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Abstract: Serverless computing, also known as Function as a Service, is a new paradigm that aims to separate the user of
the platform from details about any infrastructure deployment. The problem lies in the fact that all the current
Serverless platforms require the user to specify at least the needed memory usage for their Serverless offerings.
Here we have a paradox since the users must be involved in technical issues to run their applications efficiently,
both in terms of execution time and financial costs. To the best of our knowledge, the state-of-the-art lacks on
providing studies regarding the best memory size for a particular application setting. In this context, this work
presents Memoryless, a computational methodology that is in charge of removing the completion of memory
limits by the user when launching Serverless demands. To accomplish this, we introduce in the literature a two-
pass algorithm composed of a microbenchmark where users inform simple application parameters (first pass)
and receive from the hypervisor the memory required to run their demands. In addition to user abstraction,
financial cost also drives our research, since commonly this metric is directly proportional to the selected
memory size. We implemented Memoryless using NodeJS, Kubeless, and Kubernetes. The result confirms that
the proposed methodology is capable of lowering the memory needs to run an application while maintaining
expected execution times. This benefits both cloud administrators (who can run more Serverless demands
for different users in parallel) and cloud users, who will pay less on using the cloud, so exploring better the
pay-as-you-go policy.

1 INTRODUCTION

Every major computation revolution surpasses the last
one by adding abstraction layers and novel function-
alities for client applications. Client-server topped the
mainframe usage, while cloud computing topped the
client-server paradigm (Fox et al., 2009; Kanso and
Youssef, 2017; Nguyen et al., 2019). In particular,
cloud differs from client-server applications because
it provides the notion of resource elasticity. The ideas
consist of on-the-fly adding or removing, or yet re-
configuring, resources in such a way their number
best fits a particular moment of the application execu-
tion. In this way, threshold-based cloud elasticity with
rules and action statements is mainstream when think-
ing about the malleability of resources (Nasr, 2019;
Villano, 2020). Using either a graphical interface, a
command-line approach, or an API (Application Pro-
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gram Interface), users must handle lower and upper
load thresholds (frequently linked with the CPU usage
metric). Besides, rules and actions must also be ana-
lyzed, which is not trivial for non-cloud experts (Kim
and Lee, 2019).

Today, we are living in the next revolution of
resource management named Serverless computing
(Jonas et al., 2019; Kanso and Youssef, 2017; Kim
and Lee, 2019; Nguyen et al., 2019). Serverless com-
puting is a new architecture paradigm, in which the
user only needs to directly upload the code into a hy-
pervisor and specify how much memory is required
to run that piece of code. The system will allocate
computational resources (for example, CPU) in pro-
portion to the main memory size (Kanso and Youssef,
2017; Nguyen et al., 2019; Winzinger and Wirtz,
2019). The larger the size, the higher the CPU al-
location. Resource usage is measured and billed in
small increments (for example, 100ms) and users pay
only for the time and resources used when their func-
tions are running. The submitted code is known in
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the industry as Function as a Service (FaaS), to allude
to the fact that only a procedure is being uploaded
to the platform, instead of any compiled or pack-
aged objects (Amazon, 2019). Serverless functions
can be used to run code, build mobile and web ap-
plications, manage containers and handle other cloud
computing tasks (Nguyen et al., 2019). All the in-
frastructure needed to run the code is hidden from the
user. Also, the user pays only for code usage (pro-
cedure calls), i.e., for the period comprised between
starting the code and the final execution of the last
piece of code (Kuhlenkamp et al., 2020). Thus, a
large and variable number of resources (usually, con-
tainers) take place to execute a collection of stateless
functions inside a time limit imposed by the cloud
provider. These conditions allow Serverless to im-
plement new microservices architectures and to drive
down the costs related to threshold-based elasticity.
In this last technique, the charging method typically
considers an entire time window, independently of the
user spent only the first few seconds on that window
(Jangda et al., 2019; Jonas et al., 2019; Kuhlenkamp
et al., 2020; Winzinger and Wirtz, 2019).

Analyzing the state-of-the-art, we perceive that
works are trying to address the concern related to
easying the use of Serverless applications to non-
expert users. Most of the works tend to attack the
issue called cold start that causes the first computa-
tion of a Serverless program to be slow, as shown
by (Abad et al., 2018; Horovitz et al., 2019; Kim
and Cha, 2018; Oakes et al., 2017; Winzinger and
Wirtz, 2019). Albeit there is much progress in this
area, the authors in (Jonas et al., 2019) point us to
broader needs for the Serverless computing platforms.
In particular, the article cites that the users of Server-
less computing still need to specify the memory us-
age of their programs that do not match the concept
behind Serverless computing, where the users should
only worry about their code. Yet, in (Kuhlenkamp
et al., 2020) the authors still cite that the problem of
the user abstraction level is a concern for both the hy-
pervisor and the own user. When a Serverless com-
puting platform bounds the user into specifying some
infrastructure requirements, this, in turn, bounds the
provider to always providing at least that infrastruc-
ture for running the code. Thus, we affirm that today
remains an open gap in the literature regarding the
need for removing barriers to specifying infrastruc-
ture requirements on using the Serverless concept.

In this context, this work proposed a two-pass al-
gorithm named Memoryless, who is in charge of facil-
itating the use of Serverless applications in such a way
users must not worry about filling up details about
memory size. To accomplish this, this algorithm exe-

cutes microbenchmark where: (i) in the first pass we
have an estimation of the needed memory size to rub a
single container in the face of a set of application de-
scription; (ii) in the second phase, we have a launch-
ing of the Serverless application with the parameter
previously discovered as memory limit. In addition
to diffusing the employment of FaaS, Memoryless is
also pertinent to reduce financial cost to end-users,
since providers typically charge taking into account
the selected memory requirements. In other words,
Memoryless avoids overestimation in the memory pa-
rameter, so impacting directly in the cost for end-
users. We developed a prototype that uses NodeJS,
Kubeless, and Kubernetes, which are representative
tools when assembling a container-based Serverless
environment. Memoryless contributions are twofold.

• Proposal of two-pass methodology to run Server-
less applications with the most suitable memory
limit, so allowing users for not caring about such
parameter beforehand;

• A proof-of-concept with state-of-the-art technolo-
gies, enabling the proposed methodology as vi-
able to support Serverless infrastructure effort-
lessly.

The remainder of this article will first introduce
the related work in Section 2. In this point, our idea is
to present a comparison table, as well as the open gaps
in the literature. Section 3 describes Memoryless, in-
cluding its architecture, functioning and microbench-
mark. Section 4 reveals the evaluation methodology.
A discussion of the results appear in Section 5. Fi-
nally, Section 6 emphasizes the scientific contribution
of the work and notes several challenges that we can
address in the future.

2 RELATED WORK

In this section, we analyze initiatives in the state-of-
the-art on Serverless usage and applications. Jonas
et al. (Jonas et al., 2019) present an article that cov-
ers the current state of research and industry on the
topic, detailing the main gaps on the Serverless today.
They reveal an analysis of the industry viewpoint, de-
tailing what the industry has to offer for the users of
Serverless. The authors go a step further to analyze
the current state of the Serverless offerings. The au-
thors created several implementations of typical soft-
ware applications in the context of Serverless. They
then compared them, showing a considerable gain in
resource and cost when it comes to high-level appli-
cations. However, they point out that Serverless is not
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the right fit for running low-level applications, such
as databases.

Horovitz et al. (Horovitz et al., 2019) present a
technical work that tries to solve the ”cold start” prob-
lem on Serverless today. By provisioning the same
architecture in a Serverless and a usual cloud VM,
it uses machine learning to predict the cost for the
service to operate. It routes the call for the cheaper
instance, be it Serverless or cloud VM. It is impor-
tant to note that this work was made from the per-
spective of the user of Serverless and cloud infrastruc-
tures, different from other found technical jobs. The
proposal is implemented on top of the Fission open-
source Serverless engine. It uses Python Scikit Learn
with Decision Trees to both: (i)estimate when the pro-
cedure calls that would arrive in the system and; (ii)
to route the calls to the VMs, in such a way Serverless
platform would not handle it. The result of the classi-
fication algorithm then makes fake calls to the Server-
less application to remove the ”cold start” and spin up
a single VM to handle the requests in the meantime.

Oakes et al. (Oakes et al., 2017) aim to raise the
abstraction and the execution speed of Serverless ap-
plications. The idea is to require the user of a Python
Serverless application to deploy, along with his/her
code, a list of the needed packages that the service
depends on. By bringing the need to bundle the appli-
cation onto the hypervisor, this strategy enables the
hypervisor to load the application faster by caching
the packages needed for all users of the Serverless
platform. Thus, we have less FaaS to load into mem-
ory. The model proposed in (Oakes et al., 2017) is
supposed to be security-aware. By forking new pro-
cesses from the running dependencies, it isolates all
the callers from seeing each other’s data should they
share any package. The authors use a copy-on-write-
like directive to avoid package sharing while still al-
lowing for heavy package reuse when the user pro-
vides the code for them to run.

Abad, Boza, and Eyk (Abad et al., 2018) build on
top of the work of Oakes et al. (Oakes et al., 2017)
by inserting a cache hit/miss algorithm, in addition
to an algorithm that is aware of the packages needed
to run a Serverless provision. These changes increase
the performance of dependency management by 66%.
Kim and Cha (Kim and Cha, 2018) bring a two-step
algorithm to lower the latency of the calls to Server-
less. The first is a model to allocate a three-state
worker. Here, we have a swarm of ”template work-
ers” (the base images needed for any Serverless func-
tion), which would be converted to a ”Ready worker”
that would run all the pre-running steps to leave the
worker ready to be deployed, which could then be
promoted an ”Active worker” (the actual code exe-

cuting). The second step of the algorithm is a slid-
ing window dynamic prediction to determine when a
”Template worker” would be allocated to a ”Ready
worker” and then to an ”Active worker.”

Hall and Ramachandran(Hall and Ramachandran,
2019) present an interesting take on the Serverless
world. The authors first assess the current problems
in Serverless computing, namely the cold start prob-
lem, and pinpoint the main issue with it in the use
of containers to run native code. The authors then
propose a new container-like work by using the V8
engine to run WebAssembly code, which has a faster
initialization time than native code running inside typ-
ical containers. By using existing compilers targeting
WebAssembly from native-targeting languages, there
is a quicker initialization time. However, the main is-
sue lies in the current speed of WebAssembly, which
still is slower than native code.

To analyze and compare the aforementioned
works, we have devised the following guiding ques-
tions:
1. Does the work deal with Serverless?
2. Does the result of the work need to be imple-

mented by the hypervisor?
3. Does the work aim to improve the performance of

the Serverless application execution?
4. Does the work consider memory usage?
5. Does the work use cache to improve the perfor-

mance of the execution?
6. Does the work use machine learning?
7. Does the work aim to fix the ”cold start” problem?
8. Does the practice aim to raise the usage abstrac-

tion for the user of a Serverless platform?
While most of the works were able to answer

questions 1, 2, 3, 5, 6, and 7, no work was able to
answer questions 4 and 8. Then, we envisage a gap in
the state-of-the-art, as presented in Table 1, that offers
an analysis of the works mentioned above. A better
alternative to having the user specify resources would
be to raise the level of abstraction, having the cloud
provider infer resource requirements instead of hav-
ing the developer define them. Provisioning just the
right amount of memory automatically is particularly
appealing but especially challenging when the solu-
tion must interact with the automated garbage collec-
tion used by high-level language runtimes.

3 MEMORYLESS MODEL

We plan to complete the gap existing in the litera-
ture that consists of the necessity to inform the mem-
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Does the work deal with Serverless? 3 3 3 3 3 3
Does the result of the work need to be implemented by the hypervisor? 7 3 3 3 3
Does the work aim to improve the performance of the Serverless application
execution?

3 3 3 3 3

Does the work consider memory usage? 7 7 7 7 7
Does the work use cache to improve the performance of the execution? 7 3 7 7 7
Does the work use machine learning? 3 7 7 7 7
Does the work aim to fix the ”cold start” problem? 3 3 3 3 3
Does the practice aim to raise the usage abstraction for the user of a Serverless
platform?

7 7 7 7 7 7

ory limit when launching a Serverless demand to the
cloud. We agree that the concept of Serverless is up-
and-coming, and to accomplish this, it is important to
provide better abstraction on its usability. In this way,
Memoryless follows this idea by hiding from the user
any details related to memory resource allocation and
management of machine instances in the cloud. In-
stead, they can run code on cloud servers without hav-
ing to configure or maintain the servers at all. Pricing
is based on the actual amount of resources consumed
by an application, rather than on pre-purchased units
of capacity.

This section first presents the design decisions of
Memoryless modeling. Second, we reveal the sys-
tem architecture, highlighting the user interaction. Fi-
nally, the proposed algorithm is described, where we
also highlight the particular points that reside our con-
tribution.

3.1 Design Decisions

We developed Memoryless to able users to launch
Serverless applications without needing to describ-
ing any detail related to memory. Memoryless then
changes the way users from today’s Serverless use
the platform in the following manner: (i) users would
have to submit the expected parameters of their pro-
gram along with their source code; (ii) the hypervisor
can run a proposed microbenchmark to determine the
most suitable memory needs for the Serverless appli-
cation. Thus, Memoryless can be seen as a two-pass

algorithm. The idea in (i) is to receive both the FaaS
(UC) to be run on the Serverless platform and a set of
parameters (PR) in the form of events that trigger the
Serverless program. The Serverless platform should
then start a modified ’function container’ in (ii) that
should have the ability to query for the used memory
in any given moment in time. We understand that us-
ing a microbenchmark to determine the best value of
the memory brings the following benefits:

• For the user, who will pay exactly what his/her ap-
plication really needs, so avoiding overestimation
of this parameters and an subsequent overcharg-
ing on running a Serverless application;

• For the cloud provider, since more users can
be scheduled concomitantly to use the available
cloud resources.

To enable these benefits, we bring the idea that the
cloud provider must do not charge the user when run-
ning a sample application with determined parame-
ters. The output is the most suitable memory size and
the own provider profits on doing this procedure as
clarified earlier. Technically, the platform should then
test for the needed memory by executing the function
UC with the parameters PR and querying the mem-
ory used after each test set be completed. After all the
querying done, the platform gets the maximum used
memory of the execution. This value is used to launch
the Serverless application subquently. Our idea then
is to exchange the low-level representation of mem-
ory to specifying a high-level parameter list. This list
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Figure 1: Current Serverless model.

would be application-specific and, more importantly,
more relevant to the business reason for the applica-
tion rather than the technical basis. Also, consider-
ing that the final cost is proportional to the allocated
memory, the proposed strategy also goes towards pro-
viding a solution for saving money in such a way we
nave the most suitable memory limit to run a program
in the cloud.

3.2 Architecture

This section presents the Memoryless architecture,
where we present interactions of the user and hyper-
visor in three moments: (i) development; (ii) deploy-
ment; (iii) production. Figure 1 illustrates these actors
and moments in a traditional Serverless model. At the
development stage, users must be involved with mem-
ory details of their applications. Figure 2 depicts the
proposed methodology, where we divide the hypervi-
sor offering in two steps involving Microbenchmark
and Production. The microbenchmark is responsible
for determining how much memory the application
will need to run effectively. The Production Step, in
its turn, is the same as the current Serverless offerings;
but here, the memory requirement will come from the
microbenchmark step rather than from the user. Thus,
the cloud service provider manages the infrastructure
and the software and maps the function to an API end-
point, transparently scaling function instances on de-
mand.

The proposed architecture takes into account the
moment from which the user submits his/her code to
the hypervisor. Then, we have the replacement of the
current requirements of FaaS and memory to FaaS
and parameters. These parameters could be informed
through command-line or by using auxiliary files that
are uploaded when launching a Serverless applica-
tion. Considering the settings, we agree that the user
must be aware that the fewer parameters the user adds,
the worst will be the return of the microbenchmark.
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Therefore, the more diverse and rich the parameters
are, the more accurate the memory number yielded
by the microbenchmark step will be.

The parameters needed to determine the mem-
ory limit on running a Serverless application vary
depending on the implementation of the Serverless
infrastructure. Memoryless model must support all
the parameters that the Serverless infrastructure al-
lows. Assuming that a Serverless provider supports
both HTTP events and an internal event mechanism,
the user must be able to provide examples of such
events so that the microbenchmark step can effec-
tively mimic a real-world usage of the Serverless in-
frastructure. So, the format of such parameters is
implementation-specific. The parameters must be
stateless and must not depend on one another; in such
a way, the microbenchmark can run calls in parallel
with a different load of events for the Serverless ap-
plication.

The proposed model does not make a distinction
between a call correctly placed or if an error occurred
inside the FaaS. The model will query for the used
memory should the call produce an error or not. The
user should decide whether the error handling mecha-
nism should reflect any changes in the memory avail-
able for his/her program or not. Finally, this step of
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training the Serverless execution to obtain the mem-
ory limit to execute the application is not charged to
the user, i.e, it corresponds to a service offered by the
cloud providers to users to enable them to tune their
applications to consume the most suitable number of
resources. Here, it is pertinent to remember that the
amount of allocated meory is commonly proportional
to the number of containers used to run a Serverless
demand.

3.3 Algorithm Proposal

Algorithm 1 presents the microbenchmark step on the
Memoryless execution. This algorithm needs to re-
ceive three parameters: (i) faas: The function to be
run; (ii) pr: the parameters needed to run the argu-
ment FaaS; (iii) runs, which refers to the number of
times the parameters will be called. While the argu-
ments faas and pr will be provided by the user of the
Serverless platform, the platform itself will have to
decide the maximum load allowed for the item runs.
To test for accurate loads, the platform should set it
to the maximum number of connections and events
available to a single container (before the horizontal
scaling starts).

Algorithm 1: Microbenchmark Step.
Input:
Faas - The Function as a Service
pr - Set of parameters for the FaaS
runs - Times to run the tests
Output:
MM - Maximum required memory for the provided
faas

1: i← j← 0
2: MU ←{}
3: ic← createMicrobenchmarkContainer( f aas)
4: for i=0; i ¡ runs; i++ do
5: for j=0; j ¡ num(pr); i++ do
6: inside ic call f aas(pr[ j])
7: memory ←

getCurrentMemoryInContainer(ic)
8: MU ←MU ∪memory
9: end for

10: end for
11: MM←Max(MU)
12: return MM

Also, we are assuming that the provider will de-
livery two other functions:
1. createMicrobenchmarkContainer: a function

that upon receiving the FaaS will create a new
container with that FaaS and with instrumentation
abilities, namely the possibility to query for the
total used memory at any given time.

2. getCurrentMemoryInContainer: a function
that returns the current memory usage of the con-
tainer specified.
The last assumption needed for executing the

ideas of Memoryless is that we are working with a
runtime that performs memory management with a
Garbage Collector. In this way, line number 7 of Al-
gorithm 1 will yield all the memory used when ex-
ecuting the Serverless demand. If not working with
a Garbage Collector, then the microbenchmark con-
tainer must record the used memory during line 6,
since at this time we need to know the current used
memory because it is not freed during previous ex-
ecutions. Thus, logically, the second execution will
retiorn more memory if compared to the first because
of memory never goes to zero. The high-level pro-
duction step should replace the current infrastructure
by having an action to call the Microbenchmark step
before starting the container. Finally, we must get the
output of Algorithm 1 and run the final Serverless ap-
plication.

4 EVALUATION
METHODOLOGY

Today, the literature agrees that there is not a standard
methodology to evaluate Serverless applications (Kim
and Lee, 2019; Kuhlenkamp et al., 2020; Winzinger
and Wirtz, 2019). For example, in (Kim and Lee,
2019) the authors used arbitrary applications in the
fields of Big Data, Web and security. On the other
hand, Kuhlenkamp et al. (Kuhlenkamp et al., 2020)
explored a synthetic application with three distinct
phases: warm-up, scaling and cool-down. Yet, de-
pendency testing between different application mod-
ules was addressed in a Serverless infrastructure in
(Winzinger and Wirtz, 2019). Therefore, in this
moment we opted by developing our own evalua-
tion methodology, which was focused on analyzing
the memory impact on Serverless deployment. Our
methodology comprises the answer for a collection of
questions and the implementation of a prototype and
experimental memory-targeted applications. The fol-
lowing guiding questions are planned to be used to
evaluate the Momeryless prototype:

EV1 Can the implementation run in a two-pass config-
uration?

EV2 Can the Microbenchmark step yield the maximum
memory used with the given parameters?

EV3 Can the system assign different memory require-
ments for two applications with distinct memory
usages?
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In brief, for any given program, Memoryless
should be able to provide the following software re-
quirements: (SR1) determine the maximum memory
needed for running the program on a single container;
(SR2) use the information obtained in S1 to instanti-
ate a container; (SR3) remove the need from the user
to specify memory limit on FaaS implementations.

The developed prototype has a set of requirements
for the implementation. Regarding the Function as
a Service runtime: (i) it must use garbage collection
as memory management; (ii) there must be an open
API to query the memory usage at any given moment
in time. Regarding the Serverless hypervisor imple-
mentation: (iii) It must be extensible to allow for the
creation of the Microbenchmark step; (iv) It must be
based on containers so it will be possible to create the
microbenchmark Container. Regarding the parame-
ters: (v) the only event parameters supported will be
HTTP events; (vi) the HTTP events shall not carry
any payload. Regarding the FaaS: (viii) there should
be a simple Function as a Service implementation that
queries a database and return data to the caller; (viii)
there shall be a memory-heavy Function as a Ser-
vice implementation that inflates its memory until a
given threshold and stays in that threshold while be-
ing called.

The chosen runtime was NodeJS (NODE.JS
FOUNDATION, 2019a), as it provides memory man-
agement via Garbage Collection and it has an API for
querying the memory usage during the execution of
a process (NODE.JS FOUNDATION, 2019b). This
satisfies the requirements (i) and (ii). For the im-
plementation, we are using Kubeless (KUBELESS,
2019), since it is an open-source implementation of a
Serverless provider. Being open-source enables us to
change its behavior to implement our model, thus sat-
isfying (iii). It also is built on top of Kubernetes (THE
KUBERNETES AUTHORS, 2019), which is an or-
chestration mechanism for containers, thus meeting
(iv) as well. Following the same ideas from (Horovitz
et al., 2019), here we also use the nodecellar applica-
tion to mimic a simple FaaS that queries a database,
after converting it to be able to run on the platform
Kubeless. This satisfies (vii). For (viii), the authors
developed a simple application that randomly gener-
ates strings and stores them into memory, using the
same memory usage API (NODE.JS FOUNDATION,
2019b) to set the memory size used to a specific limit.
Finally, both sample applications satisfy (v) and (vi).

5 RESULTS

In this section, we present the results obtained when
running the prototype with the evaluation methodol-
ogy details described earlier.

5.1 Winecellar Application

Winecellar (https://www.vinfolio.com/cellar-
management) is a Web application where we
have a collection of wines and operations such
as query, addition and removal are allowed over
such collection. Thus, we deployed the functions
(add, remove and query) of this application in the
Kubeless Serverless implementation. When running
the Winecellar, the microbenchmark step was able
to run 5 thousand calls to the function that read all
the wines stored in the database. The results can be
found in Figures 3a and 4a. The graphs were made
by storing all the values returned at the line 13 of the
Algorithm 1.

The application has shown to have peak memory
at 36.11 MB, which can be found around call number
4456 on the graph of Figure 3a. Here, we achieved a
median memory usage of 8.96 MB, where more than
half of the calls were situated between 14.83 MB and
21.73 MB, as seen in graph 4a. The return of the Al-
gorithm 1 in this instance was 36.11 MB. The produc-
tion step was then able to deploy a production-ready
container with the FaaS code and a memory limit of
36.11 MB. Without this number, the user possibly will
complete with a higher parameter; for example, 64
MB or more.

We observe that in Figure 3a, there is a trend to
use more and more memory, as the minimum mem-
ory needed to run keeps increasing as the calls keep
being made. This could be an indication of a mem-
ory leak either in the Winecellar application or in the
Serverless provider implementation. Further investi-
gation would be required to determine the exact na-
ture of this behavior. Another factor to investigate
further would be the memory peaks shown in the calls
with numbers equal to 1822, 2179, 2674, 3169, 3268,
and 4456. These peaks clearly show that in these
moments, something is stressing the memory usage
abruptly. Further investigation would be necessary to
pinpoint what the cause such peaks.

5.2 Memory-stress Test Application

The application designed to stress the memory run-
ning inside the containers presented the results shown
in Figure 3b. This application was designed to add a
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(a) Memory usage for each call in the Winecellar application.
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(b) Memory usage in memory-stress test application.

Figure 3: Timeline of memory usage per call for both evaluated applications.

random string into memory in each call until the pro-
cess had 300 MB. If the process had more than 300
MB, the call would not execute anything. This appli-
cation presents us a more interesting scenario to ana-
lyze. The peak of memory usage was 370.22 MB, as
seen in the graph of Figure 3b. We observe that the
median was 313.99 MB, and half of all the calls used
between 304.89 MB and 323.61 MB of memory (see
Figure 4b). The production step was then able to de-
ploy a production-ready container with the FaaS code
and a memory set of 370.22 MB.

Observing the results, we highlight information
regarding the period that declines the memory usage,
which appears close to the calls 2501 and 4501. This
can be explained by the lifespan on the Serverless
container timing out, as the call to create the strings
takes more time than the call to query a database (al-
beit the query has network traffic to fetch from the

database). Thus, after around 2 thousand calls, the
Serverless provider ends up destroying the container
running the function and has to start it again when the
next call is executed.

Another factor to observe refers to the application,
which usually shows a peak memory of 323.61 MB.
This can be explained as 300 MB being the limit in
memory usage: summing the random string in mem-
ory and the heap memory needed by the NodeJS en-
gine to run the function when called. The magnitude
of the offset, from 20 MB to 30 MB, is comparable
to the memory usage shown in Subsection 5.1, where
the memory cost for the NodeJS application is mini-
mal. The sawtooth shape of the graph also indicates
that the memory needed don’t go under 300 MB (as
is specified by the function), but the runtime keeps
garbage collecting the memory required to run the ser-
vice. Thus, we can then say that around 300 MB is
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(a) Boxplot for memory usage for each call in Winecellar.
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(b) Boxplot for memory usage in memory stress test.

Figure 4: Box plot graph of the tested applications.

being used for the runtime stack, and the remaining
memory is being used for the heap of the runtime.

In all instances of the lifespan, the first calls al-
ways show some variation in memory usage, such as
in the calls 201 to 601, and calls 2501 to 2801. There-
fore, this could be the result of the heap misbehaving,

and, if run for more calls, the runtime could stabilize.
It is essential to note that this example only has one
parameter Pr and one type of call to be run in the Mi-
crobenchmark Step. If there would be more types of
calls and more behaviors testing for this same appli-
cation, the graph could have a better representation
of reality, and the uniformity of the saw-tooth peaks
would be more fluent.

5.3 Tools Shortfalls

We used computing tools that presented some short-
falls. Most notably were the limitations of the Kube-
less implementation. Kubeless lacks a ”scale to zero”
capability, one of the hallmarks of Serverless com-
puting (Jonas et al., 2019). On the upside, it does
not possess a ”cold start” (Jonas et al., 2019) issue
since it never stops executing (thus being pricier).
Also, the lack of debugging capabilities makes it
harder for the user to develop targeting this plat-
form. We also observed the lack of active devel-
opment in (KUBELESS, 2019). The open-source
community seems to have migrated from Kubeless to
the Google-sponsored Knative (THE KNATIVE AU-
THORS, 2019), as it is described as a Kubernetes-
based platform to deploy and manage modern Server-
less workloads. Future works include implementation
and testing of Memoryless on top of Knative instead
of Kubeless and verification whether the caveats pre-
sented here are still present.

5.4 Discussion

This section goes back to the questions raised in Sec-
tion 4 to check if the evaluation yields a positive result
and if the specific objectives were fulfilled. For all the
questions, we raise the same three points: (i) Was it
answered? Was it a positive outcome? (ii) Does it
have some drawbacks? Which?; (iii) Is it possible to
fix this drawback? Would it need future work? In Ta-
bles 2, 3, 4 and 5, we have a complete breakdown of
the questions and their answers. Some questions and
evaluation methods are very similar that they were
joined in single table.

6 CONCLUSION

The Serverless computing paradigm is a game-
changer in cloud computing. The current caveat of
having to specify how much memory will a Serverless
application has to use beforehand is indeed against
the current trend of raising the abstraction layer. For
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Table 2: Answers and drawbacks of EV1 and SR2.
(EV1) Can the implementation run in a two-pass configuration? (SR2) Use the information obtained in SR1 to

instantiate a container that is limited to the needed memory on the application
Answer Yes, the implementation has proven that it can indeed run in a two-pass configuration by extending the current

deployment step to run the implementation first and only start the production container after the memory has
been determined.

Drawback A major drawback is the time to start executing the deployment function in production, as the Microbenchmark
Step can take T seconds to run all the Microbenchmark Step, where T = |Pa| ∗Pr ∗ t where |Pa| is the number of
parameters received, Pr is the precision required by the hypervisor and t is the time in seconds to run the FaaS
application.

Possible so-
lution to
drawback

A solution for future work could be to parallelize the execution of the Microbenchmark Step and the Production
Step so that the Production Step can run with the maximum memory until the Microbenchmark Step is ready to
re-create the production container with the minimal viable memory allocation.

Table 3: Answers and drawbacks of EV2 and SR1.
(EV2) Can the Microbenchmark Stepyield the maximum memory used with the givenparameters? (SR1)

Determine the maximum memory needed for running the program on a single container
Answer Yes, the Microbenchmark Step has proven to be able to yield the correct answer, as can be checked on Figures 3

and 4.
Drawback It only works with garbage collected languages, as it can only synchronously query memory usage, and only a

garbage collected language would still hold irrelevant items in memory.
Possible so-
lution to
drawback

The model could be improved in future works to query the memory usage at a fixed time interval asynchronously,
or it could continuously register the memory usage of the container running the user code during the maximum
memory test and return that value when queried.

Table 4: Answers and drawbacks of EV3.
(EV3) Can the system assign different memory requirements for two applications with distinct memory usages?

Answer Yes, the system can assign different memory limits to different programs, as seen in Section 3.
Drawback None.
Possible so-
lution to
drawback

None.

Table 5: Answers and drawbacks of SR3.
(SR3) Remove the need for the user-specified memory limit on FaaS implementations

Answer Yes. One of the steps for the model is to remove the need for user-specified memory limits
Drawback By removing the option for the user to specify the memory the user is losing low-level control over their appli-

cation, but, as seen before, this is the whole intent of the Serverless computing movement.
Possible so-
lution to
drawback

Future works could create a questionnaire and ask users of Serverless computing solutions if they prefer to have
more low-level control over their programs, or they would rather have their infrastructure calculate everything
for them. They only can worry about their application logic.

example, all the recent Serverless offerings, includ-
ing Google Cloud Functions (released by Google in
2017), AWS Lambda (introduced in 2014), and Mi-
crosoft Azure Functions (presented in 2016), present
this drawback mentioned above. In this context, this
article introduced a new proposal named Memoryless
in such a way the memory limit is obtained through
a microbenchmark, which should be offered by the
cloud provider. In particular, we filled the gap pointed
out by Jonas et al. (Jonas et al., 2019) who present the
need to solve this memory issue to in fact elevate the
use of this computing principle.

By building a prototype of the model and running
two different types of workloads, we can denote that
the proposed model obtained encouraging results be-
ing feasible to launch Serverless effortlessly. We must
also highlight the financial cost factor. In a Serverless
computing deployment, the cloud customer only pays

for service usage; there is never any cost associated
with idle, down-time. However, this payment is pro-
portional to the registered memory; then, Memoryless
goes towards saving money since here we will not
have memory overestimation when running Server-
less demands. Finally, our contributions can be em-
ployed to bring to an elastic-cloud platform yet more
applications from different areas, including the In-
ternet of Things, event-triggered computing, mobile
apps, backend procedures, and high-volume of data
treatment.
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