with the data of the SGs focus-
ing on the context-aware ones. They propose a fur-
ther direction on which a middleware platform could
be developed, listing the possible associated require-
ments and the challenges they might face.

In (Wemlinger and Holder, 2011), the authors fo-
cus on providing a semantic framework for smart en-
vironments. This could potentially lead to integrat-
ing all data generated by the smart devices into the
semantic web reasoner, therefore, strengthening the
conclusions obtained. Supposedly helping to trace
the patterns of malfunctioning appliances. As in the
previous cited paper, (Flores-Martin et al., 2019) pro-
poses another unifying method for different smart de-
vices, but with the advantage of being more general:



from smart environments to smart devices. They ex-
pand their results by being able to integrate wearables
in the detection of malfunctioning smart meters.

To conclude, (Hippolyte et al., 2018) defines the
structure and the rationale behind an ontology that
might be used to establish a relationship between
energy consumption, data visualization and decision
support. Authors focus on the web-based scalability
of the proposed structure.

2.2 Reasoners Improvements

There are several recent improvements in semantic
web reasoners that can help considering the poten-
tially limited computational power of devices such as
smart meters. (Tai et al., 2011) provides a reasoner
designed to be implemented in a resource-constrained
platform. This makes it interesting to be considered
for an implementation in a smart meter, given the
small overhead. The downside is that it is based on
OWL instead of OWL2, so an update might be needed
to work with the current ontologies. Similarly, (Ali
and Kiefer, 2009) introduces a light-weight semantic
reasoner for constrained resources. Nevertheless, the
approach is quite different from the previous one and
the performance is not as good.

Also, (Speiser et al., 2013) outlines the use of
Linked Data in SGs communication, reinforcing the
idea that it should be lightweight. Authors produce
an evaluation based on connection time. They use re-
source constrained devices by today’s standards and a
lightweight SPARQL engine programmed on C. The
obtained metrics are all under a second distance be-
tween them, so the added value regarding the SGs
domain is quite high, taking into account the goal of
real-time data processing.

2.3 Ontologies Performance

The works presented in this section deal with the per-
formance of ontologies, but all of them are built upon
wide domains, with no specific SGs ontologies con-
sidered, as there is no specific study that deals with
performance in the SG domain. In particular, (Kang
et al., 2012) measures the performance of 350 real-
world ontologies and 4 OWL2 reasoners. The goal is
to identify a set of metrics that can predict the perfor-
mance of a semantic web reasoner. Eight ontology-
level metrics are considered to be good predictors for
ontologies performance. As a conclusion they try to
use machine learning to see which metrics could be
the best predictors. More recently, (Kang et al., 2014)
uses an even larger number of ontologies, 450, as an
extension and with the same goal of the previous pa-
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per. Authors also focus more on the identification
of performance hotspots, identifying the bottlenecks
when designing an ontology. Similarly, (Wang and
Parsia, 2007) identifies semantic web reasoners bot-
tlenecks for performance. Four case studies based
on generated and real-world ontologies are provided.
Authors identify challenges for ontologies engineer-
ing and implement a tool to support statistical analysis
of performance of ontologies.

Recently, (Peiia et al., 2020) shows some of their
current work in which an enriched ontological model
is used to improve the effectiveness of a recommender
system. In particular, authors go through all the char-
acteristics that make an ontology effective, selecting
among them the ones more relevant for the task at
hand. Also, (Maarala et al., 2017) introduces a new
semantic technology reasoner to be applied to the In-
ternet of Things (IoT) domain. Their intention is to
make the reasoner and data collection as scalable as
possible with the idea of implementing the technol-
ogy into real-life scenarios. It is worth mentioning
that they focus on showing the performance data and
point out possible bottlenecks of the technology.

3 DOMAIN ONTOLOGIES FOR
SMART GRIDS

As a first step, we collected existing ontologies in the
SG domain. We have focused on a series of SG do-
main ontologies reported in previous research as well
as some that are used in industry and are yet to be re-
ported in research venues. All these ontologies can be
seen in Table 1. Some of the ontologies are not avail-
able, despite their description and applicability being
reported in research papers — this is mostly due to
a fair share of broken URLs or missing references,
which hinders the adoption of the ontologies.

The OEMA ontology was introduced in (Cuenca
et al.,, 2017) to provide a modular approach ontol-
ogy for the SGs domain. In this case, we are using
the complete ontology so we consider it to be able
to tackle the network as a whole. The SEPA’s is the
ontology developed by the Smart Electric Power Al-
liance for controlling buildings; this includes regis-
tering energy usage, the base for any SG application.
The Open Energy Ontology is intended for modelling
the whole energy system with an interest in the open
source model. Facility Ontology was designed to con-
trol the production of any facility, and for this reason,
it provides control over the energy usage, crucial for
SGs. SSG, introduced in (Salameh et al., 2019), aims
at modeling the SG components, their features and
properties, allowing the achievement of the SG objec-

117



WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

Table 1: Smart Grids Ontologies.

Name

Aim

URL

OEMA Ontology network
SEPA’s Smart Grid Ontology

Open Energy Ontology
Facility Ontology
DABGEO

SSG (Salameh et al., 2019)
Prosumer-oriented (Gillani et al.,
2014)

N.A. (Schachinger et al., 2016)
N.A. (Zhou et al., 2012)

N.A. (Catterson et al., 2005)

Whole Network Ontology
System to control buildings

Energy System Modelling

SG Components

Energy Management Applica-
tions

SG Components

Prosumer Ontology

SG Integration

SG Demand / Response Ap-
plications

SG Health Monitoring

http://www.purl.org/oema/ontologynetwork
https://github.com/smart-electric- power-alliance/
Electric- Grid-Ontology
https://openenergy-platform.org/ontology/
https://github.com/usnistgov/facility

https://innoweb.mondragon.edu/ontologies/dabgeo/
index-en.html

N.A.
N.A.

N.A.
N.A.

N.A.

tives. The ontology of (Catterson et al., 2005) focuses
on monitoring the health of the components of a SG,
in particular, that of any given transformer. DABGEO
is the natural continuation of the OEMA Ontology:
introduced in (Cuenca et al., 2020) is aimed at pro-
viding complete control to energy management appli-
cations.

An explanation for the ontologies of (Gillani et al.,
2014), (Schachinger et al., 2016) and (Zhou et al.,
2012) can be found in Section 2.

4 ANALYZING THE
ONTOLOGIES

In this section we provide a description of the pro-
cess we adopted to obtain the metrics regarding the
description and performance of the main ontologies
from Table 1. For this task we have used the Protégé'
software in its 5.0.0 Linux version. As for the rea-
soners we are using HermiT, version /.4.3.456, and
Pellet, version 2.2.0.

First of all, we begin by downloading the ontology
from the corresponding repository (Fig. 1). Once we
have acquired the ontology, we proceed to load it into
Protégé. As it is loaded, it might occur that the on-
tology itself tries to import some other ontologies. If
these are readily available, Protégé will load them au-
tomatically, but in the case they are not, we load them
manually. Once the main ontology and all the im-
ported ones are loaded into Protégé, they are merged
into one final ontology that represents what we will be
measuring. This allows us to work with a real-world
ontology as well as makes the workflow easier.

Uhttps://protege.stanford.edu/products.php
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After the final ontology is obtained, we annotate
the metrics of the ontology that are listed by Protégé.
In this case we are going for the metrics that are la-
belled as Axiom, Logical Axiom Count, Declaration
Axiom Count, Class Count, Object Property Count,
Data Property Count, Individual Count, and Anno-
tation Property Count. To this list we also add how
much time Protégé has taken to load the ontology.

Once we have the metrics we proceed to start the
associated reasoner in Protégé and get the reasoning
time. Afterwards it is the moment to extract any con-
clusions from the data collected.

4.1 Ontology Metrics

The results and the metrics of each of the selected
main SG ontologies that were analyzed can be
seen in Table 2. These metrics have been obtained
accordingly to the process described in Section 4. All
the measurements were done on an Intel i7-3537U
CPU @ 2.00GHz, with 8GB of RAM, running
Ubuntu 20.04.2 LTS. The metrics regarding time are
extracted by performing five different times the same
task in a completely new instance of Protégé and
obtaining the mean.

We also measured the memory and CPU usage
for each ontology as it can be seen in Figures 3 to
7. To capture these plots we used a script, based on
Python’s libraries psrecord and matplotlib, thatis:

psrecord $(pgrep process_name)
--interval 1 --plot file_name.png

Finally, a comparative of the times of each ontol-
ogy can be seen in Figure 2. It is important to men-
tion that the missing bars, indicate that the time is not
available for some or other reason.
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Table 2: Metrics.

OEMA Ontology net- | SEPA’s SG Ontology | Open Energy Ontol- | Facility Ontology DABGEO

work ogy
Axiom 24738 5491 8563 15248 11678
Logical Axiom Count 9577 2426 1614 11904 4349
Declaration Axioms Count 5686 111 1215 691 2590
Class Count 3502 250 928 431 1964
Object Property Count 941 70 83 107 270
Data Property Count 712 28 N.A. 43 204
Individual Count 47 234 104 1722 69
Annotation Property Count 32 117 95 52 43
Loading time 7241.2ms 12284.6ms 1296.2ms 3726ms 1973.2ms
Reasoning time (HermiT) N.A. 1106ms 331.8ms N.A. 56051.2ms
Reasoning time (Pellet) 26406.6ms 788.2ms N.A. N.A. N.A.

4.2 Issues

Despite our best work, obtaining all the metrics af-
ter analyzing all the ontologies has been challenging,
and have encountered multiple issues that we proceed
to list below. These issues are something to take into
account when analyzing the ontologies, but not some-
thing that makes impossible to work with them. They
are, therefore, questions that need to be taken into ac-
count when deploying any of these ontologies in a
real-world scenario.

The issues that have aroused when analyzing the
ontologies are:

o OEMA cannot be loaded as it was intended. Dur-

Download the Ontology from the corresponding repository

Load the ontology into Protégé Import the missing ontologies

Merge all the imported ontologies into one

Annotate the metrics of the resulting ontology

Start the integrated reasoner of Protégé

Measure the reasoning times of the corresponding ontology

Analyze and extract conclusions regarding the obtained data

Figure 1: Process Model.

ing the process of loading it, it tries to import cer-
tain ontologies that are no longer available online.

e The loading time of OEMA when tracking its use

gets too big (287516 ms) without any reason.

e OEMA does not reason with HermiT because the

reasoner does not support built-in atoms, some-
thing that the ontology has.

e Open Energy Ontology does not reason with Pel-

let because of issues with the transitive rules.

e Facility Ontology does not reason with HermiT

nor Pellet. For the first it states that there is a Non-
simple property at Cardinality restriction. For
the latter, it flags an error related to the Transi-
tiveObjectProperty axiom. Let us state that it ac-
tually reasons with ELK (with an average time of
2576.4ms) after several warnings.

e For DABGEO ontology an error happens while

running the Pellet reasoner and the process has to
be killed. It is due to trying to use a literal as an
individual.

S TECHNICAL RESULTS

As the figures and tables show, there is a trend be-
tween the ontologies OEMA and SEPA, as OEMA

DABGEO -| I} 56.051.2
[ 19732
Facility -| r
13,077.2
= Loading Time
Open Energy -|  331.8 = Reasoning Time (HermiT) |
[0 1292 = Reasoning Time (Pellet)
I 7882
SEPA {] 1,106 F
12,284.6
26,406.6
OEMA - r
72412 ) ) )
0 1 2 3 4 5

Time (in ms) -10*

Figure 2: Performance comparison of ontologies.
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appears to be the one with the highest count of Ax-
ioms and Classes, while SEPA is the one with the
lowest number of those. Nevertheless, there is no rea-
son to believe that these numbers actually affect per-
formance in any way as, particularly, SEPA appears
as the one with the highest loading time. The only
two metrics that are higher for SEPA in comparison
with OEMA are the Individual Count and the Anno-
tation Property Count. Interestingly enough, the Open
Energy Ontology has a higher Individual Count than
SEPA (actually, the highest of them all), but at the
same time, the Open Energy Ontology has the lowest
loading time of all the ontologies. Therefore, if we
were to link the high loading time of SEPA to any-
thing, it, necessarily, would be linked to the Annota-
tion Property Count, where SEPA has the highest of
all the ontologies.

400 4
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Figure 3: OEMA Performance.

When looking to the reasoning time while using
HermiT we found that DABGEO has the highest time
by a wide margin, while the Open Energy Ontol-
ogy has the lowest. When comparing the metrics of
ontologies we discover that DABGEO has a higher
count on all categories except for Individual Count
and Annotation Property Count. We can assume that
having a higher value in most of the metrics affects the
performance of DABGEO within the reasoner. The
fact that aside these two ontologies only SEPA is able
to reason with HermiT sheds some light into the An-
notation Property Count issue that we pointed out for
SEPA and its high loading time. It comes to show that,
despite taking longer to load, its performance with re-
spect to the reasoner is way better than that of DAB-
GEO. We could conclude that having a high Annota-
tion Property Count damages the performance while
loading the ontology, but not as much while reasoning
with it.

In regards to the reasoning time using Pellet we
found that OEMA has the highest reasoning time
while SEPA has the lowest. This comes in accordance
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Figure 4: SEPA’s Ontology Performance.

to the data that we have regarding the metrics of the
characteristic of each ontology: The biggest ontology
takes longer to reason and the smallest takes the less
to reason (as it would seem intuitively before the anal-
ysis). This points out to the possible conclusion that
the size of the ontology actually matters when setting
up an ontology in a time-constrained situation. This is
even more important if we take into account that the
difference in time is an order of magnitude 33 times
larger.
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Figure 5: Open Energy Ontology Performance.

Finally, when taking a look at the memory and
CPU usage metrics of each ontology, we found out
that OEMA appears as the more demanding ontol-
ogy. Nevertheless, we are not able to take out any
strong conclusions as there were issues when trying
to plot the OEMA performance. With that in mind,
if we leave OEMA aside, we have found that the
highest memory and CPU consumption is attributed
to DABGEO. This might be enough to point out that
a higher reasoning time, could potentially lead to a
higher resource cost. Let us remember that DABGEO
has the highest reasoning time of any ontology on any
reasoner. Therefore, when dealing with a resource-
constrained platform, we need to take into account the
reasoning time so less resources are required.



350

w
&
=)

w
=]
=3

250 4

]
o
=3

200 4

N
=}
S

CPU (%)

150

H
&G
o

Real Memory (MB)

100 +

H
o
=1

50

T
v
=]

o

T T T u T T
10 15 20 25 30 35
time (s)

o
w

Figure 6: Facility Ontology Performance.

On the other hand, the less resource-consuming
ontology is the Open Energy Ontology. This might
come across as unexpected, as the ontology only met-
rics that are to be highlighted are the Data Property
Count, it has none, and the reasoning time. The only
conclusion that we could draw is that, as we pointed
above, the reasoning time is linked directly to the re-
source usage.
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Figure 7: DABGEO Performance.

6 CONCLUSIONS

In this paper we have shown the state of the art regard-
ing semantic web reasoning in the domain of SGs.
After finding the most representative ontologies of
the domain, we have analyzed those that are avail-
able and established a comparison between them, try-
ing to point out possible bottlenecks and points of im-
provement. We have found that a higher loading time
seems to be linked to a higher reasoning time. In the
same way, a high reasoning time seems to be tied to a
higher resource consumption. These conclusions are
specially important in the domain because of their in-
tended implementation in resource-constrained plat-
forms such as smart meters.

A Comparison of Smart Grids Domain Ontologies

About the different ontologies analyzed in the pa-
per, we can point out that the most resource consum-
ing and higher metrics in general is OEMA, while in
the other side of the spectrum we find Open Energy
Ontology as the less resource-consuming ontology,
and SEPA as the ontology with the lowest metrics
overall. Despite that, regarding loading times, SEPA
is the one with the highest and Open Energy Ontology
the one with the lowest time. The highest time when
reasoning is that of DABGEO, while the lowest is the
one of the Open Energy Ontology.

Furthermore, it is worth noting that, despite an al-
most overflowing amount of references on the seman-
tic web technologies in the domain of the SGs, most
of these technologies are not readily available: There
are many broken URLs, ontologies that are no longer
available, outdated platforms. It is even more evident
when, after finding the few available ontologies, these
will not work properly with some staples of the se-
mantic web reasoning such as Protégé.

At this point, there are many possible lines on
which to expand the work already done. We intend
to provide a solid common platform, based on the
Jena® framework, to extend the comparison beyond
the readily available tools. We also want to pro-
vide approaches to improve the loading and reasoning
times as well as the resource load of the available on-
tologies. Finally, it is our intention to also provide a
comparison of the performance of the ontologies and
reasoning methods in a real-world environment such
as a resource-constrained device.
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