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Abstract: Speech emotion recognition is a challenging task and feature extraction plays an important role in effectively 
classifying speech into different emotions. In this paper, we apply traditional feature extraction methods like 
MFCC for feature extraction from audio files. Instead of using traditional machine learning approaches like 
SVM to classify audio files, we investigate different neural network architectures. Our baseline model 
implemented as a convolutional neural network results in 60% classification accuracy. We propose a hybrid 
neural network architecture based on Convolutional and Long Short-Term Memory (ConvLSTM) networks 
to capture spatial and sequential information of audio files. Our experimental results show that our 
ComvLSTM model has achieved an accuracy of 59%. We improved our model with data augmentation 
techniques and re-trained it with augmented dataset. The classification accuracy achieves 91% for multi-class 
classification of RAVDESS dataset outperforming the accuracy of state-of-the-art multi-class classification 
models that used the similar data. 

1 INTRODUCTION 

Speech is the most basic mode of communication 
between human beings and it is the easiest way to 
convey emotions. Important information like the 
mental state of a person and his intent can be 
determined if we can capture the emotion of a person 
while he is speaking. This is not only crucial in the 
case of human conversations but also for human-
machine interactions. With the latest advancements in 
the field of machine learning, the number of human-
machine interactions has significantly increased and 
there is a need to recognize the emotion of a person 
to make the conversation more natural and real. 
Detecting the emotion of a person would also make 
human-machine interaction close to human 
interaction (Cowie et al. 2001). Interactive chat bots 
have become prominent in a wide range of industries 
and speech emotion recognition would allow these 
conventional chatbots to empathize with the user 
while being aware of their emotion and intent 
(Fragopanagos and Taylor 2005). Organizations can 
enable the chatbots to be more user friendly by 
customizing their responses based on user emotion. 
Knowing the emotion of their customers would allow 
organizations to change their product strategies 

accordingly. Since speech emotion recognition has a 
wide impact on many walks of life, it has been a 
subject of research among many data scientists for 
about a decade (K.-Y. Huang et al. 2019; Lalitha et 
al. 2015; Mu et al. 2017). Emotion Recognition is a 
classification task with input being speech and output 
being different emotion classes. This task has been 
challenging because emotions are subjective and can 
be interpreted in many ways. Another challenge in 
speech emotion recognition is extracting best features 
from speech signals to clearly distinguish between 
different emotions. A significant body of research 
projects has been done in this area and mainly rely on 
traditional feature extraction methods like Mel 
Frequency Cepstral Coefficients (MFCC) (Kerkeni et 
al. 2019), Short-time Fourier Transformation (STFT) 
to extract features from audio files before training 
classification algorithms (Vinola et al. 2015; El Ayadi 
et al. 2011; Chandrasekar et al. 2014; Koolagudi and 
Rao 2012). Yet, there is no conclusive evidence about 
the best features to recognize emotion from speech. 
Recently, with the advancement in the field of deep 
learning, context free approaches using auto encoders 
are implemented and tested to perform the speech 
emotion classification task (K.-Y. Huang et al. 2019; 
Kerkeni et al. 2019).  

In this paper we propose a deep neural network 
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model with data augmentation to classify speech into 
six emotion classes using Ryerson Audio-Visual 
Database of Emotional Speech and Song 
(RAVDESS) dataset and compare the performances 
with that proposed in (A. Huang and Bao 2019). 

We propose an enhanced version of the 
Convolution and Short-Term Memory Network 
ConvLSTM architecture implemented in (Zhao et al. 
2019). Inspired by the work of Kwon (Kwon et al. 
2003), we extended our model with vocal feature 
extraction from raw speech signals and used extracted 
features to train our ConvLSTM model. The proposed 
model resulted in higher six class classification 
accuracy than (A. Huang and Bao 2019; Zhao et al. 
2019) when combined with data augmentation 
techniques.  

The remaining sections of the paper are organized 
as follow. In section 2, we present the literature 
survey while section 3 deals with data description and 
data preparation. Section 4 discusses on the extraction 
of features from the audio signals. Section 5 and 6 
point out the experimental set up for CNN and 
ConvLSTM models respectively while section 7 
delineates the findings of model performances. Nest 
two sections deal with the discussion of result and 
conclusion and future work respectively. 

2 RELATED WORK 

Speech emotion recognition has been an active field 
of research for about a decade now. Traditional 
speech emotion recognition models were built using 
feature extraction and machine learning techniques 
(K.-Y. Huang et al. 2019). Researchers proposed 
different approaches to extract frame level and 
utterance level features from audio files and 
implemented machine learning frameworks to 
classify emotions using the extracted features, SVM 
being a very widely proposed model among them. 
(Mannepalli et al. 2018) proposed a thresholding 
fusion mechanism for integrating a set of SVM 
classifiers for human emotion classification. The 
classification accuracy was improved by combining a 
group of SVM classifiers. But, noise resilient features 
of the audio have not been analyzed by the model. 
Cao et al. (Cao et al. 2015) implemented a ranking 
based model for recognizing the emotions in the 
speech based on the multi-class prediction strategy. 
Noroozi et al. (Noroozi et al. 2017) introduced a 
vocal-based emotion recognition approach using 
Random Forests. Some other classifiers, such as 
Decision Trees (Lee et al. 2011) and K-Nearest 
Neighbor (KNN) (Kim and Provost 2013), have also 

been used in speech emotion recognition. These 
classifiers require empirically chosen very high-
dimensional handcrafted features. Deep Learning is 
an emerging field in machine learning in recent years. 
A very promising characteristic of Deep Neural 
Networks (DNN) is that they can learn high-level 
invariant features from raw data (Vinola et al. 2015; 
Koolagudi and Rao 2012), which is potentially 
appropriate for emotion recognition classification. 
Zheng et al. (Zheng et al. 2015) constructed a 
Convolutional Neural Network (CNN) architecture to 
implement emotion recognition, the ultimate 
experimental results showed that their proposed 
approach outperformed the SVM classification. Zhao 
(Zhao et al. 2019) used a Long Short-Term Memory 
Network and CNN into one-dimensional CNN-
LSTM network to recognize speech emotion from 
audio clips. The two-dimensional CNN-LSTM model 
focuses on learning global contextual information 
from handcrafted features, and achieved recognition 
accuracy of 52.14%. Perez-Rosas et al. (Pérez-Rosas 
et al. 2013)  have shown that features such as prosody, 
voice, MFCC, and spectral, prove promising in 
identifying sentiment. While most of these works 
have extensively used the IEMOCAP dataset (Busso 
et al. 2008), Huang and Bao  (A. Huang and Bao 
2019) explored conventional feature extraction 
techniques like MFCC and STFT,  and implemented  
CNN-based classifier  which yielded the accuracy of 
85% on the Ryerson Audio-Visual Database of 
Emotional Speech and Song (RAVDESS) dataset 
(Livingstone and Russo 2018). Kwon et al. (Kwon et 
al. 2003) implemented SVM and Hidden Markov 
Model (HMM) to process pitch, log energy, mel-band 
energies, MFCCs and velocity/acceleration of pitch. 
Their model received 96.3% accuracy for 2-class 
classification, and 70.1% for 4-class classification, 
proving that pitch and energy are the most 
contributing features. However, the result for 5-class 
classification is much lower.  The lower performance 
of the models explored in the previous studies 
motivates us to formulate our research using deep 
learning method on augmented RAVDESS data to 
evaluate whether our method could achieve higher 
accuracy compared to the existing research. 

3 DATA PREPARATION 

Many of the state of the art speech emotion 
recognition models were mostly trained and 
evaluated on the IEMOCAP database  (Busso et al. 
2008) and the Berlin database (Burkhardt et al. 2005). 
We choose to train and evaluate our proposed speech 
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emotion recognition model using the RAVDESS 
dataset (Livingstone and Russo 2018). Firstly, this 
dataset has high levels of emotional validity and 
reliability of audio. Secondly, it has a large number of 
samples when compared to common speech 
databases (Busso et al. 2008; Burkhardt et al. 2005). 
RAVDESS is a multimodal database, including files 
in three modalities (audio-video, video-only and 
audio-only) and two vocal channels (speech and 
song). Each audio file is rated on emotional validity, 
intensity, and genuineness. In our study, we only 
extracted audio files as our purpose is the audio 
emotion recognition task. It is worth noting that the 
dataset is gender balanced, consisting of 24 
professional actors, vocalizing lexically matched 
statements in neutral North American accent. The 
dataset contains 1440 audio files recorded in the 
“.wav” format and annotated into 8 classes of human 
emotions as shown in Table 1. The classes “Calm” 
and “Neutral” were selected as baseline conditions, 
while the remaining classes constitute the set of six 
basic or fundamental emotions that are thought to be 
culturally universal. 

Table 1: Initial distribution of audio files. 

Emotion Class Number of Files 

Neutral 96 
Calm 192 
Happy 192 
Sad 192 
Angry 192 
Fearful 192 
Disgust 192 
Surprised 192 
Total Files 1440 

In Table 1, we observe two major issues in the 
RAVDESS dataset – 1) class imbalance, where the 
classes are not represented equally and 2) relatively 
small size for training and evaluation.  To address this 
issue, there are a few techniques we can apply to deal 
with class imbalance such as over-sampling or 
adjusting the weight of cost function to balance the 
classes, etc. In our case, we choose to group similar 
class labels together to obtain better classification 
accuracy. To this end, we analyze the intensities of a 
random sample of audio files from each emotion class 
and group the classes with similar overall intensity 
into one class. The overall intensity of speech signal 
for male audio files is significantly different from 
those of female audio files. Also, emotions like happy 
and surprised have similar amplitudes. We grouped 
emotions with similar amplitude together to a total of 
6 classes. 

4 FEATURE EXTRACTION 

Feature extraction is the first step in the process of 
implementing a speech emotion recognition model. A 
speech signal comprises spectral features and prosody 
features. Prosody features represent the pattern of 
speech signal like pitch, intensity and energy etc. 
Sometimes prosody features alone are enough to 
distinguish between emotions, but few emotions 
might be too close to be distinguished using prosody 
features alone. Feature extraction is accomplished by 
changing the speech signal to a form of parametric 
representation at a relatively lesser data rate for 
subsequent processing and analysis. Feature 
extraction approaches usually yield a multi-
dimensional feature vector for every speech signal 
and there are different algorithms to parametrically 
represent the speech signal for the emotion 
recognition process, such as Perceptual Linear 
Prediction (PLP) (Kim and Provost 2013), Linear 
Prediction Coding (LPC) (Kim and Provost 2013) and 
Mel-Frequency Cepstral Coefficients (MFCC).  

 

Figure 1: MFCC Process. 

In this paper we use MFCC to extract features as it is 
the best representation of spectral properties of 
speech signal (Muda et al. 2010). In the computation 
of MFCC, the first step is Pre-emphasis where the 
signal is passed through a filter to emphasize higher 
frequencies. Next the speech signal is split into 
individual frames and this process is called Framing. 
The next step is Windowing to integrate all the 
closest frequency lines. To convert each frame from 
time domain to frequency domain Fast Fourier 
Transform (FFT) is applied to find the power 
spectrum of each frame. Subsequently, the filter bank 
processing is carried out on the power spectrum, 
using Mel-scale. Mel-scale was developed to 
overcome the linear interpretation of pitch by the 
human auditory system. It scales the frequency to 
match closely to what the human ear can perceive as 
humans are better at identifying small changes in 
speech at lower frequencies. With the Mel-scale 
applied, the coefficients will be concentrated only 
around the area perceived by humans as the pitch, 
which may result in a more precise description of a 
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signal, seen from the perception of the human 
auditory system. 

FሺMelሻ ൌ 2595 logଵ଴ ൬1 ൅
f

700
൰           

(1)

where F(Mel) is the resulting frequency on the mel-
scale measured in mels and FHz is the normal 
frequency measured in Hz (see Figure 1). Next, the 
log Mel spectrum is converted into time domain using 
Discrete Cosine Transform (DCT). The result of the 
conversion is called Mel Frequency Cepstrum 
Coefficient. The speech signal after translating the 
power spectrum to log domain to calculate MFCC 
coefficients as shown in Figure 2. 

 

Figure 2: MFCC Frequency plot. 

In our experiment, all audio files have been timed for 
a window of 3 seconds to extract length invariant 
feature sets using MFCC. We extracted 13 MFCCs 
per frame which is the default window sufficient to 
capture meaningful information for the model. The 
sampling rate of each file is doubled keeping 
sampling frequency constant to get more features 
from a small audio file. We select the 80:20 random 
split, which implies 80% of the samples are used for 
training our proposed models and 20% of samples for 
model validation. 

5 TRAINING CNN MODELS 

We build a CNN model with convolutional layer 
which is mainly used for image classification and 
object detection tasks, as a baseline model for speech 
emotion recognition. Convolution is a specialized 
type of linear operation used for feature extraction. 
The convolution generates a feature map with the 
help of kernel and tensor. Kernel is defined by a small 
array of numbers, while the tensor is the input array 
of numeric values. The kernel is applied on the input 

tensor where the element wise multiplication between 
each item of the kernel and the input tensor is 
determined. The product at each location of the tensor 
is summed up to yield a feature map which is the 
value in the corresponding position of the output 
tensor. The feature maps represent different 
characteristics of the input tensors; different kernels 
can, thus, be considered as different feature 
extractors. Two key hyper-parameters that define the 
convolution operation are size and number of kernels. 
As CNN captures spatial data and MFCC has 
coefficient information along the x-axis, and its value 
on the y-axis, capturing correlation with convolution 
will provide a reasonable and interesting approach. 

Figure 3 depicts the architecture of our CNN 
model architecture. We implemented a trial and error 
approach to select hyper parameters for our model. 
We train the first CNN model (referred as CNN-1 
model) on training dataset with Stochastic Gradient 
Descent algorithm to optimize the classification 
errors. Stochastic Gradient Descent (SGD) is the 
common optimizer that updates the parameters of 
learning such as kernel and weights to minimize the 
loss, i.e., the cost function that measures the 
difference between the prediction and the ground 
truth. It can be represented as the partial derivative of 
the cost function w.r.t the learnable parameters (i.e. 
the gradient) as shown in the following equation: 

𝜔 ൌ 𝜔 െ 𝜆 
𝑑𝐿
𝑑𝜔

 
(2)

𝜔  represents parameters, L represents the cost 
function (loss) and 𝜆 denotes learning rate. 

 

Figure 3: CNN Model Architecture. 

We implement a trial and error strategy to select best 
hyper parameters. We re-trained the model with 
Adam optimizer (CNN-2) (Yamashita et al. 2018) 
keeping all other parameters same as CNN-1. Adam 
optimization requires first-order gradients with 
memory requirement. The method computes first and 
second moment of the gradients. The update of 
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learnable parameters is based on the estimates of first 
and second moments. The estimate of first and second 
moments and update of the learnable parameters are 
given by the following equations (Kingma and Ba 
2014): 

𝑚௧ ൌ 𝛽ଵ ⋅ 𝑚௧ିଵ ൅ ሺ1 െ 𝛽௧ሻ ⋅ 𝑔௧ (3)

𝛾௧ ൌ 𝛽ଶ ⋅ 𝛾௧ିଵ ൅ ሺ1 െ 𝛽ଶሻ ⋅ 𝑔௧
ଶ (4)

𝑚ෝ௧ ൌ 𝑚௧/ሺ1 െ 𝛽ଵ
௧ሻ (5)

𝛾ො௧ ൌ 𝛾௧/ሺ1 െ 𝛽ଶ
௧ሻ (6)

𝜔௧ ൌ 𝜔௧ିଵ െ 𝛼 ⋅ 𝑚෥௧/൫ඥ𝛾ො௧ ൅ ∂൯ (7)

𝑔௧ ൌ ∇ఠ ⋅ 𝐿௧ሺ𝜔௧ିଵሻ (8)

Where 𝛽ଵ and 𝛽ଶ represent hyper-parameters ∈ [0, 1] 
which monitors the exponential decays of 𝒎𝒕  and 
𝜸𝒕 while 𝜶 is the learning rate.   

Table 2 exhibits the hyper parameter details for 
both the gradient descent and Adam optimizer where 
the loss function is taken as categorical cross entropy 
for both CNN-1 and CNN-2.  

Table 2: Hyperparameters for CNN Models. 

CNN Model 1 CNN Model 2 

Loss Function: Categorical 
Cross Entropy 

Loss Function: Categorical 
Cross Entropy 

Optimizer:  
SGD with 𝛼  = 0.0001, 
momentum=0.0, decay= 
0.0, nesterov = False 

Optimizer:  
Adam optimizer with 𝛼  = 
0.0001, 𝛽ଵ=0.9, 𝛽ଶ= 0.999, 
amsgrad = False 

Batch Size = 32 

Number of Epochs = 500 

Batch Size = 32 

Number of Epochs = 700 

6 TRAINING ConvLSTM 
MODELS 

Since audio files are sequence data, we use a hybrid 
model which combines Convolutional Layers and 
Long Short-Term Memory (LSTM) layers to preserve 
the sequential relationship between audio frames. In 
fact, the ConvLSTM architecture consists of using 
Convolutional layers for feature extraction on input 
data combined with LSTM layers to support sequence 
prediction. Figure 6 illustrates the architecture of the 
ConvLSTM Model. Convolution layers in the 
beginning of the network help preserve the spatial 
patterns in the spectrogram followed by LSTM layers 
which capture the temporal information. The 
ConvLSTM estimates the future state of a certain cell 
in the tensor grid by the values of the input cells and 
previous states of the local neighboring cells of it. We 

use a convolution operator in the inter-state and input-
to-state transitions to achieve this (Shi et al. 2015). 
The ConvLSTM inner structure is represented by the 
following equations (Shi et al. 2015). 

𝑖௧ ൌ 𝜎൫𝜔௫௜ ∗ 𝑥௧ ൅ 𝜔௛௜ ∗ ℎ௧ିଵ ൅ 𝜔௖௘௟௟೔
∗  cell ௧ିଵ ൅ 𝜖௜൯

𝑟௧ ൌ 𝜎ሺ𝜔௫௥ ∗ 𝑥௧ ൅ 𝜔௛௥ ∗ ℎ௧ିଵ ൅ 𝜔௖௘௟௟௥ ∗ cell௧ିଵ ൅ 𝜖௥ሻ

cell ௧ ൌ 𝑟௧
∘ cell ௧ିଵ ൅ 𝑖௧

∘𝜎 ൬
𝜔௫ష௖௘௟௟ ∗ 𝑥௧ ൅ 𝜔௛ష௖௘௟௟ ∗ ℎ௧ିଵ

൅𝜖௖௘௟௟
൰

𝑐௧ ൌ 𝜎ሺ𝜔௫௖ ∗ 𝑥௧ ൅ 𝜔௛௖ ∗ ℎ௧ିଵ ൅ 𝜔௖௘௟௟௖ ∗  cell ௧ ൅ 𝜖௖ሻ
ℎ௧ ൌ 𝑐௧

∘𝜎ሺcell௧ሻ

 

Here xt’s are the inputs while cellt’s are outputs of 
cells, ht’s are hidden states, it, rt and ct’s are the 
tensors while r and c are the spatial dimensions of the 
cells. 𝜔௫ , 𝜔௛ , and  𝜔௖௘௟௟ are the weights of the input 
data, the inputs to the hidden states and the cell 
outputs respectively. ‘*’ and ‘ ° ’ are denoted as 
convolutional and Hadamard operator. The  𝜎 
function is the sigmoid activation function. We used 
the hyper parameters from our baseline CNN-2 model 
to train our ConvLSTM network. Table 3 lists the 
hyper-parameters we used to train the ConvLSTM 
Model. We explored data augmentation techniques to 
overcome this issue in the next section.  

Table 3: ConvLSTM Models Hyperparameters. 

ConvLSTM Model 
Loss Function: Categorical Cross Entropy 
Optimizer:   
Adam optimizer with 𝛽ଵ= 0.5, 𝛽ଶ= = 0.99 
Batch Size = 32, Number of Epochs = 250 

Data augmentation is a key strategy adopted in 
scenarios where we have less training data. It also acts 
as a regularizer to prevent overfitting and reduce the 
effect of class imbalance making the entire model 
more robust. To resolve the problem of overfitting we 
used two data augmentation techniques which are 
pitching and noise injection. Random audio files are 
selected from the dataset to which noise is injected 
and pitch is varied. These random samples are 
augmented to the original dataset creating a larger and 
more randomized corpus. These techniques increased 
the sample size and sample variance thereby 
addressing the overfitting issue. We also used 
stratified shuffle split instead of random split to 
maintain similar distribution of records over classes 
in both train and test data. The audio corpus has 
increased from 1440 audio files to 4320 audio files, 
giving us more samples to train the model. 
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Figure 4: ConvLSTM Architecture. 

Distribution of audio files after data augmentation is 
shown in Table 4. Retraining the ConvLSTM model 
using the augmented dataset significantly improved 
the performance of the model. 

Table 4: Number of audio files after data augmentation. 

Target Classes Number of Audio Files 

male positive 576 
female positive 576 
male negative 1152 
female negative 1152 
male neutral 432 
female neutral 432 

7 MODEL TUNING  

Our initial convolutional neural network (CNN-1) 
with stochastic gradient descent optimizer resulted in 
a low validation accuracy of 55%.  

 

Figure 5: CNN-1 model training. 

Figure 5 shows the training of CNN-1 model with 
stochastic gradient descent optimizer to exhibit the 
loss. But the same experimental setup with Adam 
optimizer (CNN-2) worked slightly better as a 
baseline model with a 60% validation accuracy. 

Figure 6 shows the training of our baseline CNN-2 
model with Adam optimizer. However, the model 
was overfitting with 98% training accuracy and 60% 
validation accuracy. 

 
Figure 6: CNN-2 Baseline model training with Adam. 

Similar overfitting issue occurred when we trained 
our ConvLSTM model which resulted in 99% 
accuracy on training dataset and 59% accuracy on test 
dataset (see Figure 7) before data augmentation.  

 
Figure 7: ConvLSTM training before data augmentation. 

We addressed this overfitting by re-training our 
ConvLSTM Model with augmented datasets. 

 

Figure 8: ConvLSTM training after data augmentation. 

Thus, the classification accuracy was significantly 
improved to 91% and resolved the overfitting issue 
with a training accuracy of 99% as shown in Figure 
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8. For clarity Table 4 summarizes the findings from 
the experiment. 

Table 5: Training / validation accuracy metrics. 

Models 
Training 
Accuracy 

Validation 
Accuracy 

CNN-1 93% 55% 
CNN-2 with Adam 
optimizer 

98% 
60% 

ConvLSTM without 
data augmentation 

99% 
59% 

ConvLSTM with data 
augmentation 

99% 
91% 

8 DISCUSSION OF RESULTS  

Convolutional Neural networks are traditionally used 
to solve image related problems. We demonstrated 
the possibility of using convolutional neural networks 
in speech classification. It is also interesting to see 
how using a traditional feature extraction approach 
like MFCC with a combination of CNN and LSTM 
resulted in a far better accuracy than individual 
convolutional/recurrent neural networks. We have 
used four types of deep learning techniques i.e., CNN 
with stochastic gradient descent optimizer, CNN with 
Adam optimizer, Convolutional LSTM and 
Convolutional LSTM with data augmentation. 
Though the first three algorithms exhibit high training 
frequency, the validation accuracy remains poor. This 
leads to overfitting in the result. We resort to the 
fourth technique as we have less training data and 
data augmentation helps to resolves the overfitting 
issues observed in first three techniques.  

Our ConvLSTM with data augmentation model 
performed significantly better with 91% accuracy for 
six class classification than the research in (A. Huang 
and Bao 2019) which achieved 85% accuracy using 
CNN based network for seven class classification for 
speech emotion using the same dataset. Hybrid model 
architecture proposed in this paper also performed 
better than that showed in (Satt et al. 2017) which 
implemented a hybrid model approach for emotion 
classification on the IEMOCAP database.  Overall, 
this study explores the possibility of using CNN and 
ConvLSTM neural networks for speech emotion 
classification. Data augmentation techniques played 
an important role in overcoming the overfitting issues 
and resulted in high accuracy of ConvLSTM model 
for speech emotion recognition. Our work can be 
easily adapted to any speech emotion classification 
problems with length invariant audio files that will 
eventually facilitates the machine to identify the state 

of emotion of the speaker and hence generate a 
quality human computer interaction. 

9 CONCLUSIONS  

In the present study we proposed a deep learning 
framework to classify the emotions from the speech 
by segregating the data into six classes. We quantify 
the emotions extracted from male and female voices 
into positive, negative and neutral classes after 
regrouping the original eight emotion classes shown 
in Table 1. We introduced four deep learning models 
and found that convolutional LSTM with data 
augmentation achieved the best validation accuracy 
with minimum overfitting which is significantly 
better performance compared to the existing research 
on same RAVDESS dataset.  For future work we will 
explore bi-directional LSTMs to classify the audio 
files. In addition, we will extend and test our models 
by collecting audio files recorded by random 
individuals and evaluate how our models recognize 
emotions. We will also build an end-to-end deep 
neural network using raw spectrograms to eliminate 
the feature extraction step. Additionally, availability 
of more training data and using length variant audio 
files to train models can lead to generalized findings. 
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