
ProFog: A Proactive Elasticity Model for Fog Computing-based IoT
Applications

Guilherme Gabriel Barth, Rodrigo da Rosa Righi a, Cristiano André da Costa b

and Vinicius Facco Rodrigues c

Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil

Keywords: Fog Computing, IoT, Resource Management, Elasticity, Prediction.

Abstract: Today, streaming, Artificial Intelligence, and the Internet of Things (IoT) are being some of the main drivers
to accelerate process automation in various companies. These technologies are often connected to critical
tasks, requiring reliable and scalable environments. Although Fog Computing has been on the rise as an al-
ternative to address those challenges, we perceive a gap in the literature related to adaptability on the number
of resources on both cloud and fog layers. Multiple studies suggest different Cloud-Fog architectures for
IoT implementations, but not thoroughly addressing elasticity control mechanisms. In this context, this arti-
cle presents ProFog as a proactive elasticity model for IoT-based Cloud-Fog architectures. ProFog uses the
ARIMA prediction model to anticipate load behaviors, so triggering scaling actions as close to when they
are required as possible. This strategy allows the delivery of new resources before reaching an overloaded or
underloaded state, benefiting performance, and energy saving. We developed a ProFog prototype that showed
an improvement of 11.21% in energy consumption in favor of ProFog.

1 INTRODUCTION

The advance of the Internet-of-Things (IoT) industry
follows many segments of the economy needs, such
as the automation in sectors as part of Industry 4.0
(I4.0) (Masood and Sonntag, 2020). Today, it is com-
mon to see IoT spreading on smart cities, transporta-
tion systems, and healthcare scenarios, enabling not
only process monitoring and newer notification sys-
tems but also challenges related to scalability and per-
formance(Mohamed, 2017). Over the past few years,
more industries started to adhere to process automa-
tion using IoT solutions, and the tendency is the us-
age growth as the results of such deployments begin
to be seen and generate value, minimizing risks and
costs(Fischer et al., 2020). Relying only on a local
central processing server to address all IoT imple-
mentations would result in high costs on infrastruc-
ture and maintenance. This type of deployment re-
quires a robust server and network to avoid overload-
ing the server or flooding the network with in-transit
data. IoT systems provide data to critical applications

a https://orcid.org/0000-0001-5080-7660
b https://orcid.org/0000-0003-3859-6199
c https://orcid.org/0000-0001-6129-0548

that require high availability from the server in most
industrial scenarios. Failure of the system may result
in significant financial losses for the company or even
damage to machinery.

Sending requests to a Cloud server adds a constant
latency overhead to the communication that can be
unacceptable in some areas. For instance, in health-
care scenarios, response time is sometimes critical to
decide between life or death of patients (Shah and
Aziz, 2020). Vaquero explained that the existence of
billions of devices always producing data on the edge
of the network may cause the network to become a
clear bottleneck (Vaquero and Rodero-Merino, 2014).
Using Cloud Computing as the primary paradigm for
IoT scenarios will only further contribute to this net-
work congestion (Yin et al., 2018) as the Internet is
not scalable and efficient enough to handle IoT big
data as explained by Xiang (Sun and Ansari, 2016).
Also, submitting massive loads of data to a Cloud
Computing server may result in high costs for the ser-
vice as providers may charge based on the amount
of data going into the Cloud. That reveals the ne-
cessity of designing new architectures and solutions
that enable higher scalability while reducing requests
on the network and maintaining the required Qual-
ity of Service (QoS). Fog Computing has been gain-

380
Barth, G., Righi, R., André da Costa, C. and Rodrigues, V.
ProFog: A Proactive Elasticity Model for Fog Computing-based IoT Applications.
DOI: 10.5220/0010707000003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 380-387
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ing a position as an architecture for IoT scenarios due
to its concept of keeping the processing near its data
sources, thus allowing reduced latency, stable QoS
(Suganuma, 2018) and addressing another of the crit-
ical concerns of IoT, which is the data security.

In this context, in this article, we introduce Pro-
Fog, a proactive elasticity model for resource man-
agement on Cloud-Fog environments for IoT deploy-
ments. The model proves an architecture and a mid-
dleware to run elastic-driven IoT applications on both
Cloud and Fog. ProFog targets applications where
response time to react against received IoT data is
critical. Scalability and financial costs are vital con-
cerns for ProFog, which addresses elasticity using
ARIMA (Auto-Regressive Integrated Moving Aver-
age) (da Rosa Righi et al., 2020) to predict the sys-
tem’s behavior to never achieving an under or over-
loaded situation. When perceiving it, ProFog scales
up or down resources in the fog layer, adding or re-
moving resources as close to the situation require-
ments as possible. The next sections describes ProFog
and its evaluation.

2 ProFog MODEL

This section describes ProFog, a model that uses
proactive elasticity to improve resource allocation for
IoT applications that execute in the Fog.

2.1 Design Decisions

Considering the varying requirements of different IoT
scenarios, a Cloud-Fog architecture is currently the
most promising solution for IoT implementation in
the long-term. It allows for a wider variety of sce-
narios to be implemented while also providing ad-
ditional security and control over the data, reducing
network overload and facilitating QoS adherence. To
meet QoS requirements and create a stable and reli-
able environment for the execution of IoT services,
the system needs to use elasticity control techniques
and scale itself on demand. Proactive elasticity mod-
els apply the collected load data on predictive algo-
rithms to estimate future load. This implies trigger-
ing scaling operations before an undesired load sit-
uation occurs since the resources become available
before the server reaches, in fact, either an under-
loaded/overloaded state. Given the importance of sta-
bility and QoS for IoT applications, we have decided
to use proactive elasticity on ProFog. Unlike Cloud
servers, Fog nodes are limited on processing capac-
ity, limiting the use of vertical elasticity (i.e., resizing
of resources like CPU, memory, or disk). For that rea-

son, we also have chosen to apply horizontal elasticity
by adding and removing processing instances (nodes
and containers, for example).

Figure 1 illustrates a high-level overview of a
Cloud-Fog architecture for IoT implementation. We
modeled ProFog in three different physical layers:
Internet-of-Things, Fog Computing, and Cloud Com-
puting. The IoT layer comprises network edge de-
vices that collect data to be analyzed, interact with
its surroundings, or require services made available
on the Fog Computing layer. IoT devices may vary
from simple sensors to smart devices, like those in
Smart Cars. The Fog layer comprises multiple Fog
nodes that perform initial data treatment and provide
time-sensitive services for the IoT layer and other ser-
vice consumers. Here, single-board computers like
Raspberry Pi and Arduino can appear as possible so-
lutions. The Cloud layer is in charge of monitoring
and scaling the system. In the Cloud, we have non-
time-sensitive services such as data analytic and stor-
age, for example.

Cloud
Layer

Fog
Layer

IoT
Layer

Cloud Resources

Fog
Node

IoT Device

Figure 1: High-level view of a Cloud-Fog architecture.

2.2 Architecture

ProFog focuses on elasticity for the execution of time-
critical applications on Fog Computing. For that pur-
pose, we apply load prediction algorithms on previ-
ously collected time-series data to determine resource
resizing needs and trigger proactive scaling. ProFog
acts as middleware by managing the deployment and
execution of different services and applications seam-
lessly from a user viewpoint. Figure 2 provides an
overview of the core components of the model, high-
lighting in red the ones that are part of ProFog. The
model is composed of three physical layers - Cloud
Computing, Fog Computing, and IoT. However, Pro-
Fog is distributed only on the Cloud Computing and
Fog Computing layers.

ProFog is composed of three different modules:
(i) Cloud Manager; (ii) Fog Manager; and (iii) Elas-
ticity Manager. The Cloud Manager is responsible for
triggering services to the Fog layer based on the IoT

ProFog: A Proactive Elasticity Model for Fog Computing-based IoT Applications

381

Data Collection/
Treatment

Fog
Manager

Time-Critical
Operations

Fog Node

Data Collection/
Treatment

Fog
Manager

Time-Critical
Operations

Fog Node

Fog
Layer

IoT
Layer

IoT Device (Sensor and Actuator)

Cloud
Manager

Image
Repository

Business
Applications

Load
Prediction

Elasticity Manager

External
Service

Consumer

Cloud
Layer

Application Data
Application Deployment and Resource Scaling
Resource Monitoring

Legend:

Figure 2: ProFog model applied to Cloud-Fog environ-
ment. Elements highlighted with a red dot represent the
main modules of ProFog.

devices’ requests, load balancing, and communication
with Fog nodes about load and triggering scaling ac-
tions on the Fog and Cloud layers. The Fog Man-
ager downloads application images from the Cloud
and instantiates them as containers on the Cloud Man-
ager’s request while also constantly monitoring their
load and updating the Cloud Manager about the same.
The Elasticity Manager receives data about the load of
the Fog nodes and Cloud applications from the Cloud
Manager, applies the collected data to load prediction
algorithms, and informs the Cloud Manager about its
scaling decisions.

ProFog requires a Fog Manager’s deployment to
all Fog nodes of the architecture and a Cloud Man-
ager and an Elasticity Manager to the selected Cloud
server. The number of Fog nodes on the system de-
pends on the complexity of the implemented scenario.
Applications and services deployed on the Fog layer
must also follow specific formats for compatibility
with ProFog. In runtime, IoT devices initially re-
quest services from the Cloud Manager that redirects
them to the Fog node, which provides the service, as
depicted in Figure 3. From this point, the IoT de-
vice communicates directly with the service provider
on the Fog. These services may perform data treat-
ment and forward the data to the Cloud for analytics
(or other processing intensive task) or provide time-
critical functionalities to the IoT layer or external
service consumers. This strategy allows a reduction
in network congestion, favoring QoS adherence for
time-critical services benefitting from Fog’s reduced
latency.

ProFog concentrates all management activities on

No

Receive request
for Service from an

IoT device

Is the service
started?

Start

Notify Fog to start
the service

Redirect IoT device to
service provider on
Fog with least load

End

Yes

Figure 3: Service request routing process performed by the
Cloud Manager.

a single point: the Cloud. This strategy facilitates sys-
tem management and reduces complexity. The Cloud
Manager also monitors the load of local applications
and collects information about Fog applications’ load
from each Fog Manager. It then forwards the data to
the Elasticity Manager, who applies load prediction
algorithms based on the collected data. This manager
also provides proactive elasticity to both Cloud and
Fog layers with no human intervention.

2.3 Application Model for Fog
Deployment

Applications are exposed for deployment as images,
like Docker container images of Virtual Machine
(VM) templates, including all the necessary services
for its operations. This strategy is similar to what
was proposed by Nguyen, Phan, Park, Kim S., and
Kim T. (Nguyen et al., 2020). ProFog creates an in-
stance of the container image to start the application,
requiring the image to be built and configured to run
the application upon initialization. Any necessary pa-
rameters for the application start-up can be provided
during the container’s instantiation as long as the im-
age was previously built with an ENTRYPOINT or
CMD statement to support command-line argument
consumption through Docker. Deploying applications
as isolated containers simplifies the deployment pro-
cess while also providing more flexibility to the appli-
cation development. It becomes possible to install any
necessary resources for the application directly on its
container.

As applications consist of containers or VM tem-
plates, they are isolated from the Fog Manager, re-
quiring them to internally implement any functional-
ities necessary for consuming data or providing ser-
vices. For instance, an application that receives data
from edge devices performs operations on such data
and then forwards it to the Cloud must implement

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

382

an HTTP (Hypertext Transfer Protocol) server to re-
ceive data from edge devices through HTTP requests.
The Fog Manager provides the application with the
port number to run its HTTP server upon initializa-
tion. The application must implement a shutdown
service and reroute any connected clients back to the
Cloud prior to the shutdown. The Fog Manager calls
the shutdown service to notify the application of any
eventual shutdown due to down-scaling, providing it
the time left for the shutdown and the Cloud Man-
ager’s address, which may be used to reroute clients
to another active application instance. The applica-
tion is given the duration of the time left for the shut-
down to handle active clients, whatever way it suits
it. Once the time is over, the Fog Manager performs
the shutdown, finishing all of its running processes.
All monitoring and elasticity control-related tasks are
managed by the Fog Manager and Cloud Manager,
relieving application developers of any concerns of
elasticity control at the application level.

2.4 Elasticity Algorithm

ProFog uses proactive elasticity to provide stable QoS
and prevent the system from overloading, which may
compromise its operations. More specifically, the
Elasticity Manager evaluates the load of a given met-
ric (CPU, for instance) against thresholds to decide
whether to reorganize the number of Fog nodes and
application instances in the Cloud. Proactive elas-
ticity is not only capable of achieving more consis-
tent and reliable scaling decisions with better rates
of false-positive results in case of sudden peaks of
the load when compared to reactive elasticity, but it
also allows to include relevant metrics such as deploy-
ment and start-up time into consideration for scaling
decisions. Proactive elasticity makes it possible to
have the needed resources ready before required, pre-
venting the application from going into an overloaded
state.

First, proactive elasticity depends on constant
monitoring of the system’s state. Second, we have
the prediction of future load based on the collected
data through time-series forecasting algorithms. We
selected the mathematical model named ARIMA for
this purpose. It is widely used for time series-based
prediction, and it can provide predictions in fewer
boot cycles than the machine learning models (da
Rosa Righi et al., 2020). Auto Regression (AR)
means that it is a regression of the variable against
itself. Thus the variable of interest is forecasted using
a linear combination of its past values. Moving Av-
erage models use past forecast errors rather than past
values of the variable. ARIMA takes both the previ-

ous values of the variable and the previous forecast
errors into consideration for its predictions.

ARIMA has several configurations that are de-
pendent on three parameters: d which is the mini-
mum number of differences that are required to make
the time series stationary, p which is the order of
auto-regressive terms (AR), and q which is the or-
der of the moving average (MA) term. We have
used Auto Arima, a function from the time series
analysis library, to determine these parameters’ most
appropriate values. As ARIMA’s predictions de-
pend on the analysis of time-series data, it is nec-
essary to collect a given number of load observa-
tions to start the load predictions. Righi, Correa,
Gomes, and Costa (da Rosa Righi et al., 2020) sug-
gest the use of at least six cycles - or six monitor-
ing observations - for the calculation of the predic-
tions. We have chosen to use the data of ten cy-
cles for our predictions, meaning ARIMA will take
10×monitoring observation period to initialize and
provide its first prediction. For example, if there are
10 seconds between each observation of the system’s
load, it will take 100 seconds to collect enough values
to make the first prediction.

We have also defined an ahead parameter based
on Equation 1. Righi, Correa, Gomes, and Costa (da
Rosa Righi et al., 2020) proposed this Equation to de-
termine how many cycles ahead into time ARIMA
should make its prediction to allow the deployment
of new resources in time. A proper definition of the
ahead parameter is crucial to avoid two possible pit-
falls:

1. too high of a value may cause the prediction to
missing short-term changes on the application be-
havior incurring in false-negative or false-positive
elasticity;

2. if the value is too low, the elasticity action may de-
liver the resources after they start to be necessary,
causing the application to run on an overloaded
state for some time, affecting its operations (da
Rosa Righi et al., 2020).

ahead =
Abs(Max(scaling out time))

monitoring observation period
(1)

Figure 4 depicts the flow of actions performed
by ProFog for elasticity management. Like reactive
models, proactive elasticity models also require the
definition of upper (UT) and lower (LT) threshold set-
tings. After performing load prediction, the predicted
values are compared to the threshold values to deter-
mine if scaling actions are required. Figure 5 illus-
trates the behavior of proactive elasticity models dur-
ing execution.

ProFog: A Proactive Elasticity Model for Fog Computing-based IoT Applications

383

Request CPU load from

all running Fog Nodes.

Capture the current CPU

load and notify the Cloud

Manager.

Compute CPU_load as

the average of the all

collected CPU values.

Trigger Elasticity actions.

Share CPU_load with

the Elastic Manager.

Compute load prediction

with ARIMA.

Clear historical data and

notify Elastic Manager to

perform scaling actions.

Periodical Monitoring,

waiting for a particular

time interval.

load > UT

OR

load < LT

Is there an

ongoing elastic

action?

Is the system

shutting down?

Start

End

Enough values

for prediction?

Yes

No

No

Yes

Yes

Yes

No

No

LT – Lower Threshold

UT – Upper Threshold

Fog ManagerFog Manager

Cloud ManagerCloud Manager

Elasticity ManagerElasticity Manager

Figure 4: ProFog elasticity management flowchart.

C
PU

 lo
ad

Time

UT - Overloaded Situation

LT -Underloaded Situation

ahead observations in
the future, the upper
threshold will be violated

Elasticity Action
is Triggered

Time spent to Start
up Container/VM

Monitoring
Observation

Monitoring
Observation
Period

VM/Container
is delivered

Figure 5: Server elasticity managed by a proactive elasticity
model.

3 EVALUATION
METHODOLOGY

This section describes the methodology we employed
to evaluate the model.

3.1 Application

After analyzing a series of possible IoT scenarios doc-
umented by the OpenFog Consortium, an association
for the advance of Fog Computing as a connected and
interoperable architecture, we decided to use a video
streaming use case for the prototype’s test. Cases such
as healthcare and Industry 4.0 require precise knowl-

edge of the industry to recreate scenarios properly.
The variables, data, and the analysis of such data are
particular to their environment. However, streaming
scenarios are far more versatile as they are more con-
nected to the information technology area and do not
involve as many unfamiliar end devices and sensors.

Currently, we could not identify any applications
or benchmarks designed to evaluate such scenarios’
performance, so we have modeled an application to
evaluate the prototype. The official version of the
streaming scenario proposed by the Industrial Inter-
net Consortium comprises multiple different Fog lev-
els, each responsible for a specific task to achieve the
highest level of performance for live-event streaming.
As this project’s solution is not specific for streaming,
but for a general Cloud-Fog architecture, we simpli-
fied the streaming scenario to a single Fog level that
provides Video-On-Demand (VOD) to clients mon-
itoring its state and performing scaling operations
proactively.

3.2 Infrastructure

In order to evaluate the results of ProFog, we have de-
ployed our solution to a Cloud-Fog environment. We
have used an Azure Container instance for the Cloud
layer, configured with 2 CPUs and 4GB of RAM,
to host the Cloud Manager and Elasticity Manager.
The Fog layer was composed of three Raspberry PI 4
Model B microcomputers as Fog nodes, hosting ap-
plication services.

On the Industrial Internet Consortium’s proposi-
tion of the video broadcasting scenario, which we
have based our case on, the IoT layer comprises HD
video cameras that collect data for transmission. Our
goal is to validate the elastic capacity of ProFog and
not the streaming scenario. We have removed the
HD video cameras in exchange for pre-recorded video
files (VOD), allowing us to simplify the application
and test infrastructure while maintaining the elastic
behavior. By doing that, we have removed the IoT
layer from the test infrastructure. In our test scenario,
Video-On-Demand clients consume the Fog layer’s
services. JMeter generates these clients on a sepa-
rate machine, creating service load for the Fog and
scaling needs. The machine we used to emulate the
clients has an Intel I7 7th Generation processor and
16GB of RAM.

3.3 Prototype

We built both Cloud Manager and the Fog layers’ ser-
vices on top of Node.js1. The Fog nodes provide the

1https://nodejs.org/

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

384

streaming service through an HTTP server running
on Node.js, which streams video content to the con-
nected clients using the HTTP Live Streaming (HLS)
protocol. In turn, we developed the Elasticity Man-
ager in Python, employing the pmdarima2 library for
time series analysis. Finally, we have used Docker3

to create and manage the container instances for the
prototype while Dockerhub was used as the container
image repository.

For our prototype, we have used FFMpeg to en-
code a nine-minute long video file and stored the gen-
erated index file and video stream chunks locally for
consumption for the preparation of the video files.
Streaming clients initially connect to the Cloud Man-
ager, which then redirects them to an active Fog node
that provides the requested service seamlessly to the
client. Upon receiving a service request, the Cloud
Manager performs load balancing between different
active Fog nodes, always directing clients to the node
with the least load. The prototype does not contain
any application on the Cloud side for the evaluation
of Cloud elasticity.

3.4 Workload and Execution Scenarios

We have used JMeter4, a load testing tool main-
tained by the Apache Foundation, to simulate stream-
ing clients as it is a stable load testing tool with an
active community that can handle massive amounts
of threads. We have used different JMeter elements
to emulate the required streaming logic, allowing the
redirect of streaming clients to different servers dur-
ing the streaming process and a few custom Groovy5

scripts that perform validations of the request re-
sponses emulate video buffer control.

During the test execution, each client generated by
JMeter makes HTTP requests to a service provider on
the Fog layer for transport stream files - video chunks.
We have configured JMeter to emulate clients at two
different points in time. The first client emulation
created 400 clients over three minutes (180 seconds).
The second client emulation created 200 more clients
over one minute and 40 seconds (100 seconds). The
first load was triggered at the test start and the second
load at four minutes and 10 seconds (250 seconds).

It is important to note that we also developed Pro-
Fog to support reactive elasticity for comparison pur-
poses. In order to evaluate the prototype, we have
configured ProFog to accept two different execution

2https://pypi.org/project/pmdarima/
3https://www.docker.com/
4https://jmeter.apache.org/
5https://groovy-lang.org/

modes, which allow us to observe two different sce-
narios in the same environment:

• Scenario 1: Streaming service with ProFog run-
ning on reactive elasticity mode;

• Scenario 2: Streaming service with ProFog run-
ning on proactive elasticity mode.

3.5 Evaluation Metrics

We observed the system’s average load to determine
the efficiency of ProFog on handling resizing upon
demand. Average load is a metric that considers CPU
load, network connections, and I/O operations, be-
ing a more reliable metric for specific applications
that do not rely exclusively on CPU-intensive oper-
ations. Additionally, we observe energy consumption
as a metric to evaluate this behavior. We can estimate
the energy consumption by analyzing the deployment
times of containers and for how long they were active
(da Rosa Righi et al., 2020), as shown in Equation
2. In the equation, n is the maximum number of con-
tainers, and T (i) is the time spent running with i con-
tainers. For example, suppose the following scenario:
1 container for 40 seconds, 2 containers for 25 sec-
onds, 3 containers for 50 seconds; this would result in
Energy = 1×40+2×25+3×50 = 240.

Energy =
n

∑
i=1

(i×T (i)) (2)

3.6 Evaluation Parameters

We have configured ProFog to collect data from each
of the Fog nodes every 5 seconds. Calculating the pre-
diction on the Elasticity Manager takes up to 4 sec-
onds. With these metrics, the total interval data for
each collection is around 9 seconds. The download
of the container image from Dockerhub takes up to
20 seconds, depending on network congestion. The
initialization of the application using the container
image is less than 2 seconds, adding up to 22 sec-
onds. Based on Equation 1, predictions should be
performed for 2.44 measures ahead, resulting from 22
divided by 9. We have decided to round this value up
to 3 to compensate for unaccounted communication
delays.

The upper and lower CPU threshold values for
elasticity control were set to 90% and 50%, respec-
tively, based on observing the system’s behavior over
multiple test runs.

ProFog: A Proactive Elasticity Model for Fog Computing-based IoT Applications

385

4 RESULTS

This section presents the results from running the pro-
totype in the scenarios previously described.

4.1 Load and Resource Allocation

Figure 6 illustrates the system behavior using the re-
active elasticity approach throughout a twelve-minute
load test. Analyzing the graph, we can see that a load
peak at 1:45min has triggered the second Fog node’s
start-up. After that, the same situation repeats itself at
2:35min. At 2:40min, three Fog nodes were already
active and remained active until the load dropped be-
low the lower threshold at 10:25min.

0

1

2

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

F
o
g
 n

o
d
e

A
v
e
ra

g
e
 C

P
U

 L
o
a
d

Time (mm:ss)

Average load Upper threshold Lower threshold Fog nodes

Figure 6: Scenario 1: Streaming service with ProFog run-
ning on reactive elasticity mode.

Figure 7 illustrates the system behavior with Pro-
Fog running in proactive mode. We can see that the
second Fog node’s start-up suffered a delay as the
predicted values were lower than the observed load
value, which was a peak. In this scenario, the sec-
ond Fog node’s start-up took place at 2:05min and
the third node at 4:25min. We can also see that the
predicted values are very close to the observed load
values. This behavior may be related to ARIMA’s pa-
rameterization or that the predictions only occur three
measures ahead, which is relatively low. Increasing
the ahead parameter could improve the predictions,
but it could also incur a more prolonged resource us-
age than necessary. The drops to zero in the predicted
values mean that the Elastic Manager has requested
an elastic action to be taken and cleared its load val-
ues buffer. This action could be followed or ignored
by the Cloud Manager depending on resource avail-
ability at the moment.

We have opted not to calculate a standard devia-
tion or mean at this point as the application used for
the test is dynamic and subject to multiple variables
of the emulation environment, which would affect the
results. Furthermore, the most crucial point for us to

monitor is the system’s elastic behavior and its impact
on resource allocation. As the current prototype does
not contain any applications that run on the Cloud,
we could not verify the Cloud side’s elastic behavior
either.

0

1

2

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

F
o
g
 n

o
d
e
s

A
v
e
ra

g
e
 C

P
U

 L
o
a
d

Time (mm:ss)

Prediction Average load Upper threshold Lower threshold Fog nodes

Figure 7: Scenario 2: Streaming service with ProFog run-
ning on proactive elasticity mode.

4.2 Energy Consumption

We have mapped the Fog node initialization times for
each scenario to calculate an estimate of energy con-
sumption. Table 1 presents the results for Scenario 1
and table 2 the results for Scenario 2. By comparing
the tables’ total values, we see that scenario two has
presented lower energy consumption. Even though
the predictions were not far enough ahead to trigger
scaling actions in advance on the tested scenario, we
can see that time series analysis has helped smooth
the data and minimize unnecessary scaling on sudden
peaks. This behavior has improved energy consump-
tion by 11.21%, resulting from (1785/1605 - 1).

Table 1: Energy consumption estimate based on equation 2
for the scenario 1.

Number of
Fog Nodes

Period of
time (s)

Energy
consumption

1 125 125
2 125 250
3 470 1410

Total 1785

4.3 Discussion

The proximity between the actual load values and the
predicted load values shows us that the use of proac-
tive elasticity for fast deployment environments, such
as those based on containers, may be challenging.
The lower the time required for deployment is, the

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

386

Table 2: Energy consumption estimate based on equation 2
for the scenario 2.

Number of
Fog Nodes

Period of
time (s)

Energy
consumption

1 170 170
2 215 430
3 335 1005

Total 1605

more difficult it is to make a prediction capable of
scaling the system in time. By modifying the ahead
parameter used for the predictions, we could further
anticipate scaling needs. However, at the same time,
we may deliver resources before they are required,
which may incur unnecessary energy consumption
and additional costs.

Even though the predictions performed by ProFog
were too close to the actual load values for us to see
preemptive scaling actions take place, we can see that
the use of time series analysis has brought other ben-
efits to the system. By analyzing the system load over
time for Scenario 2, we see that the load predictions
have smoothed load peaks, helping avoid unnecessary
deployment of new Fog nodes. By preventing un-
necessary deployment of Fog nodes caused by load
peaks, ProFog has reduced the number of active ma-
chines for some time, consequently reducing energy
consumption and operating costs for the system.

5 CONCLUSION

As IoT grows across multiple industries, it becomes
necessary to review how solutions design IoT sys-
tems. Cloud data centers are often used to implement
IoT scenarios as they offer scalability and reliability.
However, such configuration poses many challenges
- from security to QoS and network congestion - that
may prevent certain use cases or the adoption in spe-
cific industries. These challenges have fostered the
advance of another system architecture named Fog
computing. This architecture brings the processing of
data closer to the resource, allowing better response
times, lower latency, and increased security.

In this context, this article addressed proactive
elasticity for resource allocation on Fog comput-
ing for IoT implementations by presenting a model
named ProFog. This model manages resource allo-
cation and provides proactive elasticity to applica-
tions without any user intervention or elasticity con-
trol logic from the application end. To validate the
model, we have built a prototype using Microsoft
Azure - like the Cloud - and three Raspberry Pi 4

microcomputers - which operated as Fog nodes. We
evaluated our prototype using a Video-On-Demand
streaming scenario. However, ProFog covers vari-
ous scenarios, such as manufacturing, healthcare, and
Smart Cities.

ACKNOWLEDGMENT

The authors would like to thank the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior -
CAPES (Finance Code 001) and Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico - CNPq
(Grant Number 303640 / 2017-0).

REFERENCES
da Rosa Righi, R., Correa, E., Gomes, M. M., and da Costa,

C. A. (2020). Enhancing performance of iot applica-
tions with load prediction and cloud elasticity. Future
Generation Computer Systems, 109:689 – 701.

Fischer, G. S., da Rosa Righi, R., de Oliveira Ramos, G.,
da Costa, C. A., and Rodrigues, J. J. (2020). El-
health: Using internet of things and data prediction
for elastic management of human resources in smart
hospitals. Engineering Applications of Artificial Intel-
ligence, 87:103285.

Masood, T. and Sonntag, P. (2020). Industry 4.0: Adop-
tion challenges and benefits for smes. Computers in
Industry, 121:103261.

Mohamed, N. (2017). SmartCityWare: A Service-Oriented
Middleware for Cloud and Fog Enabled Smart City
Services. NEW ERA OF SMART CITIES: SENSORS
COMMUNICATION TECHNOLOGIES AND APPLI-
CATIONS.

Nguyen, N. D., Phan, L. A., Park, D. H., Kim, S., and
Kim, T. (2020). Elasticfog: Elastic resource provi-
sioning in container-based fog computing. IEEE Ac-
cess, 8:183879–183890.

Shah, S. A. B. and Aziz, S. M. (2020). Response time de-
terminism in healthcare data analytics using machine
learning. In Yang, H., Pasupa, K., Leung, A. C.-S.,
Kwok, J. T., Chan, J. H., and King, I., editors, Neu-
ral Information Processing, pages 203–210, Cham.
Springer International Publishing.

Suganuma, T. (2018). Multiagent-Based Flexible Edge
Computing Architecture for IoT. IEEE Network.

Sun, X. and Ansari, N. (2016). Edgeiot: Mobile edge com-
puting for the internet of things. IEEE Communica-
tions Magazine, 54(12):22–29.

Vaquero, L. M. and Rodero-Merino, L. (2014). Finding
your way in the fog: Towards a comprehensive defini-
tion of fog computing. SIGCOMM Comput. Commun.
Rev., 44(5):27–32.

Yin, L., Luo, J., and Luo, H. (2018). Tasks scheduling and
resource allocation in fog computing based on con-
tainers for smart manufacturing. IEEE Transactions
on Industrial Informatics, 14(10):4712–4721.

ProFog: A Proactive Elasticity Model for Fog Computing-based IoT Applications

387

